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Abstract

We study dynamic portfolio choice in a calibrated equilibrium model where value and mo-

mentum anomalies arise because capital slowly moves from under- to over-performing market

segments. Over short horizons, momentum’s Sharpe ratio exceeds value’s, the value-momentum

correlation is negative, and the conditional value-momentum correlation positively predicts

Sharpe ratios of value and momentum. In contrast, over long horizons, value’s Sharpe ratio

can exceed momentum’s, the value-momentum correlation turns positive, and the value spread

becomes a better predictor of Sharpe ratios. Momentum’s optimal portfolio weight relative to

value’s declines significantly as horizon increases. We provide novel empirical evidence support-

ing our model’s predictions.
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1 Introduction

How should long-horizon investors choose their portfolio of financial assets? According to the

CAPM, all investors should hold the market portfolio, which weighs assets according to their

market capitalization. Many models of dynamic portfolio choice use the CAPM’s basic insight and

simplify portfolio choice between stocks and cash to one between a single risky asset and cash.

They examine how the optimal investment in the risky asset depends on investor horizon and on

variables that predict the asset return.1

The CAPM fails to describe asset prices and portfolio allocations well. A vast literature, sur-

veyed in, e.g., Fama (1991) and Schwert (2003), documents that CAPM beta is a weak predictor

of asset returns and that other variables such as value, momentum and size are stronger predic-

tors. Trading strategies based on the latter variables are widely used in practice throughout asset

management, and funds belonging to styles such as value and growth, momentum, and large- or

small-cap are quite popular.

Despite the extensive evidence against the CAPM, academic guidance on long-horizon investing

in a non-CAPM world is scarce. What is the optimal portfolio of CAPM anomalies that investors

should hold? Should long-horizon investors hold a different portfolio of anomalies than short-

horizon investors? Are anomaly returns predictable, and are the predictors different for long- and

short-horizon investors? Since long-horizon investors such as pension funds and sovereign-wealth

funds control a large fraction of social savings, guidance on these questions can yield large benefits

to households as well as improvements in market efficiency.

To study dynamic portfolio choice in a non-CAPM world, an equilibrium approach, grounded

on a model in which the CAPM fails to hold, is useful. Indeed, optimal portfolios for long-horizon

investors depend on the dynamic evolution of asset prices, and specifying that evolution in the

presence of CAPM anomalies involves many degrees of freedom. These include: how each anomaly is

reflected in the cross-section of assets; which variables predict each anomaly’s return; how anomaly

returns correlate with each other; and how they correlate across time. Deriving the corresponding

moments from an equilibrium model can provide a tight and internally consistent specification.2

In this paper, we study dynamic portfolio choice in a non-CAPM world using the equilibrium

approach. We assume that asset prices are determined as in the model of Vayanos and Woolley

(2013, VW), in which capital moves from under- to over-performing market segments and does

so slowly. The model yields the value and momentum anomalies. Deepening VW’s analysis, we

provide answers to questions that are key to dynamic portfolio choice and that the theoretical

1References are in the literature review section at the end of the Introduction.
2Related arguments in favor of an equilibrium approach in dynamic portfolio choice are in Cochrane (2022).
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literature has not addressed. We determine, in particular, how the returns of value and momentum

depend on predictor variables; how they correlate with each other; and how they correlate across

time. We show that that the profitability of anomalies and the main variables that predict them

change significantly with investment horizon, and in ways that differ across value and momentum.

We explore the implications of our results for dynamic portfolio choice and show that optimal

portfolios vary significantly with investment horizon.

We describe our model in Section 2 and solve it in Section 3. The momentum and value

anomalies arise from performance-driven flows across investment funds. Suppose that a negative

shock hits the fundamental value of some assets. Investment funds holding those assets realize

low returns, triggering outflows by investors who infer that fund managers’ ability is likely to be

low. Because of the outflows, funds sell assets they own, and these sales further depress the prices

of the assets hit by the original shock. The momentum anomaly arises because the outflows are

assumed to be gradual and because, despite their predictability, they lower expected returns. The

value anomaly arises because outflows push prices below fundamental values, so expected returns

eventually rise. Key to both anomalies is that capital moves from under- to over-performing market

segments and does so slowly. Momentum and value strategies derive their profitability by exploiting

these capital flows.

Section 4 defines value and momentum strategies, as well as performance measures for general

strategies, and calibrates the model. An asset’s value weight is assumed linear in the difference

between the present value of the asset’s expected dividends discounted at the riskless rate, and

the asset’s price. An asset’s momentum weight is assumed linear in the asset’s cumulative return

over a given lookback window. Weights change continuously, implying continuous rebalancing of

the strategies. We measure a strategy’s performance by its annualized market-adjusted Sharpe

ratio over a given horizon. A strategy maximizing the utility of an investor with mean-variance

preferences over wealth over that horizon maximizes Sharpe ratio. The linear structure of our

model makes it possible to compute Sharpe ratios in closed form, even over long horizons and even

for strategies that rebalance continuously. We calibrate the model using empirical estimates of the

size, price impact, and performance sensitivity of fund flows, available in the literature.

Using the equilibrium prices generated by the calibrated model, we compute the performance

of trading strategies and show our main results. Section 5 evaluates strategies over an infinitesimal

horizon, and Section 6 considers all horizons longer than infinitesimal.

Our first result concerns the performance of value and momentum strategies in isolation. Over

short horizons of up to two years, the strategies’ Sharpe ratios decrease with horizon. This reflects

the short-horizon positive autocorrelation of strategies’ returns, driven by asset-level momentum.

Because of that autocorrelation, the annualized variance of returns increases with horizon, and
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Sharpe ratios decrease. Over longer horizons, the Sharpe ratio of momentum becomes approxi-

mately independent of horizon, while that of value increases significantly. In our main calibration,

value overtakes momentum for horizons longer than thirteen years in the case of unconditional

Sharpe ratios and five years in the case of conditional ones. Intuitively, momentum has short

memory because it weighs assets based only on recent performance. As a consequence, its returns

are approximately independent over time when evaluated over longer horizons, and its annualized

variance is constant. By contrast, value has long memory because it loads up on assets that have

underperformed over a long period. If the assets held by value experience a further long period of

underperformance, then their expected returns increase and so does the weight given to them by

value. This boosts value’s expected return, resulting in strong negative long-horizon autocorrelation

of value returns.

Our second result concerns the diversification gains of combining value and momentum. Over

short horizons, the strategies are negatively correlated, as has been documented empirically (Asness,

Moskowitz, and Pedersen (2013)). This is because value loads up on assets that have underper-

formed over a long period, while momentum tends to short those assets as they have been trending

down in the recent past. In contrast, over horizons longer than one year, the correlation turns

positive. This change is mainly because of a positive lead-lag effect from value to momentum.

Our third result concerns the weights of value and momentum in their optimal combination.

The optimal combination tilts away from momentum and towards value as horizon increases. Mo-

mentum’s weight is almost twice that of value for horizons of up to two years. It then decreases

with horizon, becoming one-half of value’s weight at forty years. Value and momentum exhaust

almost all the available gains in our model: the Sharpe ratio of their optimal combination is above

90% of the fully optimal strategy’s.

Our fourth result concerns the performance of value and momentum conditional on predictor

variables. This result can be understood in terms of the “flow cycle,” which describes how capital

moves across funds. Following a negative shock to the fundamentals of some assets, capital moves

slowly out of funds holding those assets. Since those assets are expected to continue underper-

forming in the near term, and momentum goes short in them, it has high conditional short-horizon

Sharpe ratio at the cycle’s early stage. By contrast, value has negative Sharpe ratio because it goes

long. Value’s Sharpe ratio rises at the cycle’s intermediate stage, when most capital has moved out:

the assets are then severely undervalued, with high expected returns. It remains high at the cycle’s

late stage, when the undervalued assets begin to accumulate a history of good performance. At the

late stage, momentum’s Sharpe ratio is also high because it goes long in the undervalued assets. It

is instead low at the intermediate stage, when the return history of the undervalued assets has not

yet caught up with their high expected returns.
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The variation of conditional short-horizon Sharpe ratios over the flow cycle is reflected into their

relationship with two predictors implied by our model: the value spread, whose predictive power for

value returns has been shown in Cohen, Polk, and Vuolteenaho (2003, CPV), and the short-horizon

value-momentum correlation. Value and momentum are negatively correlated at the cycle’s early

stage, since value longs the assets that momentum shorts, and are positively correlated at the late

stage, since they long the same assets. Therefore, their correlation is strongly positively related to

value’s Sharpe ratio. A positive relationship exists with momentum’s Sharpe ratio as well. The

value spread is positively related to value’s Sharpe ratio, but the relationship is weaker than that

involving the correlation. This weak link arises because at the cycle’s early stage, the value spread

is wide, but value’s Sharpe ratio is negative. The value spread becomes strongly positively related

to the strategies’ long-horizon Sharpe ratios, while the correlation becomes weakly related.

Section 7 examines whether the theoretical patterns appear in the data. We use a monthly vector

auto-regression (VAR) of value and momentum returns together with three predictors: the value

spread, the value-momentum correlation, and the panic variable shown in Daniel and Moskowitz

(2016, DM) to predict momentum returns. Consistent with our theory, we find that the value-

momentum correlation positively predicts value and momentum returns and that including that

variable improves the ability of the value spread to predict value returns. We next use the VAR

to compute Sharpe ratios and correlations of value and momentum over general horizons and show

that they depend on horizon in a way consistent with our theory. The autocorrelation and lead-lag

patterns are also consistent with our theory.

Our paper is related to the dynamic portfolio choice literature. Merton (1969, 1971), Samuelson

(1969) and Cox and Huang (1989, 1991) develop general methodologies and use them to derive

closed-form solutions for return distributions that are constant over time. Kim and Omberg (1996),

Brennan and Xia (2002), Wachter (2002) and Liu (2007) derive closed-form solutions for time-

varying return distributions.

Brennan, Schwartz, and Lagnado (1997) and Barberis (2000) incorporate the empirically doc-

umented positive relationship between the aggregate stock market’s expected return and dividend

yield—a value effect for the aggregate market—in their numerical analysis of portfolio choice be-

tween a risky asset and cash. Campbell and Viceira (1999, 2002) and Chacko and Viceira (2005)

analyze portfolio choice between a risky asset and cash using log-linear approximations. When the

risky asset’s expected return is positively related to the asset’s dividend yield, the asset’s Sharpe

ratio increases with horizon, and long-horizon investors allocate a larger fraction of their wealth

to the asset than short-horizon investors. These papers focus on the allocation between stocks

and cash in a CAPM world, while we focus on portfolio choice over the cross-section of stocks (or

other assets) in a non-CAPM world. Moreover, while these papers emphasize time-variation in the
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market’s expected return, that return is constant in our model and is thus not driving the variation

in value and momentum Sharpe ratios across investment horizon.

Jurek and Viceira (2011) study portfolio choice between a value index, a growth index and

cash and show that long-horizon investors invest less in value than short-horizon investors. They

estimate moments of value and growth returns using VARs. Because they do not include the value

spread as a predictor, they do not pick up the negative long-horizon autocorrelation of value returns

that we uncover that makes value attractive for long-horizon investors.

Our theory of value and momentum is based on Vayanos and Woolley (2013, VW) and relates to

Barberis and Shleifer (2003, BS).3 Investors in BS can trade multiple assets and move from under-

to over-performing investment styles. Because investors do not anticipate future flows, momentum

in BS is more profitable than in VW and our model, in which future flows are rationally anticipated.

Both BS and VW compute Sharpe ratios of value and momentum, but only unconditionally and

over short investment horizons—one period in BS and infinitesimal in VW.

Our paper is also related to the empirical literature showing that fund flows impact asset

returns, e.g., Harris and Gurel (1986), Shleifer (1986), Coval and Stafford (2007), Greenwood and

Thesmar (2011), Lou (2012), Anton and Polk (2014), Koijen and Yogo (2019) and Gabaix and

Koijen (2020). Estimates of the size, price impact, and performance sensitivity of fund flows from

that literature inform our calibration exercise. Our calibration shows that such estimates can be

mapped to estimates of profitability of CAPM anomalies, such as conditional and unconditional

Sharpe ratios of value and momentum.

Our results on horizon effects align with recent empirical findings. Laarits (2021) finds that

the variance ratio of value rises above one over short horizons and declines to well below one over

longer horizons, while that of momentum remains close to one. These results are shown non-

parametrically, for horizons of up to ten years. Chernov, Lochstoer, and Lundeby (2021, CLL)

find that linear factor models fail to price their own long-horizon factor returns. One explanation

is that means and variances of factor returns are time-varying, causing the optimal combination

of factors that prices assets to vary. In our model, assets are priced by a fund flow factor, whose

covariance with value and momentum is time-varying in equilibrium. CLL do not find significant

long-horizon pricing errors for the value factor, indicating that their method does not pick up the

strong mean-reversion of value returns that we uncover. Our flow-based pricing model relates to

that in Dou, Kogan, and Wu (2021), in which the premium of the flow factor changes with the

amount of delegation.

3Other behavioral theories of value and momentum include Barberis, Shleifer, and Vishny (1998), Daniel, Hirsh-
leifer, and Subrahmanyam (1998) and Hong and Stein (1999). Other rational theories of value and momentum include
Berk, Green, and Naik (1999), Dasgupta, Prat, and Verardo (2011), Albuquerque and Miao (2014) and Ottaviani
and Sorensen (2015).
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2 Model

Time t is continuous and goes from zero to infinity. There are N + 1 assets. Asset zero is riskless

and has an exogenous, continuously compounded return r. Assets n = 1, .., N are risky and their

prices are determined endogenously in equilibrium. We interpret the risky assets as stocks or as

industry-sector portfolios. We denote by Dnt the cumulative dividend per share of asset n = 1, .., N ,

by Snt the asset’s price, by dRnt ≡ dDnt+dSnt−rSntdt the asset’s return per share in excess of the

riskless asset, and by ηn the asset’s supply in terms of number of shares. We refer to dRnt simply

as return. We set dRt ≡ (dR1t, .., dRNt)
′, where v′ denotes the transpose of the vector v.

There are three agents: a representative investor, a representative fund manager, and a rep-

resentative hedger. The investor can invest in the riskless asset. She can also invest in the risky

assets through a passive fund that tracks mechanically an index and through an active fund. The

index includes ηn shares of risky asset n and is thus capitalization-weighted.

The index is not an optimal portfolio, and can thus be dominated by the active fund, because

the hedger holds a portfolio other than the index. We denote by ηn − θn the number of shares of

risky asset n held by the hedger. The number of shares held by the other agents is thus θn. We

refer to θn as asset n’s residual supply. Our assumption that the hedger does not hold the index

amounts to the vectors η = (η1, .., ηN ) and θ ≡ (θ1, .., θN ) being linearly independent. We set

∆ ≡ θΣθ′ηΣη′ − (ηΣθ′)2 > 0.

The investor determines how to allocate her wealth between the riskless asset, the index fund,

and the active fund. She maximizes expected utility of intertemporal consumption. Utility is

exponential, i.e.,

−E
∫ ∞

0
exp(−αct − βt)dt, (2.1)

where α is the coefficient of absolute risk aversion, ct is consumption, and β is the discount rate.

The investor’s control variables are consumption ct and the number of shares xt and yt of the index

and active fund, respectively.

The fund manager runs the active fund and can invest his personal wealth in it. He thus

determines the active portfolio and the allocation of his wealth between the riskless asset and the
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fund. He maximizes expected utility of intertemporal consumption. Utility is exponential, i.e.,

−E
∫ ∞

0
exp(−ᾱc̄t − β̄t)dt, (2.2)

where ᾱ is the coefficient of absolute risk aversion, c̄t is consumption, and β̄ is the discount rate.

The manager’s control variables are consumption c̄t, the number of shares ȳt of the active fund, and

the active portfolio zt ≡ (z1t, .., zNt), where znt denotes the number of shares of asset n included in

one share of the active fund.

The assumption that the manager can invest his personal wealth in the active fund generates

an objective that the fund maximizes: the manager chooses the fund’s portfolio to maximize the

utility that he derives from his stake in the fund. The same assumption generates a counterparty

to the investor’s flows, ensuring that markets can clear: when the investor reduces her stake in the

active fund, prices change so the manager is induced to increase his stake. The manager can be

interpreted as the aggregate of all smart-money agents absorbing the investor’s flows.

The investor holds the index fund in addition to the active fund because she incurs a cost from

investing in the active fund. The cost drives a wedge between the investor’s net return from the

active fund, and the gross return made of the dividends and capital gains of the stocks held by

the fund. We interpret the cost as a perk that the manager extracts from the investor or as a

reduced form for managerial ability (with high cost corresponding to low ability). In line with

these interpretations, we assume that the cost is time-varying. It is because of this time-variation

that the investor moves across funds and assets’ expected returns are time-varying. The index fund

entails no cost, so its gross and net returns coincide.

Formally, the investor receives net return yt(ztdRt − Ctdt) from the number of shares yt of the

active fund that she holds. This is the gross return ytztdRt minus the cost ytCtdt. We assume that

Ct follows the process

dCt = κ(C̄ − Ct)dt+ sdBC
t , (2.3)

where κ is a mean-reversion parameter, C̄ is a long-run mean, s is a positive scalar, and BC
t is a

Brownian motion.

We normalize one share of the active fund so that its market value equals the equilibrium market

value of the entire fund. Under this normalization, the number of fund shares held by the investor
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and the manager in equilibrium sum to one, i.e.,

yt + ȳt = 1. (2.4)

We normalize one share of the index fund to coincide with the market index η.

We denote the vector of the risky assets’ cumulative dividends by Dt ≡ (D1t, .., DNt)
′ and the

vector of the risky assets’ prices by St ≡ (S1t, .., SNt)
′. We assume that Dt follows the process

dDt = Ftdt+ σdBD
t , (2.5)

where Ft ≡ (F1t, .., FNt)
′ is a time-varying drift equal to the expected dividend rate, σ is a constant

matrix of diffusion coefficients, and BD
t is a d-dimensional Brownian motion independent of BC

t .

We model time-variation in Ft through the process

dFt = κ(F̄ − Ft)dt+ ϕσdBF
t , (2.6)

where the mean-reversion parameter κ is the same as for Ct for simplicity, F̄ is a long-run mean, ϕ

is a positive scalar, and BF
t is a d-dimensional Brownian motion independent of BC

t and BD
t . The

diffusion matrices for Dt and Ft are proportional for simplicity. We set Σ ≡ σσ′.

We assume that the investor can adjust her active-fund holdings yt only gradually. Gradual

adjustment can result from limited attention or institutional decision lags. We model these frictions

as a flow transaction cost 1
2ψ
(
dyt
dt

)2
that the investor must incur when changing yt.

The manager observes all the variables in the model. The investor observes the returns and

share prices of the index and active funds, but not the same variables for individual stocks. She

does not observe Ct and Ft.

3 Equilibrium

The equilibrium, derived in Appendix A, is characterized by four state variables: the expected

dividend rate Ft, the cost Ct of investing in the active fund, the investor’s expectation Ĉt of that

cost, and the investor’s active-fund holdings yt. The dynamics of yt are described by

vt ≡
dyt
dt

= b0 − b1Ĉt − b2yt, (3.1)
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where (b0, b1, b2) are constants and (b1, b2) are positive. The investor’s active-fund holdings yt evolve

towards the time-varying target b0−b1Ĉt
b2

. When the investor becomes more pessimistic about the

active fund (Ĉt rises), the target drops ( b1b2 > 0) and the investor gradually flows from the active

into the index fund. The long-run mean of yt is ȳ ≡ b0−b1C̄
b2

.

The dynamics of Ĉt are described by

dĈt = κ(C̄ − Ĉt)dt− β1

[
pf [dDt − Et(dDt)]− (Ct − Ĉt)dt

]
− β2pf [dSt − Et(dSt)] , (3.2)

where (β1, β2) are positive constants. The investor becomes more pessimistic about the active fund

if its return is low relative to the index fund’s. We conduct our analysis in the steady state derived

when t goes to infinity, in which the investor’s conditional variance of Ct is constant.

The prices St of the risky assets take the form

St =
F̄

r
+
Ft − F̄

r + κ
− αᾱf

α+ ᾱ

ηΣθ′

ηΣη′
Ση′ − (γ0 + γ1Ĉt + γ2Ct + γ3yt)Σp

′
f , (3.3)

where (γ0, γ1, γ2, γ3) are constants, (γ1, γ2) are positive, γ3 is negative, and

pf ≡ θ − ηΣθ′

ηΣη′
η (3.4)

is a “flow portfolio” describing the flows that the investor generates when moving across funds.

The first two terms in (3.3) are the present value of expected dividends discounted at the riskless

rate r. The third term is a risk discount proportional to the covariance Ση′ with the index. This

discount is constant over time and reflects an adjustment for index risk. The fourth term is a risk

discount proportional to the covariance Σp′f with the flow portfolio. This discount is time-varying

and reflects the price impact of flows.

The flow portfolio pf is equal to the residual-supply portfolio θ plus a short position in the index

η such that the overall position has zero covariance with the index (ηΣp′f = 0). Long positions in

pf are in risky assets that the active fund overweights relative to the index, and short positions in

pf are in assets that the active fund underweights.

When the investor becomes more pessimistic about the active fund, she gradually moves from

the active into the index fund, selling a slice of pf . As a consequence, assets covarying positively

with pf experience a price decline (γ1 > 0), while assets covarying negatively experience a price
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rise.

Expected returns are described by the two-factor model

Et(dRt) =
rαᾱ

α+ ᾱ

ηΣθ′

ηΣη′
Covt(dRt, ηdRt) + ΛtCovt(dRt, pfdRt), (3.5)

with the factors being the index η and the flow portfolio pf . The risk premium associated to η is

constant over time. The risk premium Λt associated to pf is time-varying and equal to

Λt = rᾱ+
1

f + k∆
ηΣη′

(
γR1 Ĉt + γR2 Ct + γR3 yt − k1q̄1 − k2q̄2

)
, (3.6)

where f ≡ 1+ ϕ2

(r+κ)2
, (γR1 , γ

R
2 , γ

R
3 , k, k1, k2, q̄1, q̄2) are constants, γ

R
1 and γR1 +γ

R
2 are negative, and γR3

and k are positive. Equations (3.5) and (3.6) imply that expected returns follow a cycle with a cross-

sectional and a time-series dimension. In the cross-section, assets are divided into two segments

according to the sign of their covariance with pf . That covariance reflects the pattern of fund

holdings: assets overweighted by the active fund belong to one segment, and assets underweighted

belong to the other. In the time-series, the expected returns of assets in each segment exhibit

common variation depending on fund flows. When the investor begins to reallocate from one fund

to the other, assets in the losing segment are expected to earn low returns. After some flows occur,

the expected returns of assets in the losing segment become high. The initial decline in expected

returns gives rise to short-run momentum, while the subsequent increase gives rise to long-run

reversal.

To illustrate the patterns, consider an increase in Ĉt, which triggers gradual outflows from the

active into the index fund. Assets covarying positively with pf experience a price decline (γ1 > 0)

and a decline in their expected returns (γR1 < 0). Over time, as the outflows from the active fund

materialize, yt drops. Assets covarying positively with pf experience an increase in their expected

returns (γR3 > 0), and that effect eventually dominates.

The initial decline in expected returns, which gives rise to short-run momentum, is surprising.

Indeed, as the investor flows out of the active fund, the manager increases his holdings in the fund,

absorbing the investor’s flows. Why should the manager buy assets that the fund overweights,

knowing that these assets’ expected returns have declined? Why shouldn’t instead those assets

drop immediately to a level from which they are expected to earn higher future returns? The

answer lies in the manager’s intertemporal hedging demand, whose effect in this setting VW term

bird-in-the-hand effect. The anticipation of outflows from the active fund causes assets covarying
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positively with pf to be underpriced and to earn an attractive return over a long horizon (one bird

in the hand). The manager could earn an even more attractive return on average (two birds in the

bush) by buying these assets after the outflows occur. This exposes him, however, to the risk that

the outflows might not occur, in which case the assets would cease to be underpriced and future

investment opportunities would become unprofitable.

The bird-in-the-hand effect can be illustrated using a simple three-period example. An asset is

expected to pay off 100 in Period 2. The asset’s price is 92 in Period 0, and 80 or 100 in Period

1 with equal probabilities. Buying the asset in Period 0 earns an investor a two-period expected

capital gain of 8. Buying in Period 1 earns an expected capital gain of 20 if the price is 80 and

0 if the price is 100. A risk-averse agent might prefer earning 8 rather than 20 or 0 with equal

probabilities, even though the expected capital gain between Periods 0 and 1 is negative.

4 Trading Strategies and Performance Measures

4.1 Value and Momentum

We define a trading strategy by a vector of weights wt ≡ (w1t, .., wNt), where wnt is the number

of shares invested in risky asset n at time t. We include in the strategy a position −
∑N

n=1wntSnt

in the riskless asset, so that the value of the combined position is zero. The strategy rebalances

continuously if the weights wt change continuously over time. Any gains are paid out and any losses

are covered continuously so that the value of the combined position remains zero.

We consider the value strategy

wV
t ≡

(
F̄

r
+
ϵ(Ft − F̄ )

r + κ
− St

)′
, (4.1)

where ϵ ∈ {0, 1}. A risky asset’s value weight increases linearly in the difference between the asset’s

fundamental value and price. We measure fundamental value by the present value of expected

dividends discounted at r, and use two measures of expected dividends: the optimal forecast,

which depends on the expected dividend rate Ft and corresponds to ϵ = 1 in (4.1), and the crude

forecast, which sets expected dividends equal to their unconditional mean F̄ and corresponds to

ϵ = 0.

11



We consider the momentum strategy

wM
t ≡

(∫ t

t−τ
dRu

)′
. (4.2)

A risky asset’s momentum weight increases linearly in the asset’s cumulative past return over the

interval [t− τ, t]. We refer to the length τ > 0 of that interval as the lookback window.

4.2 Performance Measures

We measure the performance of a trading strategy wt by the Sharpe ratio of its index-adjusted

version

ŵt ≡ wt −
Covt(wtdRt, ηdRt)

Vart(ηdRt)
η. (4.3)

The index-adjusted strategy ŵt is constructed by combining wt with a position in the index such

that the covariance between the overall position and the index is zero. The Sharpe ratio of the

index-adjusted strategy represents compensation for risk orthogonal to the index.

The Sharpe ratio over an infinitesimal horizon dt is

SRw,t ≡
EIt(ŵtdRt)√
VarIt(ŵtdRt)dt

. (4.4)

It is derived by dividing the expected excess return of ŵt by the return’s standard deviation, and

expressing the ratio in annualized terms by dividing by
√
dt. The return moments are conditional

on an information set It that depends on t. We use the subscript It for moments conditional on

It, the subscript t for moments conditional on all information available at time t, and no subscript

for unconditional moments. We likewise omit the subscript t from the unconditional Sharpe ratio.

We refer to SRw,t interchangeably as the Sharpe ratio of wt or of ŵt.

Our use of SRw,t to measure performance measure can be motivated based on portfolio opti-

mization. Suppose that an investor with horizon dt has mean-variance preferences, and can invest

in the riskless asset, the index η and the strategy wt. In Appendix C (Lemma C.1), we show that

the investor’s maximum utility is proportional to the sum of the squared Sharpe ratio of the index

η and of wt. In particular, it depends on wt only through SRw,t.

We extend our use of the Sharpe ratio over a general finite horizon T . The Sharpe ratio,
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expressed in annualized terms, is

SRw,t,T ≡
EIt

(∫ t+T
t ŵudRu

)
√

VarIt
(∫ t+T

t ŵudRu

)
T

, (4.5)

and can be motivated based on portfolio optimization, as in the case of an infinitesimal horizon dt.

The relationship between maximum utility and Sharpe ratio carries through provided that ηdRu

is uncorrelated with ŵu′dRu′ conditionally on It for t < u < u′. That property holds under a

condition on the strategy weights wu, which is met for the strategies that we examine in the rest

of this paper. The derivations are in Appendix C (Lemma C.2).

We define and calculate Sharpe ratios using returns per share rather than per dollar invested.

This is because our CARA-normal model is better suited for calculating per share returns and

their moments: the calculations are simplified by the properties that prices are linear in the state

variables and that state variables are normally distributed. Since Sharpe ratios are unit-free, they

have a similar economic interpretation for returns per share and returns per dollar.

4.3 Calibration

We next calibrate our model. The parameter values are summarized in Table I. The model-implied

moments are calculated in Appendix C. A sensitivity analysis to different parameter values is in

Appendix F. Our calibration differs from VW because we adopt a different set of target moments

and mapping between parameters and moments.

We set some parameters to one using appropriate normalizations. By redefining the units of

the consumption good, we set the investor’s risk-aversion coefficient α to one. By redefining the

dividend per share of each asset n, we set the asset’s supply ηn to a value that is common across

assets and such that the average residual supply θ̄ ≡
∑N

n=1 θn
N is equal to one. Since assets are

supplied in the same number of shares, the index includes the same number of shares ηn = η̄ of

each asset n. By rescaling the index, we set η̄ to one.

We interpret assets as industry-sector portfolios and set their number N to ten. We assume that

all sector portfolios have the same expected dividends, the same standard deviation of dividends

and the same pairwise correlation. We denote the vector of expected dividends per share by F̄ = F1

and the covariance matrix of dividends per share by Σ = σ̂2(I +ω11′), where 1 is the N × 1 vector

of ones, I is the N ×N identity matrix, and (F , σ̂, ω) are scalars. We choose F so that the index’s

expected return per dollar in excess of the riskless rate is 4%. We choose Σnn = σ̂2(1 + ω) so that
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Table I: Calibration of model parameters.

Parameter Symbol Value Target

Investor’s risk-aversion
coefficient

α 1 Normalization

Manager’s risk-aversion
coefficient

ᾱ 29
Fraction of return variance
generated by flows

Number of assets N 10 Industry-sector portfolios

Number of shares
of each asset in the index

ηn 1 Normalization

Average residual
supply across assets

θ̄ ≡
∑N

n=1 θn
N 1 Normalization

Standard deviation of residual
supply across assets

√∑N
n=1(θn−θ̄)2

N 0.2
Industry-sector level active share of
aggregate portfolio of mutual funds

Expected dividends per
share of each asset

F̄n 0.33 Expected excess return of index

Variance of dividends per
share of each asset

Σnn 0.47 Sharpe ratio of index

Covariance of dividends per
share of each asset pair

Σnn′ 0.41
Correlation between average
industry-sector portfolio and index

Shocks to expected dividends
Ft relative to dividends Dt

ϕ 0.05

Mean-reversion coefficient of
Ct and Ft

κ 0.3 Mean-reversion of return gap

Standard deviation of shocks
to Ct

s 1.2 Volume generated by fund flows

Long-run mean of Ct C̄ -0.22 Investor’s share in active fund

Transaction cost ψ 0.65
Horizon over which fund flows
respond to performance

Riskless rate r 0.04

the annualized Sharpe ratio of the index is 30%. (The index’s Sharpe ratio is horizon-independent

in our model.) We choose Σnn′ = σ̂2ω for n′ ̸= n so that the return correlation between industry-

sector portfolios and the index is 87%. This is the average correlation between sector portfolios

and the index in Ang and Chen (2002). The remaining parameter describing dividends is ϕ. It is

the size of shocks to the process Ft that drives expected dividends relative to shocks to the process

Dt that drives dividends. Shocks to expected dividends render prices not fully revealing about Ct,

and induce a causal link from fund performance to fund flows as the investor uses performance to

learn about Ct. We set ϕ to 0.05, a value that maximizes the investor’s uncertainty about Ct. Even

under that value, uncertainty is small: the investor’s conditional standard deviation of Ct is 18%
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of the unconditional standard deviation. Changing ϕ has a small effect on Sharpe ratios.

With a symmetric covariance matrix of dividends, the only characteristic of residual supply

θn that affects Sharpe ratios, beyond the average θ̄ = 1 across assets, is the standard deviation

σ(θ) ≡
√∑N

n=1(θn−θ̄)2

N . We choose σ(θ) based on the active share of the residual-supply portfolio

(Cremers and Petajisto (2009)). Buffa, Vayanos, and Woolley (2022) find that the active share of

the aggregate portfolio of all active equity mutual funds, computed at the industry-sector level, is

10.81%. Defining the residual supply portfolio to also include index funds, and taking index fund

assets to be 10% of total fund assets (active and index), the active share of the residual supply

portfolio is 9.73% (=90%× 10.81%). We set σ(θ) = 0.2, which implies an active share of 10% under

the assumption that θn is equal to θ̄ + σ(θ) = 1.2 for half of the assets and to θ̄ − σ(θ) = 0.8 for

the other half.

We choose the manager’s coefficient of absolute risk aversion ᾱ based on the fraction of asset

return variance generated by fund flows. Intuitively, when the manager is more risk-averse, the

investor’s flows have larger price impact and account for a larger fraction of price movements.

Greenwood and Thesmar (2011) find that fund flows explain 8% of the variance of individual stocks.

Gabaix and Koijen (2020) find that flows explain up to 50% of the volatility of the aggregate market.

This amounts to 25% of the variance if flows are independent of fundamentals. We assume that the

effect for industry-sector portfolios lies in-between, and use 15% as our target. The corresponding

value of ᾱ is 29, i.e., the manager is 29 times more risk-averse than the investor. In our sensitivity

analysis, we allow for a lower target variance.

We choose the mean-reversion coefficient κ of the cost Ct by identifying Ct with the return gap

in Kacperczyk, Sialm, and Zheng (2008, KSZ). KSZ define the return gap as the difference between

a mutual fund’s return over a given quarter and the return of a hypothetical portfolio invested in

the stocks that the fund holds at the beginning of the quarter. This aligns with the definition of

Ct in our model. We set κ to 0.3 to match KSZ’s finding that shocks to the return gap shrink to

about one-third of their size within four years.

We choose the diffusion coefficient s of Ct based on the volume generated by fund flows. Lou

(2012) computes flow-induced trading (FIT) for each stock by aggregating the trades that all mutual

funds perform on that stock in response to inflows or outflows they experience, and dividing by

the funds’ aggregate holdings of the stock. The spread in quarterly FIT between top and bottom

stock deciles sorted based on FIT is 22.27% (= 16.76%− (−5.51%)). We set s = 1.2 to match that

spread, thus assuming that the spread is the same for stocks as for industry-sector portfolios (i.e.,

flows take place at the level of sector portfolios). In our sensitivity analysis, we allow for a lower

target spread.
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We choose the long-run mean C̄ of Ct based on the long-run mean ȳ of the investor’s share yt

in the active fund. The share yt can be interpreted as the extent to which non-expert investors

participate in trades that require financial expertise, which in our model consists in exploiting

hedger-induced mispricing. Perfect risk-sharing, derived for Ct constant over time and equal to

C̄ = 0, implies a share yt that is constant over time and equal to ȳ = ᾱ
α+ᾱ = 96.8%. We use

ȳ = 90% as our target. The corresponding value of C̄ is -0.22. Allowing for a lower target ȳ > 0

for which C̄ becomes positive, has a small effect on Sharpe ratios.

We choose the transaction cost ψ based on the horizon over which fund flows respond to per-

formance. Coval and Stafford (2007) find that flows into a mutual fund during quarter t increase in

the fund’s return during quarters t− 1 to t− 4, and are roughly independent of the return during

quarters t − 5 to t − 8. We set ψ to 0.65 in line with that finding: following a positive (negative)

shock to the active fund’s return, the fund experiences inflows (outflows) for 22 months, with 90%

of the effect occurring within the first 13 months.

The FIT estimates in Lou (2012) concern the volume generated by all mutual fund flows.

Since our calibration matches all mutual fund flows but our model assumes only flows between

an aggregate of active funds and of index funds, the latter flows are unrealistically large in our

calibration. The flows in our calibration could be interpreted as including flows between active

funds. Since differences between active funds can be larger than between an aggregate of active

funds and of index funds, we allow for a larger target active share in our sensitivity analysis.

Our sensitivity analysis reveals that the results in Sections 5 and 6 are relatively insensitive to

the target active share and FIT spread. They are sensitive to the target variance: when the fraction

of return variance generated by flows is smaller, the Sharpe ratio of momentum drops significantly,

and the Sharpe ratio of value becomes less volatile and more correlated with the value spread.

5 Performance over an Infinitesimal Horizon

5.1 Optimal Strategy

In Appendix D (Lemma D.1) we show that the Sharpe ratio of a strategy wt over an infinitesimal

horizon dt is

SRw,t =

(
f + k∆

ηΣη′

)
EIt

(
ΛtwtΣp

′
f

)
√
f
[
EIt(wtΣw′

t)−
EIt [(wtΣη′)2]

ηΣη′

]
+ kEIt [(wtΣp′f )

2]

, (5.1)
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and is maximized for wt = Λtpf . The intuition why the strategy wt = Λtpf is optimal comes

from the two-factor model (3.5) for expected returns. The two factors are the index η, with a

constant risk premium, and the flow portfolio pf , with a time-varying risk premium Λt. Since the

Sharpe ratio SRw,t concerns the index-adjusted version ŵt of wt, it reflects compensation for the

risk corresponding to the second factor pf only. Therefore, it is maximized for a strategy that

invests only in pf : risk that is uncorrelated with pf (and η) is not compensated. The size of the

investment in pf is proportional to that factor’s risk premium Λt.

The Sharpe ratio of the optimal strategy wt = Λtpf is (Proposition D.1):

SR∗
w,t ≡

√(
f +

k∆

ηΣη′

)
∆

ηΣη′
EIt(Λ

2
t ). (5.2)

The unconditional Sharpe ratio is proportional to
√
E(Λ2

t ). The conditional Sharpe ratio is pro-

portional to the absolute value |Λt| when the conditioning set It includes the time-t values of the

state variables (Ĉt, Ct, yt). Indeed, since Λt is a function of (Ĉt, Ct, yt) only, EIt(Λ
2
t ) = Λ2

t . Since Λt

is affine in (Ĉt, Ct, yt), the conditional Sharpe ratio is high when Ĉt, Ct or yt are large in absolute

value.

In our calibrated example, the unconditional Sharpe ratio of the optimal strategy is 70.21%.

It is thus 2.34 times higher than the index’s Sharpe ratio, which is 30%. The optimal strategy

achieves its high Sharpe ratio while also representing risk orthogonal to the index.

The optimal strategy’s conditional Sharpe ratio on (Ĉt, Ct, yt) has mean 56.02% and standard

deviation 42.32%. It thus varies significantly over time. It is lower on average than the unconditional

Sharpe ratio because it tends to be high when the optimal strategy has high conditional standard

deviation.

5.2 Value

In Appendix D (Proposition D.2) we derive a closed-form solution for the unconditional Sharpe

ratio of the value strategy (4.1). In our calibrated example, the unconditional Sharpe ratio is 26.88%

when the present value of expected dividends is computed using the optimal forecast (ϵ = 1), and

27.05% when the crude forecast (ϵ = 0) is used.

While the value strategy offers a Sharpe ratio comparable to that of the index, and with or-

thogonal risk, it achieves less than 40% of the optimal strategy’s Sharpe ratio in relative terms

(27.05%70.21% = 38.53%). This is because the value strategy fails to account for short-run momentum.

17



Consider an increase in Ĉt, which triggers gradual outflows from the active fund. Assets covarying

positively with the flow portfolio pf experience an immediate price decline, and thus an increase in

their value weight. Since these assets also experience a decline in their expected return, the value

strategy earns a low expected return at this stage of the cycle. Over time, as the outflows from

the active fund materialize and yt drops, the value weight of these assets increases further. Their

expected return switches to being high, and so does the expected return of the value strategy.

To characterize the performance of the value strategy at different stages of the cycle, we compute

in Appendix D (Proposition D.3) the strategy’s conditional Sharpe ratio. We condition on (Ĉt, yt)

only, because these are the key variables describing the cycle and are observed by the investor in

our model (while Ct is not). Equations (3.3) and (4.1) imply that the expected weights of the value

strategy conditional on It = (Ĉt, yt) and when ϵ = 1 are

EIt
(
wV
t

)
=

αᾱf

α+ ᾱ

ηΣθ′

ηΣη′
ηΣ+

(
γ0 + (γ1 + γ2)Ĉt + γ3yt

)
pfΣ (5.3)

Likewise, (3.6) implies that the conditional expectation of Λt is

EIt (Λt) = rᾱ+
1

f + k∆
ηΣη′

(
(γR1 + γR2 )Ĉt + γR3 yt − k1q̄1 − k2q̄2

)
. (5.4)

An increase in Ĉt raises value weights of assets covarying positively with pf because (γ1, γ2) are

positive. It lowers Λt, thus lowering the expected returns of those assets, because γR1 + γR2 is

negative. By contrast, a decrease in yt raises those assets’ value weights and expected returns

because (γ3, γ
R
3 ) are negative. In line with these observations, the conditional Sharpe ratio of the

value strategy is negative and large when Ĉt becomes large in absolute value (early stage of the

cycle). It switches to being positive and large when yt adjusts to the change in Ĉt by becoming

large with opposite sign to Ĉt (late stage).

The unconditional mean and standard deviation of the value strategy’s conditional Sharpe ratio

are 20.60% and 65.03%, respectively, when ϵ = 1, and 21.46% and 63.25%, respectively, when ϵ = 0.

The Sharpe ratio of the value strategy varies more than that of the optimal strategy, reflecting the

sharply different performance of value at different stages in the cycle.

We next examine how the conditional Sharpe ratio of the value strategy correlates with the

value spread. We define the value spread as the standard deviation of the market-to-book ratio

in the cross-section of assets. We assume that all assets have the same book value, which we take
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to be the average price in the cross-section of assets and over time. We compute the value spread

conditional on (Ĉt, yt) in Appendix D (Proposition D.4). The value spread is high when Ĉt is large

in absolute value because the price discrepancies between assets that covary positively and assets

that covary negatively with the flow portfolio pf are large. The value spread is even higher when

yt adjusts to the change in Ĉt because the price discrepancies become even larger.

The value spread correlates positively but imperfectly with the conditional Sharpe ratio of the

value strategy. This is because Ĉt moves the two variables in opposite directions, while yt moves

them in the same direction and has a dominant effect. When Ĉt becomes large in absolute value

(early stage of the cycle), the value spread is large and the conditional Sharpe ratio of value is

negative. When yt adjusts to the change in Ĉt by becoming large with opposite sign to Ĉt (late

stage), the value spread is even larger and the conditional Sharpe ratio of value is positive. The

unconditional correlation between the value spread and the conditional Sharpe ratio of the value

strategy is 26.31% when ϵ = 1 and 26.00% when ϵ = 0. For the remainder of our analysis, we focus

on the value strategy with ϵ = 0.

5.3 Momentum

In Appendix D (Proposition D.5) we derive a closed-form solution for the unconditional Sharpe

ratio of the momentum strategy (4.2). Figure 1 plots the unconditional Sharpe ratio in our cali-

brated example as function of the lookback window τ over which past returns are calculated. The

unconditional Sharpe ratio reaches its maximum value 53.66% for a window of seven months, and

exceeds 50% for windows ranging from four to eleven months. When the window goes to zero, the

Sharpe ratio also goes to zero because performance over a very short interval is almost uninfor-

mative about future flows. Conversely, when the window becomes large, the Sharpe ratio becomes

negative because momentum turns into reversal.

The momentum strategy with the 4-12 month lookback window performs significantly better

than the value strategy because it is better aligned with movements in expected returns. Consider an

increase in Ĉt, which triggers gradual outflows from the active fund. Assets covarying positively with

the flow portfolio pf experience an immediate price decline, and thus a decrease in their momentum

weight. Since these assets also experience a decline in their expected return, the momentum strategy

earns a high expected return at the early stage of the cycle. It also earns a moderately high

expected return at the late stage. Indeed, after the outflows materialize, the expected return of

assets covarying positively with pf is high. As a consequence, these assets’ return history improves,

and their momentum weight rises. Momentum’s underperformance occurs at intermediate stages
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Figure 1: Unconditional Sharpe ratio of momentum as function of the lookback

window τ over which past returns are calculated.

of the cycle. Indeed, the expected return of assets covarying positively with pf has increased but

their return history has not caught up with that increase.

To characterize the performance of the momentum strategy at different stages of the cycle, we

compute in Appendix D (Proposition D.6) the strategy’s conditional Sharpe ratio. As with the

value strategy, we condition on (Ĉt, yt) only. Using (4.2) and (A.4), we show in the Appendix that

the expected weights of the momentum strategy conditional on It = (Ĉt, yt) are

EIt
(
wM
t

)
=
rαᾱfτ

α+ ᾱ

ηΣθ′

ηΣη′
ηΣ+

(
δM0 + δM12 Ĉt + δM3 yt

)
pfΣ, (5.5)

where (δM0 , δM12 , δ
M
3 ) are constants. For the remainder of our analysis, we focus on the optimal

momentum strategy with the seven month lookback window, for which (δM12 , δ
M
3 ) are positive and

the ratio
δM3
δM12

is smaller than
γR
3

γR
1 +γR

2
. An increase in Ĉt lowers momentum weights of assets covarying

positively with pf because δM12 is negative. Because it also lowers Λt, the conditional Sharpe ratio

of the momentum strategy is positive and large when Ĉt is large in absolute value (early stage of

the cycle). A decrease in yt raises the momentum weights of assets covarying positively with pf

because δM3 is negative. Because it also raises Λt, the conditional Sharpe ratio of the momentum

strategy is positive when yt adjusts to the change in Ĉt by becoming large with opposite sign to Ĉt

(late stage). The conditional Sharpe ratio is instead negative for a range of intermediate values of

yt. Indeed, because
δM3
δM12

<
γR
3

γR
1 +γR

2
, Λt changes sign before momentum weights do during the process
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of yt’s adjustment.

The unconditional mean and standard deviation of the conditional Sharpe ratio of the momen-

tum strategy are 40.74% and 46.58%, respectively. The Sharpe ratio of the momentum strategy

varies less than that of the value strategy, reflecting the more limited variation in momentum’s

performance over the cycle.

Since momentum performs well at the early stage of the cycle, moderately well at the late stage,

and poorly at intermediate stages, it is weakly correlated with the value spread. The unconditional

correlation between the value spread and the conditional Sharpe ratio of momentum is -8.13%. The

correlation between the conditional Sharpe ratios of momentum and value is 28.22%.

Figure 2 plots the dynamics following a shock that moves the state variables (Ĉt, yt) away from

their long-run means (C̄, ȳ). The shock is a decline to the flow portfolio’s return at time zero,

equal to one standard deviation of the portfolio’s annual return. The left panel plots the shock’s

effect on (Ĉt, yt), as function of time t. Following the shock, the investor’s expectation Ĉt of the

active fund’s cost jumps up and declines gradually to C̄. The investor’s share yt in the active fund

declines gradually for 22 months after the shock. After that time, it increases gradually to ȳ.
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Figure 2: State variables (left panel) and conditional Sharpe ratios and the value

spread (right panel) following an one standard deviation drop in the return of the flow

portfolio pf at time zero.

The right panel plots the Sharpe ratios conditional on (Ĉt, yt) for the optimal strategy (black

solid line), the value strategy (blue dashed line) and the momentum strategy (red dashed-dotted

line), as function of time t. The value spread is also plotted (green dotted line). The units for the

Sharpe ratios are shown in the left y-axis, and the units for the value spread are shown in the right

y-axis.
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When (Ĉt, yt) are equal to their long-run means (C̄, ȳ), the Sharpe ratios of momentum and

value are close to zero: -2.48% for momentum and 0.38% for value. Following the shock, the Sharpe

ratios experience large movements in opposite directions. The Sharpe ratio of momentum jumps

up to 114.99%. It then declines rapidly, becomes negative twelve months after the shock, becomes

positive again twenty-two months after the shock, reaches a maximum of 17.36% three years and

two months after the shock, and finally declines to its value for (Ĉt, yt) = (C̄, ȳ). The Sharpe ratio

of value jumps down to -116.96%. It then rises rapidly, becomes positive thirteen months after the

shock, reaches a maximum of 36.71% three years after the shock, and finally declines to its value

for (Ĉt, yt) = (C̄, ȳ). The value spread jumps up following the shock, and keeps increasing as the

mispricing worsens. It reaches a maximum thirteen months after the shock, and then declines to

its value for (Ĉt, yt) = (C̄, ȳ).

The Sharpe ratio of the optimal strategy is remarkably close to that of value or of momentum.

The difference between the optimal strategy’s Sharpe ratio and the larger of the value and the

momentum Sharpe ratios is smaller than 6% for a long period after the shock, which is composed

of two sub-periods. During the first sub-period which lasts for the first five months after the

shock, momentum is approximately optimal and its Sharpe ratio lies within 6% of the optimal

strategy’s. During the second sub-period which lasts from fourteen months to 10.5 years after the

shock, value is instead approximately optimal and its Sharpe ratio lies within 6% of the optimal

strategy’s. Hence, within the context of our model, value and momentum span well the set of

trading strategies, with each of them being approximately optimal at a different stage of the cycle.

The shock in Figure 2 is a decline to the flow portfolio’s return. Under the opposite shock,

(Ĉt− C̄, yt− ȳ) would change sign, and the right panel would flip around the x-axis. The left panel

would remain approximately the same, however. This is because the Sharpe ratios depend almost

exclusively on the stage of the flow cycle and not on whether the flows occur from the active to

the index fund or vice-versa. The conditional correlation between value and momentum, plotted

in Figure 3, would also remain approximately the same.

5.4 Combining Value and Momentum

We next compute the gains from combining value and momentum. This requires computing the

correlation between the two strategies’ returns, an exercise of independent interest since it reveals

how the strategies relate to each other. For two general strategies (wA
t , w

B
t ), the Sharpe ratio of
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their optimal (mean-variance maximizing) combination is (Appendix D, Lemma D.5)

SRwAB ,t ≡

√
SR2

wA,t
+ SR2

wB ,t
− 2SRwA,tSRwB ,tCorrIt(ŵA

t dRt, ŵB
t dRt)

1− CorrIt(ŵA
t dRt, ŵB

t dRt)2
. (5.6)

The Sharpe ratio of the optimal combination depends only on the two strategies’ Sharpe ratios and

on the correlation between the strategies’ returns. The calculations in (5.6) are conditional on an

information set It, in the sense that strategy weights, Sharpe ratios and the correlation can depend

on It. The correlation in (5.6) is between the strategies’ index-adjusted versions, but as with the

Sharpe ratios we refer to it as pertaining to the strategies as well.

In Appendix D (Proposition D.7) we derive a closed-form solution for the unconditional cor-

relation between value and momentum, and for the Sharpe ratio of the optimal unconditional

combination of the two strategies (It = ∅). In our calibrated example, this Sharpe ratio is 63.45%.

It is 10% larger than the unconditional Sharpe ratio of momentum (53.66%) and 36% larger than

that of value (27.05%). Thus, combining value and momentum improves significantly over using

one or the other strategy and yields a Sharpe ratio close to that of the optimal strategy (70.21%).

The improvement is due to the low unconditional correlation between value and momentum, which

is -12.20%. The correlation is negative because value loads up on assets that have underperformed

over a long period, while momentum tends to short those assets as they have been trending down

in the recent past.

The low unconditional correlation between value and momentum masks large variation in the

conditional correlation. We compute the value-momentum correlation conditionally on (Ĉt, yt) in

Appendix D (Proposition D.7). The conditional correlation has unconditional mean -8.13% and

standard deviation 73.02%. Figure 3 illustrates the large variation in the conditional correlation

by plotting its dynamics following the same shock as in Figure 2.

When (Ĉt, yt) are equal to their long-run means (C̄, ȳ), momentum and value are approximately

independent, with a correlation of -4.53%. Following the shock, the correlation jumps down to

-97.06%. The two strategies thus become approximately perfectly negatively correlated. The

correlation remains below -80% for the ten months after the shock. It then rises gradually, becomes

positive twenty months after the shock, reaches a maximum of 52.30% three years and four months

after the shock, and finally declines to its value for (Ĉt, yt) = (C̄, ȳ).

During the period of high negative correlation, the momentum strategy shorts assets that covary

positively with the flow portfolio pf because the shock drives down these assets’ returns. By

contrast, the value strategy longs these assets because their price is low. During the period of high
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Figure 3: Conditional correlation between value and momentum following an one

standard deviation drop in the return of the flow portfolio pf at time zero.

positive correlation, value continues longing these assets, and momentum switches to longing them

as well.

Combining value and momentum conditionally on (Ĉt, yt) yields small gains over using one of

the two strategies only. In the dynamics shown in Figure 2, the Sharpe ratio of the optimal value-

momentum combination never exceeds the larger of the individual Sharpe ratios by more than 6%.

(This can be anticipated from the closeness between the Sharpe ratio of the optimal strategy and

the larger of the individual Sharpe ratios.) The improvement from combining value and momentum

conditionally is smaller than unconditionally because of the variation in the relative performance of

the two strategies. Momentum is the much better strategy for a set of values of (Ĉt, yt) and value

is for another set. Within either set, combining the strategies yields small gains relative to using

the better strategy. When, however, information on (Ĉt, yt) is not used, the identity of the better

strategy is unknown. Combining the strategies then yields larger gains because the weight on the

worse strategy is reduced and so is the scope for under-performance.

The conditional correlation between value and momentum is informative about the Sharpe ratio

of each strategy. That information is particularly precise for value: the unconditional correlation

between the conditional value-momentum correlation and the conditional Sharpe ratio of value

is 86.02%. This can be anticipated from Figures 2 and 3, as the conditional correlation and the

conditional Sharpe ratio of value respond similarly to the shock. While Figures 2 and 3 suggest

a negative unconditional correlation between the conditional value-momentum correlation and the

conditional Sharpe ratio of momentum, that correlation is positive and equal to 41.34%. Thus,

a positive value-momentum correlation indicates high conditional Sharpe ratio of both value and

momentum.
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6 Performance over a General Finite Horizon

6.1 Optimal Strategy

We next allow the investment horizon to take any finite value. To determine how horizon influ-

ences the choice of strategy, we begin with an optimization exercise. Consider an investor who has

horizon T and maximizes the unconditional Sharpe ratio SRw,T . Suppose that the investor must

follow a strategy of the form wt = (δ0 + δ1Ĉt + δ2Ct + δ3yt)pf and can optimize over the coeffi-

cients (δ0, δ1, δ2, δ3). The optimal coefficients depend on the horizon T , and we denote them by

(δ∗0,T , δ
∗
1,T , δ

∗
2,T , δ

∗
3,T ). We determine in Appendix E the Sharpe ratio SR∗

w,T of the optimal strategy

(Proposition E.1) and the strategy’s correlation with value and momentum (Propositions E.5 and

E.6).

The optimization is not over the full set of strategies: the strategies are assumed to invest only

in the flow portfolio pf ; the investment in pf is assumed linear in the state variables (Ĉt, Ct, yt);

and the coefficients in the linear function are assumed constant over time. The first and second

assumptions are shown as results for the short-horizon optimal strategy wt = Λtpf (Section 5.1), and

we conjecture that these results extend to the long-horizon optimization. In particular, since the

Sharpe ratio SRw,T reflects compensation only for risk corresponding to pf , it should be maximized

for a strategy that invests only in pf . The third assumption is restrictive. Indeed, since the optimal

coefficients (δ∗0,T , δ
∗
1,T , δ

∗
2,T , δ

∗
3,T ) depend on the horizon T , the investor may want to change them

as time passes and the end of the horizon approaches. Restricting the coefficients to be time-

independent simplifies the calculation of the (constrained) optimal strategy and of its closeness to

value and momentum (both of which are defined to be time-independent).

Figure 4 illustrates properties of the optimal strategy. The left panel plots the unconditional

return correlation of the optimal strategy with the value strategy (blue dashed line) and with the

momentum strategy (red dashed-dotted line), as function of the investment horizon. The correlation

concerns returns computed over the horizon corresponding to the optimal strategy (e.g., one-year

returns for the one-year optimal strategy, and ten-year returns for the ten-year optimal strategy).

When the horizon is short, the optimal strategy correlates more highly with momentum than with

value. The higher correlation with momentum is consistent with the finding in Section 5 that

momentum has a higher Sharpe ratio than value over an infinitesimal horizon.

The main new observation from the figure concerns the variation of the correlation with the

investment horizon. As horizon increases, the correlation of the optimal strategy with momentum

decreases, while that with value increases and overtakes momentum’s for horizons longer than thir-
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Figure 4: Unconditional correlation of the optimal strategy with value and momentum

(left panel) and unconditional Sharpe ratios (right panel), as function of the investment

horizon.

teen years. Similar conclusions follow when measuring closeness by weights in a tracking portfolio.

When value and momentum are combined into a portfolio whose return is the closest to the opti-

mal strategy’s, as measured by unconditional variance, their weights have a similar dependence on

horizon as the correlations. We defer a fuller discussion of optimal weights to Section 6.4.

The effects of investment horizon on the correlation that the optimal strategy has with value

and momentum are related to the effects of horizon on the strategies’ Sharpe ratios. The right

panel of Figure 4 plots the unconditional Sharpe ratios of the optimal strategy (black line), value

(blue dashed line) and momentum (red dashed-dotted line), as function of horizon. We compute

the unconditional Sharpe ratios of value and momentum in Appendix E (Propositions E.2 and

E.3, respectively). The Sharpe ratio of the optimal strategy is closer to that of momentum for

short horizons and to that of value for long horizons. This is consistent with the results on the

correlations. Consistent with those results is also that value’s Sharpe ratio overtakes momentum’s

for horizons longer than thirteen years. The main new observation from the figure concerns the

variation of Sharpe ratios with horizon. The Sharpe ratio of the optimal strategy is an inverse

hump-shaped function of horizon, as is the Sharpe ratio of value. The Sharpe ratio of momentum

initially decreases with horizon and then stays essentially flat.

The effects of horizon on Sharpe ratios are driven by the autocorrelation of strategy returns. In

Appendix E (Lemma E.2) we show that the unconditional Sharpe ratio SRw,T of a strategy wt over

horizon T can be expressed in terms of the unconditional Sharpe ratio SRw over an infinitesimal
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horizon and the unconditional autocovariance of returns over all horizons from zero to T :

SRw,T =
SRw√

1 + 2
∫ t+T
t

(
1− u−t

T

) Cov(ŵtdRt,ŵudRu)
Var(ŵtdRt)

. (6.1)

The Sharpe ratio is independent of horizon when strategy returns are serially uncorrelated. This is

because expected returns are horizon-independent when expressed in annualized terms (dividing by

T ), and lack of serial correlation implies that the same is true for standard deviation (dividing by
√
T ). When instead strategy returns are positively autocorrelated, annualized variance increases

with horizon, and SRw,T is smaller than SRw. The converse is true when returns are negatively

autocorrelated. Thus, the effects of horizon shown in the right panel of Figure 4 reflect variation in

return autocorrelation. We examine that variation next, in the context of value and momentum.

6.2 Value

We compute unconditional autocorrelations of value and momentum returns in Appendix E (Propo-

sition E.8), and plot them in Figure 5. The left panel plots correlations between value (blue dashed

line) or momentum (red dashed-dotted line) returns over a lookback window τ ending at time t

with the same strategy’s returns over the year starting at time t. The right panel replaces re-

turns one year ahead by returns ten years ahead. Value returns are positively autocorrelated over

short horizons and lookback windows, reflecting asset-level momentum. They become negatively

autocorrelated over long horizons or lookback windows, reflecting partly asset-level reversal and

mostly the nature of the value strategy. Value loads up on assets that have performed poorly, and

has low turnover because it is based on slow-moving signals. Suppose that the poorly performing

assets held by value experience a further long period of underperformance, lowering value returns.

The expected returns of those assets increase, and so does the weight given to them by the value

strategy. This boosts value’s expected return, resulting in negative autocorrelation of value returns

over long lookback windows. Lengthening the horizon (moving from the left to the right panel)

renders autocorrelations more negative, and negative for all lookback windows. This is because the

effect of momentum is small over long horizons.

The autocorrelation pattern of value returns is reflected into the inverse hump-shaped pattern of

value’s Sharpe ratio. For short horizons, the relevant autocorrelations are those over short lookback

windows in the left panel of Figure 5. Since these are positive, annualized variance increases with

horizon and the Sharpe ratio decreases. For long horizons instead, the autocorrelations over long

lookback windows become relevant, lowering the annualized variance and raising the Sharpe ratio.

The long-window autocorrelations are larger in absolute terms than the short-horizon ones, and
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Figure 5: Unconditional autocorrelations of value and momentum, between returns

over a lookback window τ ending at time t and returns over the year (left panel) and

the ten years (right panel) starting at time t. Autocorrelations are plotted as function

of τ .

die off to zero slowly when the window increases. Consequently, their effect on the Sharpe ratio

is quantitatively important. While the unconditional Sharpe ratio of value is 27.05% over an

infinitesimal horizon (Section 5) and drops to 19.78% for a two-year horizon, it rises to 29.66% for

ten years, 38.43% for twenty years, and 47.42% for forty years.

The effect of horizon is even more pronounced on value’s conditional Sharpe ratio. The left panel

of Figure 6 plots the unconditional mean of the conditional Sharpe ratios of value (blue dashed line)

and momentum (red dashed-dotted line), as function of horizon. We compute conditional Sharpe

ratios in Appendix E (Proposition E.4). The unconditional mean of value’s conditional Sharpe

ratio drops from 21.46% for an infinitesimal horizon to 15.77% for a two-year horizon, and rises to

44.58% for ten years, 53.97% for twenty years, and 60.79% for forty years. Value’s Sharpe ratio

overtakes momentum’s for horizons longer than five years (rather than thirteen years in the case

of unconditional Sharpe ratios).

We next turn to the predictability of value’s conditional Sharpe ratio. The conditional Sharpe

ratio over a given finite horizon varies less than the infinitesimal-horizon Sharpe ratio. This is

because it can be viewed as an average of current and future expected infinitesimal-horizon Sharpe

ratios, adjusted for autocorrelation. Its variation in the case of value remains significant nonetheless.

The unconditional standard deviation of the conditional Sharpe ratio of value drops from 63.25%

for an infinitesimal horizon to 39.39% for an one-year horizon, 40.88% for five years, 31.33% for ten

years, and 18.16% for twenty years.

Lengthening the horizon changes drastically the predictors of value’s conditional Sharpe ratio.

The value spread becomes a better predictor. Its unconditional correlation with the conditional
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Figure 6: Unconditional mean of conditional Sharpe ratios as function of the invest-

ment horizon (left panel), and conditional five-year Sharpe ratios and the value spread

following an one standard deviation drop in the return of the flow portfolio pf at time

zero (right panel).

Sharpe ratio of value rises from 26.00% for an infinitesimal horizon to 77.24% for an one-year

horizon, 97.81% for five years, 96.92% for ten years, and 96.45% for twenty years. Conversely, the

(instantaneous) conditional correlation becomes a worse predictor. Its unconditional correlation

with the conditional Sharpe ratio of value drops from 86.02% for an infinitesimal horizon (Section

5) to 47.63% for an one-year horizon, -3.56% for five years, -7.72% for ten years, and -6.92% for

twenty years.

The effect of horizon on the predictive relationships can be understood by plotting the response

of the conditional Sharpe ratios to an one standard deviation drop in the flow portfolio’s return.

This exercise is performed for infinitesimal Sharpe ratios in Figure 2, and we repeat it for five-year

Sharpe ratios in the right panel of Figure 6. While the infinitesimal Sharpe ratio of value drops

substantially in response to the shock, its five-year counterpart rises. This is because the five-year

Sharpe ratio incorporates future expected infinitesimal-horizon Sharpe ratios, which rise in response

to the shock. As a consequence, the five-year Sharpe ratio moves more in synch with the value

spread, resulting in a higher correlation. It also moves less in synch with the value-momentum

correlation, resulting in a lower correlation.

6.3 Momentum

Similar to value returns, momentum returns are positively autocorrelated over short horizons and

lookback windows, reflecting asset-level momentum. In contrast to value returns, the autocorrela-

tion does not become negative for long horizons or lookback windows but instead drops to zero.
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The autocorrelation vanishes because the momentum strategy has high turnover, holding assets

based only on their recent performance.

The positive autocorrelation of momentum returns is reflected into momentum’s Sharpe ratio,

which decreases with investment horizon. The unconditional Sharpe ratio of momentum is 53.66%

over an infinitesimal horizon (Section 5), and drops to 37.06% for an one-year horizon. It then

stays essentially flat, equal to 34.28% for five years, 33.49% for ten years, 33.04% for twenty years

and 32.82% for forty years.

We next turn to the predictability of momentum’s conditional Sharpe ratio. Momentum’s

Sharpe ratio varies significantly less than value’s, especially as horizon increases. The unconditional

standard deviation of momentum’s conditional Sharpe ratio drops from 46.58% for an infinitesimal

horizon to 11.93% for an one-year horizon, 6.52% for five years, 4.52% for ten years, and 2.35% for

twenty years.

The predictability of momentum’s conditional Sharpe ratio becomes similar to value’s as horizon

increases. Momentum’s conditional Sharpe ratio is well predicted by the value spread, with the

unconditional correlation rising from -8.13% for an infinitesimal horizon to 27.13% for an one-year

horizon, 87.99% for five years, 91.75% for ten years, and 91.53% for twenty years. Conversely, it is

not well predicted by the conditional correlation between value and momentum. Its unconditional

correlation with that variable rises from 41.34% for an infinitesimal horizon (Section 5) to 53.91%

for an one-year horizon, but subsequently drops to 18.47% for five years, 8.01% for ten years, and

6.64% for twenty years.

6.4 Combining Value and Momentum

We compute the unconditional correlation between value and momentum returns over a general

investment horizon in Appendix E (Proposition E.7). Figure 7 plots this correlation as function

of horizon. The correlation is negative for returns computed over horizons up to seven months

and turns positive for longer horizons. It is relatively small in absolute value, rising from -12.20%

for an infinitesimal horizon (Section 6.4) to 19.92% for a forty-year horizon. As a consequence,

combining value and momentum improves significantly over using one or the other strategy and

yields a Sharpe ratio close to that of the optimal strategy. The difference between the Sharpe ratio

of the optimal strategy and of the optimal value-momentum combination drops from 6.76% for an

infinitesimal horizon to 3.20% for an one-year horizon, 1.76% for five years, 1.30% for ten years,

0.94% for twenty years, and 0.64% for forty years.

The change in sign of the value-momentum correlation from negative to positive as horizon

increases reflects the cross-autocorrelations between the strategies (lead-lag effects). We compute
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Figure 7: Unconditional correlation between value and momentum as function of the

investment horizon.

unconditional cross-autocorrelations for value and momentum returns in Appendix E (Proposition

E.8), and plot them in Figure 8. The left panel plots correlations between value (blue dashed line)

or momentum (red dashed-dotted line) returns over a lookback window τ ending at time t with the

other strategy’s returns over the year starting at time t. The right panel replaces returns one year

ahead by returns ten years ahead.
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Figure 8: Unconditional cross-autocorrelations (lead-lag effects) of value and momen-

tum, between returns over a lookback window τ ending at time t and returns over the

year (left panel) and the ten years (right panel) starting at time t. Cross-autocorrelations

are plotted as function of τ .

Lead-lag effects differ for short- and long-horizon returns. Over short horizons (left panel),

they are mainly driven by the joint variation of the strategies’ expected returns during the flow

cycle, and they are present only from value to momentum and only over short lookback windows.4

4In Appendix E (Equations (E.6) and (E.7)), we show that the correlation CovIt

(
ŵj

udRu, ŵ
k
u′dRu′

)
between
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High returns on value predict high returns on momentum (positive lead-lag effect). This is because

value earns high expected returns towards the end of the flow cycle, and as these returns cumulate,

momentum starts earning high expected returns as well. By contrast, momentum returns do not

predict short-horizon returns on value. This is because momentum earns high expected returns at

the beginning or at the end of the flow cycle, and these are followed by low expected returns of

value in the former case and by high expected returns in the latter case.

Lead-lag effects over long horizons (right panel) are mainly driven by the response of the strate-

gies’ expected returns to shocks, and they are present from both value to momentum and from

momentum to value. A long period of underperformance by the assets held by value indicates

that those assets will earn high future expected returns. Hence, those assets will be included in

momentum portfolios, which will perform well on average (negative lead-lag effect). A long pe-

riod of overperformance by momentum indicates that flows out of funds holding poorly performing

assets and into funds holding well performing ones are larger than expected. This indicates high

mispricing and thus high future expected returns by value (positive lead-lag effect).

The cross-autocorrelation from value to momentum changes sign to positive as horizon increases

because the positive lead-lag effects dominate the negative ones. Therefore, the drivers of the

switch in sign of the value-momentum correlation are the short-horizon lead-lag effect from value

to momentum, and the long-horizon one from momentum to value.

Using the unconditional Sharpe ratios and correlation of value and momentum, we compute in

Appendix E (Proposition E.9) the investment in these strategies in their optimal (mean-variance

maximizing) combination. We express the investment in normalized terms by rescaling strategy

weights in the assets so that strategy standard deviation times investor risk aversion is equal to

one. We refer to the normalized investment as the weight given by the investor in a strategy. The

weights for value and momentum are plotted as function of horizon in the left panel of Figure 9.

Momentum’s weight is 169% that of value for an infinitesimal horizon, and rises to 199% for a two-

year horizon. It then decreases with horizon, becoming equal to value’s weight for thirteen years,

and to 57% of value’s weight for forty years. Momentum’s weight declines with horizon relative

to value’s weight because value’s Sharpe ratio increases while momentum’s stays essentially flat.

Momentum’s weight declines with horizon in absolute terms because value’s weight rises and because

the value-momentum correlation turns positive.

instantaneous returns of strategy j at time u and strategy k at time u′ > u can be written as

CovIt

[
Eu(ŵ

j
udRu),Eu′(ŵk

u′dRu′)
]
+ EIt

[
ŵj

uCovu(dRu, ŵ
k
u′Eu′(dRu′))

]
.

The first term is the correlation between expected returns at u and u′, and drives lead-lag effects over short horizons
in our calibration. The second term describes the response of expected returns at u′ to shocks at u, and drives
lead-lag effects over long horizons.
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Figure 9: Weights of value and momentum in the combination of the two strategies

that maximizes the unconditional Sharpe ratio (left panel) and in the combination that

minimizes the unconditional variance of the difference in returns between that combi-

nation and the optimal strategy (right panel), as function of the investment horizon.

The right panel of Figure 9 plots value and momentum weights in the combination that best

approximates the optimal strategy derived in Section 6.1. We construct that combination by

minimizing the unconditional variance of the difference in returns between that combination and

the optimal strategy. The weights of value and momentum in that combination are computed in

Appendix E (Proposition E.10). Figure 9 shows that they are nearly identical to those in the

mean-variance maximizing value-momentum combination.

7 Empirical Analysis

7.1 Data

We next examine whether the theoretical patterns shown in Section 6 appear in the data. We use

a monthly vector auto-regression (VAR) of value and momentum returns together with the value

spread, the panic variable of DM, and the value-momentum correlation. Our sample runs from

January 1940 to December 2021.5

Value and momentum returns are those of the HML and UMD factors, respectively, sourced

from Ken French’s website. We compute these returns over a monthly horizon, and express them

in logarithms.

To construct the value spread, we first create an annual series following CPV. Our BE
ME values

5We start the sample in 1940 following CPV who exclude the pre-1938 data because the poor disclosure regulation
at that time (documented in the accounting literature) could have resulted in unreliable book equity data. Our main
findings are robust to this choice.
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come from Ken French’s website; we use the ratio based on market equityME at the end of June of

each year, and book equity BE measured at the end of December of the previous year but adjusted

for net stock issuance up to the end of June. The value spread at the end of June is the difference

in the logarithm of BE
ME between the high and the low BE

ME portfolios. We next create a monthly

series following Campbell and Vuolteenaho (2004) and Campbell, Giglio, Polk, and Turley (2018).

Specifically, the value spread at the end of each month from July to May is constructed by adding

to the end-of-June value spread the cumulative log return on the low BE
ME portfolio from the end of

June, and subtracting the cumulative log return on the high BE
ME portfolio.

To construct DM’s panic variable at the end of each month, we multiply an indicator variable

equal to one if the market return in the previous two-year period is negative by the realized variance

of the market return during the previous six-month period computed using daily observations. We

take the value-weighted CRSP portfolio as our market proxy and source return data from Ken

French’s website. To construct the correlation between HML and UMD at the end of each month,

we compute the realized correlation using daily observations during that month.

A difference between our empirical analysis and our calibration is that the former is done at the

stock level while the latter is done at the level of industry sectors. We assume industry sectors in our

calibration for parsimony: going at the stock level requires additional assumptions on how large the

sector-specific component of returns is relative to the stock-specific component, what the inter- and

intra-sector distributions of fund holdings are, etc. On the other hand, constructing empirical value

strategies at the sector level is challenging because book value may not be comparable across sectors.

Stock-level value strategies are less affected by this problem because they also exploit intra-sector

variation. Indeed, CPV find that the profitability of stock-level value strategies derives primarily

from intra- rather that inter-sector variation. Our theory suggests that it should be possible to

construct profitable sector-level value strategies in the data using measures of fundamental value

that are comparable across sectors.

7.2 Results

Figure 10 plots the value spread (red), the panic variable (black) and the value-momentum corre-

lation (blue) over our sample period. Each variable is demeaned and standardized by its in-sample

standard deviation.

The value-momentum correlation varies significantly over time and is persistent. Its average in

our sample is -6%, and its standard deviation is 52%. It is negative over some extended periods,

e.g., the years around the dot-com boom and those around the global financial crisis. It is positive

over some extended periods as well, e.g., between those two episodes. The value spread is more
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Figure 10: Predictors of value and momentum returns.

persistent. Its three most recent peaks are during the dot-com boom, the global financial crisis, and

2020. The panic variable is equal to zero much of the time and has occasional spikes, the largest

of which occurred in 2009, towards the end of the global financial crisis.

Table II shows the VAR results. Each pair of rows reports results for the regression predicting

the corresponding variable in the first column. The regression coefficients are in the upper row and

the t-statistics are in the lower row. Boldface indicates statistical significance at the 5% level.

Table II: VAR results.

Intercept HML UMD Corr VS Panic R2

HML -0.01415 0.15334 -0.00832 0.00418 0.01166 -11.38827 2.9%
-2.05 4.74 -0.34 2.39 2.58 -1.49

UMD 0.01604 -0.05716 -0.01689 0.00404 -0.00419 -57.42914 3.4%
1.74 -1.32 -0.52 1.73 -0.70 -5.65

Corr 0.22005 3.48653 -0.00340 0.73941 -0.16341 73.76268 61.3%
2.68 9.07 -0.01 35.48 -3.04 0.81

VS 0.03865 -0.16348 0.01683 -0.00248 0.97449 7.66643 96.7%
4.11 -3.72 0.51 -1.04 158.59 0.74

Panic 0.00001 0.00014 0.00008 -0.00001 0.00000 0.91011 82.1%
0.44 2.45 1.85 -1.59 -0.30 66.00

The return on HML is positively predicted by its lagged value. Thus, HML has short-run mo-
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mentum, consistent with Ehsani and Linnainmaa (2019). The return on HML is also positively

predicted by the value spread, as in CPV, and by the value-momentum correlation. All three predic-

tive links are consistent with our theory, and we are the first to document that the value-momentum

correlation predicts value returns. Indeed, in unreported results, we find that the coefficient on the

value spread is much weaker when we exclude the lagged HML return and the value-momentum

correlation from the HML regression. This finding is consistent with the importance of taking our

theory’s flow cycle view of value predictability into account when using the value spread to forecast

value returns.

The return on UMD is predicted negatively by the panic variable, as in DM. It is positively

predicted by the value-momentum correlation, with statistical significance at the 10% level.6 The

latter finding is consistent with our theory.

Following high HML returns, the value-momentum correlation increases, and the value spread

decreases. Intuitively, high HML returns render value stocks more likely to be selected into mo-

mentum portfolios, raising the the value-momentum correlation. They also lower the value stocks’

book-to-market ratio, lowering the value spread.

Using the VAR coefficients in Table II, together with the covariance matrix of VAR residuals,

we compute Sharpe ratios and correlations of value and momentum returns over general horizons

and compare to our results in Section 6. The calculations are in Appendix G.

The left panel of Figure 11 plots the unconditional Sharpe ratio of value (blue dashed line) and

momentum (red dashed-dotted line) as function of horizon. The right panel plots the unconditional

correlation between value (blue dashed line) or momentum (red dashed-dotted line) returns over

a lookback window τ ending at time t with the same strategy’s returns over the year starting at

time t. In this and the next figure, the thin lines are one-standard-deviation bounds, produced by

bootstrapping the VAR.

Figure 11 provides some support to our theory. While the standard-deviation bounds are

wide due to the noise in returns, the general patterns of the Sharpe ratios and autocorrelations

resemble those in Section 6. Over short horizons, the Sharpe ratios of value and momentum

decrease with horizon. Over long horizons, momentum’s Sharpe ratio becomes approximately flat,

while value’s Sharpe ratio increases. Reflecting these patterns, the autocorrelations are positive

over short lookback windows and become approximately equal to zero for momentum and negative

for value over long lookback windows. All these properties are consistent with our theory. A

discrepancy arises in the magnitude of the effects, which are more modest than in Section 6. While

value’s Sharpe ratio increases non-trivially with horizon (it is 36% larger in relative terms over

6If we exclude the other forecasting variables from the UMD regression, the coefficient on the value-momentum
correlation increases by roughly 19% and has a t-statistic of 2.11.

36



0 100 200 300 400 500 600

Horizon (Months)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

U
nc

on
di

tio
na

l S
ha

rp
e 

R
at

io

Value
Momentum

020406080100120

Lookback Window (Months)

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

A
ut

oc
or

re
la

tio
n

Value
Momentum

Figure 11: Sharpe ratios of value and momentum as function of horizon (left panel)

and autocorrelations of value and momentum, between returns over a lookback window

τ ending at time t and returns over the year starting at time t as function of τ (right

panel). Moments are unconditional and computed using the empirical estimates from

the VAR.

a forty-year horizon than over an one-year horizon), it does not overtake momentum’s over long

horizons (right panel of Figure 4). Moreover, value’s return autocorrelations are not as negative as

in Section 6 over long lookback windows (left panel of Figure 5).

Figure 12 plots correlations and lead-lag effects. The left panel plots the correlation between

value and momentum returns as function of horizon. The right panel plots the correlation between

value (blue dashed line) or momentum (red dashed-dotted line) returns over a lookback window τ

ending at time t with the other strategy’s returns over the year starting at time t.
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Figure 12: Correlation between value and momentum returns as function of horizon

(left panel) and cross-autocorrelations between returns over a lookback window τ ending

at time t and returns over the year starting at time t as function of τ (right panel).

Moments are unconditional and computed using the empirical estimates from the VAR.
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The correlation between value and momentum depends on horizon in a way consistent with our

theory: it is negative over short horizons, and turns positive over longer horizons. Also consistent

with our theory, the dominant lead-lag effect is from value to momentum and is positive. Figure

12 differs from its lead-lag counterpart in Section 6 (right panel of Figure 8) in that the lead-lag

effect from value to momentum does not decay to zero as fast as horizon increases.

8 Conclusion

We study dynamic portfolio choice in a calibrated equilibrium model where value and momentum

anomalies arise because capital moves from under- to over-performing market segments and does so

slowly. Our model provides answers to questions that are key to dynamic portfolio choice and that

the theoretical literature has not addressed so far. We determine, in particular, how the Sharpe

ratios of value and momentum depend on investment horizon, how value and momentum returns

correlate with each other, and how these returns and Sharpe ratios depend on predictor variables.

We provide novel empirical evidence supporting our model’s predictions.

A common thread running through our results is that Sharpe ratios, correlations, and predictor

variables depend significantly on horizon. Over short horizons, momentum’s Sharpe ratio exceeds

value’s, the value-momentum correlation is negative, and the conditional value-momentum correla-

tion positively predicts the Sharpe ratios of value and momentum. In contrast, over long horizons,

value’s Sharpe ratio can exceed momentum’s, the value-momentum correlation turns positive, and

the value spread becomes a better predictor of Sharpe ratios.

Our results imply that performance metrics computed using returns over short horizons, e.g.,

monthly or annual, can give poor guidance to investors such as pension funds and sovereign-

wealth funds, whose horizons span decades. Constraints on portfolio deviations from benchmarks,

which are pervasive in practice, can be at odds with long-horizon objectives for similar reasons.

For example, tracking-error constraints evaluate risk over a short horizon and can overestimate it

over a long horizon in the same way that the value strategy’s short-horizon risk overestimates its

long-horizon risk. Our analysis suggests that performance metrics and constraints of long-horizon

investors should be re-examined on the basis of the investment behavior and horizon that they

induce.
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Appendix

A Proofs of Results in Section 3

Equation (3.3) follows from combining VW equation (28) with (29) and (B34). VW equation (B34)

implies

a0 =
αᾱf

α+ ᾱ

ηΣθ′

ηΣη′
Ση′ + γ0Σp

′
f

with

γ0 =
κ(γ1 + γ2)C̄ + b0γ3 − k1q̄1 − k2q̄2

r
+ ᾱ

(
f +

k∆

ηΣη′

)
. (A.1)

Equation (3.1) is VW equation (30). Equation (3.2) is VW equation (31), shown in Proposition 4.

Equations (3.5) and (3.6) are VW equations (22) and (38), respectively, shown in Corollary 9.

Additional equations from VW that we use in subsequent proofs are those describing the co-

variance matrix of returns (VW equation (37) shown in Corollary 8)

Covt(dRt, dR
′
t) =

(
fΣ+ kΣp′fpfΣ

)
dt, (A.2)

the properties of the flow portfolio (stated between VW equations (A28) and (A29))

ηΣp′f = 0,

θΣp′f = pfΣp
′
f =

∆

ηΣη′
,

the investor’s stock holdings (stated just before VW equation (A63))

xtη + ytzt = ytpf +
ᾱ

α+ ᾱ

ηΣθ′

ηΣη′
η, (A.3)

stock returns (VW equation (B7))

dRt =

[
rαᾱf

α+ ᾱ

ηΣθ′

ηΣη′
Ση′ +

(
rγ0 + γR1 Ĉt + γR2 Ct + γR3 yt − κ(γ1 + γ2)C̄ − b0γ3

)
Σp′f

]
dt
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+
(
σ + β1γ1Σp

′
fpfσ

)
dBD

t +
ϕ

r + κ

(
σ + β2γ1Σp

′
fpfσ

)
dBF

t − sγ2

(
1 +

β2γ1∆

ηΣη′

)
Σp′fdB

C
t ,

(A.4)

where

γR1 ≡ (r + κ+ ρ)γ1 + b1γ3, (A.5)

γR2 ≡ (r + κ)γ2 − ργ1, (A.6)

γR3 ≡ (r + b2)γ3, (A.7)

ρ ≡ β1

(
1− (r + κ)γ2∆

ηΣη′

)
, (A.8)

and the dynamics of Ĉt (VW equation (B6) combined with (B8))

dĈt = κ(C̄ − Ĉt)dt+ ρ(Ct − Ĉt)dt− β1pfσdB
D
t − β2

(
ϕpfσdB

F
t

r + κ
− sγ2∆dB

C
t

ηΣη′

)
, (A.9)

where

β1 ≡ T

[
1− (r + k)

γ2∆

ηΣη′

]
ηΣη′

∆
, (A.10)

β2 ≡
s2γ2

ϕ2

(r+κ)2
+

s2γ2
2∆

ηΣη′

, (A.11)

and T , the investor’s conditional variance of Ct, is the positive solution to

T 2

(
1− (r + κ)

γ2∆

ηΣη′

)2 ηΣη′

∆
+ 2κT −

s2ϕ2

(r+κ)2

ϕ2

(r+κ)2
+

s2γ2
2∆

ηΣη′

= 0. (A.12)

We focus on the steady state reached when t goes to infinity, where the coefficients (β1, β2, T ) are

time-independent, and thus so are all other coefficients describing the equilibrium.

Substituting γ0 from (A.1) and using (3.6), we can write (A.4) as

dRt =

[
rαᾱf

α+ ᾱ

ηΣθ′

ηΣη′
Ση′ +

(
f +

k∆

ηΣη′

)
ΛtΣp

′
f

]
dt

44



+
(
σ + β1γ1Σp

′
fpfσ

)
dBD

t +
ϕ

r + κ

(
σ + β2γ1Σp

′
fpfσ

)
dBF

t − sγ2

(
1 +

β2γ1∆

ηΣη′

)
Σp′fdB

C
t .

(A.13)

The term in square brackets in (A.13) is Et(dRt) and maps to the two-factor model (3.5).

B Additional Background Notation and Results

Lemma B.1 determines the state variables (Ft, Ĉt, Ct, yt) in steady state as function of all past

Brownian shocks.

Lemma B.1. The values of (Ft, Ĉt, Ct, yt) in the steady state reached when t→ ∞ are

Ft = F̄ +

∫ t

−∞
e−κ(t−u)ϕσdBF

u , (B.1)

Ĉt = C̄ +

∫ t

−∞
e−κ(t−u)sdBC

u −
∫ t

−∞
e−(κ+ρ)(t−u)

[
β1pfσdB

D
u +

ϕβ2pfσdB
F
u

r + κ
+ s

(
1− β2γ2∆

ηΣη′

)
dBC

u

]
,

(B.2)

Ct = C̄ +

∫ t

−∞
e−κ(t−u)sdBC

u , (B.3)

yt = ȳ +

∫ t

−∞

b1
κ− b2

[
e−κ(t−u) − e−b2(t−u)

]
sdBC

u

−
∫ t

−∞

b1
κ+ ρ− b2

[
e−(κ+ρ)(t−u) − e−b2(t−u)

] [
β1pfσdB

D
u +

ϕβ2pfσdB
F
u

r + κ
+ s

(
1− β2γ2∆

ηΣη′

)
dBC

u

]
.

(B.4)

Proof: The dynamics of Ft are given by the stochastic differential equation (2.6). Integrating that

equation with initial condition F0, and letting t → ∞, we find (B.1). The dynamics of (Ĉt, Ct, yt)

are given by the system of stochastic differential equations (A.9) and (2.3), and ordinary differential

equation (3.1). Integrating that system with initial conditions (Ĉ0, C0, y0), and letting t → ∞, we

find (B.2)-(B.4).

We next introduce some notation, which we use together with Lemma B.1 to compute auto-

covariances of (Ft, Ĉt, Ct, yt, dRt) in Lemma B.3. For scalars (ψ1, ψ2, ψ3, ψ̂1, ψ̂2, ψ̂3) and a function

ν(ω, T ), we define the function G(ψ1, ψ2, ψ3, T , ν) by

G(ψ1, ψ2, ψ3, T , ν) ≡
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−
[
ψ1ν(κ+ ρ, T ) +

ψ3b1
κ+ ρ− b2

(ν(κ+ ρ, T )− ν(b2, T ))

]
β1

(
1 +

β1γ1∆

ηΣη′

)

−
[
(ψ1 + ψ2)ν(κ, T ) +

ψ3b1
κ− b2

(ν(κ, T )− ν(b2, T ))

]
s2γ2

(
1 +

β2γ1∆

ηΣη′

)
,

the function H(ψ1, ψ2, ψ3, ψ̂1, ψ̂2, ψ̂3, T , ν) by

H(ψ1, ψ2, ψ3, ψ̂1, ψ̂2, ψ̂3, T , ν) ≡[
1

2(κ+ ρ)

(
ψ̂1 +

ψ̂3b1
κ+ ρ− b2

)(
ψ1 −

ψ3b1
κ+ ρ+ b2

)
ν(κ+ ρ, T )

− ψ̂3b1
(κ+ ρ+ b2)(κ+ ρ− b2)

(
ψ1 −

ψ3b1
2b2

)
ν(b2, T )

] [
β21 +

ϕ2β22
(r + κ)2

+
s2β22γ

2
2∆

ηΣη′

]
∆

ηΣη′

+

[
1

2κ+ ρ

(
ψ̂1 + ψ̂2 +

ψ̂3b1
κ− b2

)(
ψ1 −

ψ3b1
κ+ b2

)
ν(κ, T )

− 1

2κ+ ρ

(
ψ̂1 +

ψ̂3b1
κ+ ρ− b2

)(
ψ1κ

κ+ ρ
− ψ2 −

ψ3b1κ

(κ+ ρ)(κ+ ρ+ b2)

)
ν(κ+ ρ, T )

− ψ̂3b1
(κ+ b2)(κ+ ρ− b2)

(
2ψ1κρ

(κ− b2)(κ+ ρ+ b2)
+ ψ2 −

ψ3κb1ρ

b2(κ− b2)(κ+ ρ+ b2)

)
ν(b2, T )

]
s2β2γ2∆

ηΣη′

+

[
1

2κ

(
ψ̂1 + ψ̂2 +

ψ̂3b1
κ− b2

)(
ψ1ρ

2κ+ ρ
+ ψ2 −

ψ3b1ρ

(2κ+ ρ)(κ+ b2)

)
ν(κ, T )

− 1

2κ+ ρ

(
ψ̂1 +

ψ̂3b1
κ+ ρ− b2

)(
ψ1ρ

2(κ+ ρ)
+ ψ2 −

ψ3b1ρ

2(κ+ ρ)(κ+ ρ+ b2)

)
ν(κ+ ρ, T )

− ψ̂3b1ρ

(κ+ b2)(κ− b2)(κ+ ρ− b2)

(
ψ1ρ

κ+ ρ+ b2
+ ψ2 −

ψ3b1ρ

2b2(κ+ ρ+ b2)

)
ν(b2, T )

]
s2,

and the functions K1(ψ1, ψ3, T , ν) and K2(ψ1, ψ3, T , ν) by

K1(ψ1, ψ3, T , ν) ≡− 1

2κ+ ρ

(
ψ1 −

ψ3b1
κ+ b2

)
ν(κ, T )

ϕ2β2
r + κ

,

K2(ψ1, ψ3, T , ν) ≡−
[

1

2κ+ ρ

(
ψ1 +

ψ3b1
κ+ ρ− b2

)
ν(κ+ ρ, T )− ψ3b1

(κ+ b2)(κ+ ρ− b2)
ν(b2, T )

]
ϕ2β2
r + κ

.
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We define the functions ν0(t) and {νi(ω, T )}i=1,..,4 for T = (t,∆t) and ∆t > 0 by

ν0(ω, t) ≡ e−ωt,

ν1(ω, T ) ≡
∫ t

t−∆t
ν0(ω, |u|)1{u≥0}du,

ν2(ω, T ) ≡
∫ t

t−∆t
ν0(ω, |u|)1{u≤0}du,

ν3(ω, T ) ≡
∫ t

u′=t−∆t

∫ 0

u=−∆t
ν0(ω, |u′ − u|)1{u≤u′}dudu

′,

ν4(ω, T ) ≡
∫ t

u′=t−∆t

∫ 0

u=−∆t
ν0(ω, |u′ − u|)1{u≥u′}dudu

′.

We define the scalars (L1, L2) by

L1 ≡
rαᾱf

α+ ᾱ

ηΣθ′

ηΣη′
, (B.5)

L2 ≡rᾱ
(
f +

k∆

ηΣη′

)
+ (γR1 + γR2 )C̄ + γR3 ȳ − k1q̄1 − k2q̄2 =

(
f +

k∆

ηΣη′

)
E(Λt), (B.6)

and the scalars (∆1,∆2,∆3,∆4) by

∆1 ≡f
(
ηΣ3η′ − (ηΣ2η′)2

ηΣη′

)
+ k

(
ηΣ2p′f

)2
,

∆2 ≡f

(
ηΣ3p′f −

ηΣ2η′ηΣ2p′f
ηΣη′

)
+ kηΣ2p′fpfΣ

2p′f ,

∆3 ≡f

(
pfΣ

3p′f −
(ηΣ2p′f )

2

ηΣη′

)
+ k

(
pfΣ

2p′f
)2
,

∆4 ≡f
(
Tr(Σ2)− ηΣ3η′

ηΣη′

)
+ kpfΣ

3p′f ,

where Tr(M) denotes the trace of the matrix M .

Lemma B.2 derives closed-form solutions for the functions {νi(ω, T )}i=1,2,3,4.

Lemma B.2. The functions {νi(ω, T )}i=1,2,3,4 are equal to

ν1(ω, T ) =
e−ωmax{t−∆t,0} − e−ωmax{t,0}

ω
,

47



ν2(ω, T ) = ν1(ω, (−t+∆t,∆t)) =
eωmin{t,0} − eωmin{t−∆t,0}

ω
,

ν3(ω, T ) =
e−ωmax{t+∆t,0} + e−ωmax{t−∆t,0} − 2e−ωmax{t,0}

ω2

+
min{max{t,−∆t}, 0} −min{max{t−∆t,−∆t}, 0}

ω
,

ν4(ω, T ) = ν3(ω, (−t,∆t)) =
eωmin{t+∆t,0} + eωmin{t−∆t,0} − 2eωmin{t,0}

ω2

+
max{min{t, 0},−∆t} −max{min{t−∆t, 0},−∆t}

ω
.

Proof: We first compute (ν1(ω, T ), ν2(ω, T )). Since the variable u in ν1(ω, T ) is non-negative,

we can drop the indicator function 1{u≥0} and change the integration bounds and the argument of

ν0(ω, t) as follows:

ν1(ω, T ) =

∫ max{t,0}

max{t−∆t,0}
e−ωudu =

e−ωmax{t−∆t,0} − e−ωmax{t,0}

ω
.

This is the expression in the lemma. To compute ν2(ω, T ), we make the change of variable from u

to −u:

ν2(ω, T ) =

∫ −t+∆t

−t
ν0(ω, |u|)1{u≥0}du

=

∫ −(t−∆t)

−(t−∆t)−∆t
ν0(ω, |u|)1{u≥0}du

= ν1(ω, (−t+∆t,∆t))

=
e−ωmax{−t+∆t−∆t,0} − e−ωmax{−t+∆t,0}

ω

=
e−ωmax{−t,0} − e−ωmax{−(t−∆t),0}

ω

=
eωmin{t,0} − eωmin{t−∆t,0}

ω
,

which is the expression in the lemma.

We next compute (ν3(ω, T ), ν4(ω, T )). Since the difference u′−u in ν3(ω, T ) is non-negative and

u ≥ −∆t, u′ must also exceed −∆t. Proceeding as for (ν1(ω, T ), ν2(ω, T )), we drop the indicator
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function 1{u≤u′} and change the integration bounds and the argument of ν0(ω, t) as follows:

ν3(ω, T ) =

∫ max{t,−∆t}

u′=max{t−∆t,−∆t}

∫ min{u′,0}

u=−∆t
eω(u−u′)dudu′

=

∫ max{t,−∆t}

max{t−∆t,−∆t}

eω(min{u′,0}−u′) − eω(−∆t−u′)

ω
du′. (B.7)

Integrating the second term inside the integral yields

∫ max{t,−∆t}

max{t−∆t,−∆t}

eω(−∆t−u′)

ω
du′ =

eω(−∆t−max{t−∆t,−∆t}) − eω(−∆t−max{t,−∆t})

ω2

=
e−ωmax{t,0} − e−ωmax{t+∆t,0}

ω2
(B.8)

To integrate the first term inside the integral, we separate it into two using indicator functions,

and then change the integration bounds:

∫ max{t,−∆t}

max{t−∆t,−∆t}

eω(min{u′,0}−u′)

ω
du′

=

∫ max{t,−∆t}

max{t−∆t,−∆t}

eω(min{u′,0}−u′)1{u′≥0}

ω
du′ +

∫ max{t,−∆t}

max{t−∆t,−∆t}

eω(min{u′,0}−u′)1{u′≤0}

ω
du′

=

∫ max{max{t,−∆t},0}

max{max{t−∆t,−∆t},0}

e−ωu′

ω
du′ +

∫ min{max{t,−∆t},0}

min{max{t−∆t,−∆t},0}

1

ω
du′

=

∫ max{t,0}

max{t−∆t,0}

e−ωu′

ω
du′ +

∫ min{max{t,−∆t},0}

min{max{t−∆t,−∆t},0}

1

ω
du′

=
e−ωmax{t−∆t,0} − e−ωmax{t,0}

ω2
+

min{max{t,−∆t}, 0} −min{max{t−∆t,−∆t}, 0}
ω

(B.9)

Substituting (B.8) and (B.9) into (B.7) yields

ν3(ω, T ) =
e−ωmax{t−∆t,0} − e−ωmax{t,0}

ω2
− e−ωmax{t,0} − e−ωmax{t+∆t,0}

ω2

+
min{max{t,−∆t}, 0} −min{max{t−∆t,−∆t}, 0}

ω
,

which is the expression in the lemma. To compute ν4(ω, T ), we revert the order of integration, and
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add −t to both integrands:

ν4(ω, T ) =

∫ 0

u=−∆t

∫ t

u′=t−∆t
ν0(ω, |u′ − u|)1{u≥u′}du

′du

=

∫ 0

u′=−∆t

∫ t

u=t−∆t
ν0(ω, |u′ − u|)1{u≤u′}dudu

′

=

∫ −t

u′=−t−∆t

∫ 0

u=−∆t
ν0(ω, |u′ − u|)1{u≤u′}dudu

′

= ν3(ω, (−t,Dt))

=
e−ωmax{−t+∆t,0} + e−ωmax{−t−∆t,0} − 2e−ωmax{−t,0}

ω2

+
min{max{−t,−∆t}, 0} −min{max{−t−∆t,−∆t}, 0}

ω

=
e−ωmax{−(t−∆t),0} + e−ωmax{−(t+∆t),0} − 2e−ωmax{−t,0}

ω2

+
min{−min{t,∆t}, 0} −min{−min{t+∆t,∆t}, 0}

ω

=
eωmin{t−∆t,0} + eωmin{t+∆t,0} − 2eωmin{t,0}

ω2

+
−max{min{t,∆t}, 0}+max{min{t+∆t,∆t}, 0}

ω
.

Adding −∆t to both terms inside each maximum in the last line, we can write it as

−max{min{t−∆t,∆t−∆t},−∆t}+max{min{t+∆t−∆t,∆t−∆t},−∆t}
ω

=
−max{min{t−∆t, 0},−∆t}+max{min{t, 0},−∆t}

ω
,

and thus obtain the expression in the lemma.

Lemma B.2 derives covariances between the state variables and between them and returns.

Lemma B.3. For t′ > t,

Covt(dRt, ψ1Ĉt′ + ψ2Ct′ + ψ3yt′) = G(ψ1, ψ2, ψ3, t
′ − t, ν0)Σp

′
fdt, (B.10)

Covt(dRt, F
′
t′) =

ϕ2

r + κ

(
Σ+ β2γ1Σp

′
fpfΣ

)
ν0(κ, t

′ − t)dt, (B.11)

50



Covt(dRt, dR
′
t′) = G(γR1 , γ

R
2 , γ

R
3 , t

′ − t, ν0)Σp
′
fpfΣdtdt

′, (B.12)

and for t′ ≥ t,

Cov
(
ψ1Ĉt + ψ2Ct + ψ3yt, ψ̂1Ĉt′ + ψ̂2Ct′ + ψ̂3yt′

)
= H(ψ1, ψ2, ψ3, ψ̂1, ψ̂2, ψ̂3, t

′ − t, ν0),

(B.13)

Cov
(
ψ1Ĉt + ψ2Ct + ψ3yt, Ft′

)
= K1(ψ1, ψ3, t

′ − t, ν0)Σp
′
f , (B.14)

Cov
(
Ft, ψ1Ĉt′ + ψ2Ct′ + ψ3yt′

)
= K2(ψ1, ψ3, t

′ − t, ν0)Σp
′
f , (B.15)

Cov(Ft, F
′
t′) =

ϕ2Σ

2κ
ν0(κ, t

′ − t). (B.16)

Proof: We first show (B.10). Since the covariance is conditional as of time t, it involves only the

Brownian terms in dRt and not the drift terms. Using (A.4) and (B.2)-(B.4), and noting that the

only non-zero covariances are between Brownian increments of the same process as of time t, we

find

Covt(dRt, ψ1Ĉt′ + ψ2Ct′ + ψ3yt′)

=−
(
σ + β1γ1Σp

′
fpfσ

) [
ψ1e

−(κ+ρ)(t′−t) +
ψ3b1

κ+ ρ− b2

(
e−(κ+ρ)(t′−t) − e−b2(t′−t)

)]
β1σ

′p′fdt

− ϕ

r + κ

(
σ + β2γ1Σp

′
fpfσ

) [
ψ1e

−(κ+ρ)(t′−t) +
ψ3b1

κ+ ρ− b2

(
e−(κ+ρ)(t′−t) − e−b2(t′−t)

)] ϕβ2
r + κ

σ′p′fdt

− sγ2

(
1 +

β2γ1∆

ηΣη′

)
Σp′f

[
(ψ1 + ψ2)e

−κ(t′−t) +
ψ3b1
κ− b2

(
e−κ(t′−t) − e−b2(t′−t)

)
−
[
ψ1e

−(κ+ρ)(t′−t) +
ψ3b1

κ+ ρ− b2

(
e−(κ+ρ)(t′−t) − e−b2(t′−t)

)](
1− β2γ2∆

ηΣη′

)]
sdt

=

{
−
[
ψ1e

−(κ+ρ)(t′−t) +
ψ3b1

κ+ ρ− b2

(
e−(κ+ρ)(t′−t) − e−b2(t′−t)

)]

×
[
β1

(
1 +

β1γ1∆

ηΣη′

)
+

(
ϕ2β2

(r + κ)2
− s2γ2

(
1− β2γ2∆

ηΣη′

))(
1 +

β2γ1∆

ηΣη′

)]

−
[
(ψ1 + ψ2)e

−κ(t′−t) +
ψ3b1
κ− b2

(
e−κ(t′−t) − e−b2(t′−t)

)]
s2γ2

(
1 +

β2γ1∆

ηΣη′

)}
Σp′fdt

=

{
−
[
ψ1e

−(κ+ρ)(t′−t) +
ψ3b1

κ+ ρ− b2

(
e−(κ+ρ)(t′−t) − e−b2(t′−t)

)]
β1

(
1 +

β1γ1∆

ηΣη′

)
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−
[
(ψ1 + ψ2)e

−κ(t′−t) +
ψ3b1
κ− b2

(
e−κ(t′−t) − e−b2(t′−t)

)]
s2γ2

(
1 +

β2γ1∆

ηΣη′

)}
Σp′fdt, (B.17)

where the third step follows from (A.11). Equation (B.17) yields (B.10).

We next show (B.11). Using (A.4) and (B.1), and noting that the conditional covariance involves

only the Brownian terms in dRt, and that the only non-zero covariances are between the Brownian

increments of the process Ft as of time t, we find

Covt(dRt, F
′
t′) =

ϕ

r + κ

(
σ + β2γ1Σp

′
fpfσ

)
ϕσ′e−κ(t′−t)dt,

which yields (B.11).

We next show (B.12). Using (A.4), and noting that the conditional covariance involves only the

Brownian terms in dRt and only the drift terms in dRt′ , we find

Covt(dRt, dR
′
t′) =Covt(dRt, Et′(dR

′
t′))

=Covt(dRt, γ
R
1 Ĉt′ + γR2 Ct′ + γR3 yt′)pfΣdt

′, (B.18)

where the second step follows from (A.4). Combining (B.18) with (B.10) yields (B.12).

We next show (B.13). Using (B.2)-(B.4) and noting that the only non-zero covariances are

between Brownian increments of the same process as of the same time u ∈ (−∞, t], we find

Cov
(
ψ1Ĉt + ψ2Ct + ψ3yt, ψ̂1Ĉt′ + ψ̂2Ct′ + ψ̂3yt′

)
(B.19)

=

∫ t

−∞

[
ψ1e

−(κ+ρ)(t−u) +
ψ3b1

κ+ ρ− b2

(
e−(κ+ρ)(t−u) − e−b2(t−u)

)]

×

[
ψ̂1e

−(κ+ρ)(t′−u) +
ψ̂3b1

κ+ ρ− b2

(
e−(κ+ρ)(t′−u) − e−b2(t′−u)

)](
β21 +

ϕ2β22
(r + κ)2

)
∆

ηΣη′
du

+

∫ t

−∞

[
(ψ1 + ψ2)e

−κ(t−u) +
ψ3b1
κ− b2

(
e−κ(t−u) − e−b2(t−u)

)
−
[
ψ1e

−(κ+ρ)(t−u) +
ψ3b1

κ+ ρ− b2

(
e−(κ+ρ)(t−u) − e−b2(t−u)

)](
1− β2γ2∆

ηΣη′

)]

×

[
(ψ̂1 + ψ̂2)e

−κ(t′−u) +
ψ̂3b1
κ− b2

(
e−κ(t′−u) − e−b2(t′−u)

)
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−

[
ψ̂1e

−(κ+ρ)(t′−u) +
ψ̂3b1

κ+ ρ− b2

(
e−(κ+ρ)(t′−u) − e−b2(t′−u)

)](
1− β2γ2∆

ηΣη′

)]
s2du. (B.20)

Integrating all products of exponentials in (B.20) and summing, yields (B.13). To perform the

algebra, we separate the terms in
(
1− β2γ2∆

ηΣη′

)2
into quadratic terms in β2γ2∆

ηΣη′ , linear terms and

constant terms.

We next show (B.14) and (B.15). Using (B.1)-(B.4) and noting that the only non-zero covari-

ances are between Brownian increments of the same process as of the same time u ∈ (−∞, t], we

find

Cov
(
ψ1Ĉt + ψ2Ct + ψ3yt, Ft′

)
=−

∫ t

−∞

[
ψ1e

−(κ+ρ)(t−u) +
ψ3b1

κ+ ρ− b2

(
e−(κ+ρ)(t−u) − e−b2(t−u)

)]
e−κ(t′−u)

ϕ2β2Σp
′
f

r + κ
du

(B.21)

and

Cov
(
Ft, ψ1Ĉt′ + ψ2Ct′ + ψ3yt′

)
=−

∫ t

−∞
e−κ(t−u)

[
ψ1e

−(κ+ρ)(t′−u) +
ψ3b1

κ+ ρ− b2

(
e−(κ+ρ)(t′−u) − e−b2(t′−u)

)] ϕ2β2Σp′f
r + κ

du.

(B.22)

Integrating all products of exponentials in (B.21) and (B.22) and summing, yields (B.14) and

(B.15), respectively.

We finally show (B.16). Using (B.1) and noting that the only non-zero covariances are between

Brownian increments of the same process as of the same time u ∈ (−∞, t], we find

Cov(Ft, F
′
t′) =

∫ t

−∞
ϕ2Σe−κ(t−u)e−κ(t′−u)du (B.23)

Integrating (B.23), we find (B.16).
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C Proofs of Results in Section 4

The portfolio optimization problem corresponding to SRw,t is as follows. Consider an investor

at time t with infinitesimal horizon dt, who can invest in the riskless asset, the index η and the

strategy wt. The investor has mean-variance preferences

EIt(dWt)−
a

2
VarIt(dWt). (C.1)

She chooses an overall exposure ˆ̂xt to the index and a position ŷt in the strategy. These positions

can depend on information in It. The investor’s overall exposure to the index at time t is

ˆ̂xt = x̂t + ŷt
Covt(wtdRt, ηdRt)

Vart(ηdRt)
,

the sum of a position x̂t in the index and an exposure resulting from the strategy. The investor’s

budget constraint is

dWt = rWtdt+ x̂tηdRt + ŷtwtdRt

= rWtdt+

(
x̂t + ŷt

Covt(wtdRt, ηdRt)

Vart(ηdRt)

)
ηdRt + ŷtŵtdRt

= rWtdt+ ˆ̂xtηdRt + ŷtŵtdRt. (C.2)

Lemma C.1. The investor’s maximum utility is

1

2a

(
SR2

η + SR2
w,t

)
dt. (C.3)

Proof: Substituting dWt from (C.2), and noting that (ηdRt, ŵtdRt) are uncorrelated, we can write

(C.1) as

ˆ̂xtEIt(ηdRt) + ŷtEIt(ŵtdRt)−
a

2

(
ˆ̂x2tVarIt(ηdRt) + ŷ2tVarIt(ŵtdRt)

)
. (C.4)

Maximizing (C.4) over (ˆ̂xt, ŷt) yields the utility

1

2a

(
SR2

η,t + SR2
w,t

)
dt. (C.5)

54



Since ηΣp′f = 0 and (A.4) imply

ηdRt =
rαᾱf

α+ ᾱ
ηΣθ′dt+ ησ

(
dBD

t +
ϕdBF

t

r + κ

)
, (C.6)

EIt(ηdRt) and VarIt(ηdRt) coincide with their unconditional values. Therefore, SRη,t = SRη, and

(C.5) coincides with (C.3).

The portfolio optimization problem corresponding to SRw,t,T is as follows. Consider an investor

at time t with horizon T , who can invest in the riskless asset, the index η and the strategy wt. The

investor has mean-variance preferences

EIt(∆Wt+T )−
a

2
VarIt(∆Wt+T ) (C.7)

over the increment ∆Wt+T ≡ Wt+T e
−rT − Wt in discounted wealth at the riskless rate r. She

chooses an overall exposure ˆ̂xt to the index and a position ŷt in the strategy at time t. These

positions can depend on information in It. The investor is assumed to scale up these positions

over time at the riskless rate r, to ˆ̂xu = ˆ̂xte
r(u−t) and ŷu = ŷte

r(u−t), respectively, at time u. The

investor’s overall exposure to the index at time u is

ˆ̂xu = x̂u + ŷu
Covu(wudRu, ηdRu)

Varu(ηdRu)
,

the sum of a position x̂u in the index and an exposure resulting from the strategy. The investor’s

budget constraint is

dWu = rWudt+ x̂uηdRu + ŷuwudRu

= rWudt+

(
x̂u + ŷu

Covu(wudRu, ηdRu)

Varu(ηdRu)

)
ηdRu + ŷuŵudRu (C.8)

= rWudt+ ˆ̂xte
r(u−t)ηdRu + ŷte

r(u−t)ŵudRu, (C.9)

and integrates to

∆Wt+T = ˆ̂xt

∫ t+T

t
ηdRu + ŷt

∫ t+T

t
ŵudRu (C.10)

from time t to t+ T .
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Lemma C.2. Suppose CovIt(ηdRu, ŵu′dRu′) = 0 for t < u < u′. The investor’s maximum utility

is

1

2a

(
SR2

η + SR2
w,t,T

)
T. (C.11)

Proof: Substituting ∆Wt+T from (C.10), we can write (C.7) as

ˆ̂xtEIt

(∫ t+T

t
ηdRu

)
+ ŷtEIt

(∫ t+T

t
ŵudRu

)

− a

2

[
ˆ̂x2tVarIt

(∫ t+T

t
ηdRu

)
+ ŷ2tVarIt

(∫ t+T

t
ŵudRu

)
+ 2ˆ̂xtŷtCovIt

(∫ t+T

t
ηdRu,

∫ t+T

t
ŵudRu

)]
.

(C.12)

To compute the covariance in (C.12), we write it as

∫ t+T

t
CovIt (ηdRu, ŵudRu) +

∫ t+T

u=t

∫ t+T

u′=t
CovIt (ηdRu, ŵu′dRu′) , (C.13)

where the first term in (C.13) is the covariance between contemporaneous returns and the second

term is the covariance between lagged returns. The first term is zero because of the definition (4.3)

of ŵt. Since (C.6) implies that the covariance CovIt (ηdRu, ŵu′dRu′) for u > u′ is zero, the second

term is

∫ t+T

u=t

∫ t+T

u′=u
CovIt (ηdRu, ŵu′dRu′) ,

and is zero because of the assumption CovIt(ηdRu, ŵu′dRu′) = 0 for t < u < u′. In the proof of

Proposition E.10 we show that this assumption is satisfied for the strategies that we examine in

this paper. With a zero covariance in (C.12), maximization over (ˆ̂xt, ŷt) yields the maximum utility

1

2a

(
SR2

η,t,T + SR2
w,t,T

)
T. (C.14)

Since (C.6) implies that the conditional moments EIt

(∫ t+T
t ηdRu

)
and VarIt

(∫ t+T
t ηdRu

)
coin-

cide with their unconditional values, SRη,t,T = SRη,T . Since, in addition, CovIt (ηdRu, ηdRu′)

= Cov (ηdRu, ηdRu′) = 0 for u ̸= u′, Lemma E.2 implies SRη,T = SRη. Therefore, (C.14) coincides
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with (C.11).

We next move to the calibration. We compute model-implied moments for general asset payoffs,

and specialize them to symmetric assets, with η = 1′, F̄ = F1 and Σ = σ̂2(I+ω11′), in Lemma C.5.

The calculations of Sharpe ratios and correlations in Appendices D and E also concern general asset

payoffs, except when symmetry is explicitly mentioned. Lemma C.3 computes the Sharpe ratio of

the index, the correlation between an asset and the index, and the fraction of an asset’s variance

that is generated by fund flows.

Lemma C.3. The Sharpe ratio of the index η is

SRη = SRη,T =
rαᾱ

√
f

α+ ᾱ

ηΣθ′√
ηΣη′

. (C.15)

The correlation between asset n and the index is

Corr(dRnt, ηdRt) =

√
f(ηΣ)n√

ηΣη′ [fΣnn + k[(pfΣ)n]2]
. (C.16)

The fraction of asset n’s variance that is generated by fund flows is

k[(pfΣ)n]
2

fΣnn + k[(pfΣ)n]2
. (C.17)

Proof: Equation (C.6) implies

E(ηdRt) =
rαᾱf

α+ ᾱ
ηΣθ′dt, (C.18)

Var(ηdRt) = fηΣη′dt. (C.19)

Substituting (C.18) and (C.19) into (4.4), and noting that SRη,T = SRη, we find (C.15). The

correlation between asset n and the index is

Corr(dRnt, ηdRt) =
Cov(dRnt, ηdRt)√
Var(dRnt)Var(ηdRt)

=
(fηΣ)n√

fηΣη′(fΣ+ kΣp′fpfΣ)nn
, (C.20)

where the second step follows from (A.2), (C.19) and ηΣp′f = 0. Equation (C.20) implies (C.16).

Equation (C.17) follows from (A.2).
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We approximate the calculation of the index’s expected return per dollar by dividing the index’s

expected return per share by the index’s expected price

E(ηdRt)

E(ηSt)
=

rαᾱf
α+ᾱ ηΣθ

′dt

η F̄
r − αᾱf

α+ᾱ
ηΣθ′

ηΣη′ ηΣη
′
. (C.21)

The active-share calculation is as follows. The active share of the residual supply portfolio is

ASθ =
1

2

N∑
n=1

∣∣∣∣∣ θnSn∑N
m=1 θmSm

− ηnSn∑N
m=1 ηmSm

∣∣∣∣∣ . (C.22)

Since asset prices vary over time, active share does too. We use expected active share, and approx-

imate its calculation by replacing prices Sn in the numerator and denominator of (C.22) by their

expectations. Our approximation for expected active share thus is

ASθ =
1

2

N∑
n=1

∣∣∣∣∣ θnE(Sn)∑N
m=1 θmE(Sm)

− ηnE(Sn)∑N
m=1 ηmE(Sm)

∣∣∣∣∣ . (C.23)

Using (3.3) and Lemma B.1, we find that expected prices are

E(St) =
F̄

r
− αᾱf

α+ ᾱ

ηΣθ′

ηΣη′
Ση′ −

(
γ0 + (γ1 + γ2)C̄ + g3ȳ

)
Σp′f .

Lemma C.4 computes the standard deviation of flow-induced trading for asset n.

Lemma C.4. The standard deviation of the change in the investor’s holdings of asset n between t

and t+∆t is

√
2 [H(0, 0, 1, 0, 0, 1, 0, ν0)−H(0, 0, 1, 0, 0, 1,∆t, ν0)] |(pf )n| . (C.24)

Proof: Equation (A.3) implies that the change in the investor’s holdings of asset n between t and

t+ τ is

(xt+τη + yt+∆tzt+∆t)n − (xtη + ytzt)n = (yt+∆t − yt)(pf )n.
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The standard deviation of that change is

√
Var(yt+∆t − yt) |(pf )n| . (C.25)

Since

Var(yt+∆t − yt) =Var(yt+∆t) + Var(yt)− 2Cov(yt, yt+∆t)

=2Var(yt)− 2Cov(yt, yt+∆t),

where the second step follows in steady state, (B.13) and (C.25) imply (C.24).

The standard deviation in Lemma C.4 is computed for a given asset n over time and is expressed

per share of the asset. When assets are symmetric and θn is equal to θ̄+ σ(θ) for half of the assets

and to θ̄−σ(θ) for the other half, |(pf )n| is the same for all n, and the standard deviation (C.24) of

the change in asset holdings is the same across assets. Hence, changes in asset holdings are drawn

from the same distribution for all assets, and the standard deviation (C.24) describes both the cross-

section and the time-series. Lou (2012) computes a spread in changes in asset holdings between

top and bottom deciles of 22.27%. This translates to a standard deviation of 6.55% (=22.27%/3.4).

The counterpart quantity in our model is the standard deviation (C.24) divided by the number of

shares held by the active and the index funds. That number is θ̄ = 1 for the average asset.

The ratio of the investor’s conditional standard deviation of Ct to the unconditional standard

deviation is
√

T
s2

2κ

, where T is given from (A.12). Equation (B.10) implies that the response of

the investor’s share yt in the active fund at time t′ to a shock dRt at time t is proportional to

G(0, 0, 1, t′ − t, ν0).

Lemma C.5 derives formulas for symmetric assets. We use these formulas to simplify the model-

implied moments computed in Appendix C, and the Sharpe ratios and correlations computed in

Appendices D and E.

Lemma C.5. Suppose η = 1′ and Σ = σ̂2(I + ω11′). For all i ∈ N,

ηΣiη′ = σ̂2i(1 + ωN)iN, (C.26)

ηΣip′f = 0, (C.27)

pfΣ
ip′f = σ̂2iσ(θ)2N, (C.28)

Tr(Σi) = σ̂2i
[
(1 + ωN)i +N − 1

]
, (C.29)
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Σip′f = σ̂2i(θ′ − θ̄1). (C.30)

Proof: Using the binomial formula and η = 1′, we find

Σi = σ̂2i

(
i∑

i′=0

C(i, i′)ωi′(11′)i
′

)
= σ̂2i

(
I +

i∑
i′=1

C(i, i′)ωi′N i′−111′

)
. (C.31)

Post-multiplying (C.31) by η′ and θ′ yields

Σiη′ = σ̂2i

(
1 +

i∑
i′=1

C(i, i′)ωi′N i′

)
1 = σ̂2i(1 + ωN)i1, (C.32)

Σiθ′ = σ̂2i

[
θ′ +

(
i∑

i′=1

C(i, i′)ωi′N i′

)
θ̄1

]
= σ̂2i

[
θ′ − θ̄1+ (1 + ωN)iθ̄1

]
, (C.33)

respectively. Pre-multiplying (C.32) and (C.33) by η, and setting i = 1, yields

ηΣθ′ = θ̄ηΣη′, (C.34)

which in turn implies

pf = θ − θ̄η = θ − θ̄1′. (C.35)

Pre-multiplying (C.32) by η yields (C.26). Post-multiplying Σi by p′f and using (C.32)-(C.35) yields

(C.30). Pre-multiplying (C.30) by η yields (C.27). Pre-multiplying (C.30) by pf and using (C.30)

yields (C.28). Summing the diagonal terms in (C.31) yields (C.29).

The model-implied moments computed in this section depend on θ through the aggregate quan-

tities in Lemma C.5 and the components of the vector pf = θ−θ̄1′ = θ−1′. The aggregate quantities

depend on θ only through θ̄ = 1 and σ(θ). To compute the components of pf , we assume that θn

is equal to θ̄ + σ(θ) for half of the assets and to θ̄ − σ(θ) for the other half.

D Proofs of Results in Section 5

Lemma D.1 computes the Sharpe ratio of a general strategy wt over an infinitesimal horizon dt. It

also characterizes the optimal strategy and its Sharpe ratio.
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Lemma D.1. The Sharpe ratio of a strategy wt over horizon dt is SRw,t =
Nw,t√
Dw,t

, where

Nw,t ≡
1

dt
EIt(ŵtdRt) =

(
f +

k∆

ηΣη′

)
EIt

(
ΛtwtΣp

′
f

)
, (D.1)

Dw,t ≡
1

dt
VarIt(ŵtdRt) = f

[
EIt(wtΣw

′
t)−

EIt
[
(wtΣη

′)2
]

ηΣη′

]
+ kEIt [(wtΣp

′
f )

2]. (D.2)

It is maximized for the strategy wt = Λtpf . The Sharpe ratio of the optimal strategy is given by

(5.2).

Proof: Lemma D.1 coincides with VW Proposition 8 in the case of the unconditional Sharpe ratio.

The arguments in that proposition extend to the case of the conditional Sharpe ratio.

Proposition D.1 computes the optimal strategy’s unconditional Sharpe ratio, as well as its

Sharpe ratios conditional on different information sets.

Proposition D.1. The unconditional Sharpe ratio of the optimal strategy is

SR∗
w =

√√√√ ∆(
f + k∆

ηΣη′

)
ηΣη′

[
L2
2 +H(γR1 , γ

R
2 , γ

R
3 , γ

R
1 , γ

R
2 , γ

R
3 , 0, ν0)

]
. (D.3)

When It includes (Ĉt, Ct, yt), the Sharpe ratio of the optimal strategy is

SR∗
w,t =

√√√√ ∆(
f + k∆

ηΣη′

)
ηΣη′

∣∣∣L2 + γR1 (Ĉt − C̄) + γR2 (Ct − C̄) + γR3 (yt − ȳ)
∣∣∣ (D.4)

and has unconditional expectation

E
(
SR∗

w,t

)
=

√√√√ ∆(
f + k∆

ηΣη′

)
ηΣη′

H(γR1 , γ
R
2 , γ

R
3 , γ

R
1 , γ

R
2 , γ

R
3 , 0, ν0)

×

[√
2

π
e−

R(Λt)
2

2 +R(Λt) [1− 2N (−R(Λt))]

]
(D.5)

and unconditional variance

Var
(
SR∗

w,t

)
=

∆(
f + k∆

ηΣη′

)
ηΣη′

H(γR1 , γ
R
2 , γ

R
3 , γ

R
1 , γ

R
2 , γ

R
3 , 0, ν0)

[
R(Λt)

2 + 1
]
−E

(
SR∗

w,t

)2
, (D.6)
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where R(Λt) ≡ L2√
H(γR

1 ,γR
2 ,γR

3 ,γR
1 ,γR

2 ,γR
3 ,0,ν0)

. When instead It = (Ĉt, yt), the Sharpe ratio of the

optimal strategy is

SR∗
w,t =

√√√√ ∆(
f + k∆

ηΣη′

)
ηΣη′

[(
L2 + (γR1 + γR2 )(Ĉt − C̄) + γR3 (yt − ȳ)

)2
+ (γR2 )

2T

]
. (D.7)

Proof: To derive (D.3), we set It = ∅ in (5.2) and note that

E(Λ2
t ) = E(Λt)

2 + Var(Λt)

=
1(

f + k∆
ηΣη′

)2 [L2
2 +H(γR1 , γ

R
2 , γ

R
3 , γ

R
1 , γ

R
2 , γ

R
3 , 0, ν0)

]
,

where the second step follows because the definition (B.6) of L2 implies

E(Λt) =
1

f + k∆
ηΣη′

L2. (D.8)

and because (3.6) and (B.13) imply

Var(Λt) =
1(

f + k∆
ηΣη′

)2H(γR1 , γ
R
2 , γ

R
3 , γ

R
1 , γ

R
2 , γ

R
3 , 0, ν0). (D.9)

To derive (D.4), we note that when It includes (Ĉt, Ct, yt), E(Λ2
t ) = Λ2

t . Substituting into (5.2), we

find

SR∗
w,t =

√(
f +

k∆

ηΣη′

)
∆

ηΣη′
|Λt| . (D.10)

Equation (D.4) follows from (D.10) and because (B.6) and (B.3)-(B.4) imply

Λt =
1

f + k∆
ηΣη′

[
L2 + γR1 (Ĉt − C̄) + γR2 (Ct − C̄) + γR3 (yt − ȳ)

]
. (D.11)
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Since Λt is normally distributed,

E (|Λt|) =
√

Var(Λt)

[√
2

π
e−

R(Λt)
2

2 +R(Λt) [1− 2N (−R(Λt))]

]
(D.12)

and unconditional variance

Var (|Λt|) = Var(Λt)
[
R(Λt)

2 + 1
]
− E

(
SR∗

w,t

)2
, (D.13)

where R(Λt) ≡ E(Λt)√
Var(Λt)

and N(.) is the cumulative distribution function of the standard normal.

Equations (D.5) and (D.6) follow from (D.8)-(D.10), (D.12) and (D.13). To derive (D.7), we set

It = (Ĉt, yt) in (5.2) and note that

EIt(Λ
2
t ) = EIt(Λt)

2 + VarIt(Λt)

=
1(

f + k∆
ηΣη′

)2 [(L2 + (γR1 + γR2 )(Ĉt − C̄) + γR3 (yt − ȳ)
)2

+ (γR2 )
2T

]
,

where the second step follows from (D.11) and because conditionally on (Ĉt, yt), Ct is normal with

mean Ĉt and variance T .

Lemma D.2 specializes the Sharpe ratio formula that Lemma D.1 derives for a general strategy

to a class of strategies whose moments have a specific form. Value and momentum strategies belong

to that class.

Lemma D.2. Suppose that for a strategy wt and information set It,

EIt(wt) = Φ1tηΣ+ Φ2tpfΣ, (D.14)

CovIt(Λt, wt) =
1

f + k∆
ηΣη′

ΦΛ
t pfΣ, (D.15)

CovIt(w′
t, wt) = Φ̂Σ

t Σ+ Φ̂tΣp
′
fpfΣ. (D.16)

Then, the Sharpe ratio of wt conditional on It is Nw,t√
Dw,t

, with

Nw,t =

(
f +

k∆

ηΣη′

)
EIt(Λt)

(
Φ1tηΣ

2p′f +Φ2tpfΣ
2p′f
)
+ΦΛ

t pfΣ
2p′f ,
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Dw,t = Φ2
1t∆1 + 2Φ1tΦ2t∆2 +

(
Φ2
2t + Φ̂t

)
∆3 + Φ̂Σ

t ∆4.

Proof: We can write the numerator in (5.1) as(
f +

k∆

ηΣη′

)
[EIt(Λt)EIt(wt) + CovIt (Λt, wt)] Σp

′
f

=

(
f +

k∆

ηΣη′

)
EIt(Λt)

(
Φ1tηΣ

2p′f +Φ2tpfΣ
2p′f
)
+ΦΛ

t pfΣ
2p′f , (D.17)

where the second step follows by substituting EIt(wt) and CovIt(Λt, wt) from (D.14) and (D.15),

respectively. We can write the term inside the square root in the denominator in (5.1) as

f

[
EIt (wt) ΣEIt

(
w′
t

)
− [EIt (wt) Ση

′]2

ηΣη′

]
+ k

[
EIt (wt) Σp

′
f

]2
+ f

[
CovIt

(
wt,Σw

′
t

)
− VarIt (wtΣη

′)

ηΣη′

]
+ kVarIt

(
wtΣp

′
f

)
= f

[
EIt (wt) ΣEIt

(
w′
t

)
− [EIt (wt) Ση

′]2

ηΣη′

]
+ k

[
EIt (wt) Σp

′
f

]2
+ f

[
Tr
(
ΣCovIt

(
w′
t, wt

))
− ηΣCovIt (wt, w

′
t) Ση

′

ηΣη′

]
+ kpfΣCovIt

(
wt, w

′
t

)
Σp′f

= Φ2
1t

[
f

(
ηΣ3η′ − (ηΣ2η′)2

ηΣη′

)
+ k

(
ηΣ2p′f

)2]

+ 2Φ1tΦ2t

[
f

(
ηΣ3p′f −

ηΣ2η′ηΣ2p′f
ηΣη′

)
+ kηΣ2p′fpfΣ

2p′f

]

+
(
Φ2
2t + Φ̂t

)[
f

(
pfΣ

3p′f −
(ηΣ2p′f )

2

ηΣη′

)
+ k

(
pfΣ

2p′f
)2]

+ Φ̂Σ
t

[
f

(
Tr(Σ2)− ηΣ3η′

ηΣη′

)
+ kpfΣ

3p′f

]
= Φ2

1t∆1 + 2Φ1Φ2t∆2 +
(
Φ2
2t + Φ̂t

)
∆3 + Φ̂Σ

t ∆4, (D.18)

where the third step follows by substituting EIt(wt) and CovIt(w′
t, wt) from (D.14) and (D.16),

respectively. The lemma follows from (D.17) and (D.18).

Proposition D.2 computes the unconditional Sharpe ratio of the value strategy.
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Proposition D.2. The unconditional Sharpe ratio of the value strategy (4.1) is SRwV =
N

wV√
D

wV

where

NwV =
L1L2

r
ηΣ2p′f +

(
L2
2

r
− 1− ϵ

r + κ
K1(γ

R
1 , γ

R
3 , 0, ν0) +H(γR1 , γ

R
2 , γ

R
3 , γ1, γ2, γ3, 0, ν0)

)
pfΣ

2p′f ,

DwV =
L2
1

r2
∆1 +

2L1L2

r2
∆2

+

(
L2
2

r2
− 2(1− ϵ)

r + κ
K1(γ1, γ3, 0, ν0) +H(γ1, γ2, γ3, γ1, γ2, γ3, 0, ν0)

)
∆3 +

(1− ϵ)2ϕ2

2(r + κ)2κ
∆4.

Proof: Substituting (3.3) into (4.1), we can write the value weights as

wV
t = −(1− ϵ)(Ft − F̄ )′

r + κ
+

αᾱf

α+ ᾱ

ηΣθ′

ηΣη′
ηΣ+ (γ0 + γ1Ĉt + γ2Ct + γ3yt)pfΣ. (D.19)

Taking unconditional expectations in (D.19), we find

E
(
wV
t

)
=

αᾱf

α+ ᾱ

ηΣθ′

ηΣη′
ηΣ+

(
γ0 + (γ1 + γ2)C̄ + γ3ȳ

)
pfΣ

=
L1

r
ηΣ+

L2

r
pfΣ, (D.20)

where the second step follows from (B.5) and because (A.1), (A.5)-(A.7) and (B.6) imply

L2

r
= γ0 + (γ1 + γ2)C̄ + γ3ȳ. (D.21)

Taking the unconditional covariance of (D.19) with (3.6), and using (B.13) and (B.15), we find

Cov
(
Λt, w

V
t

)
=

1

f + k∆
ηΣη′

(
− 1− ϵ

r + κ
K1(γ

R
1 , γ

R
3 , 0, ν0) +H(γR1 , γ

R
2 , γ

R
3 , γ1, γ2, γ3, 0, ν0)

)
pfΣ. (D.22)

Taking the unconditional covariance of (D.19) with the transpose of (D.19), and using (B.13),

(B.15) and (B.16), we find

Cov
((
wV
t

)′
, wV

t

)
=

(1− ϵ)2ϕ2

2(r + κ)2κ
Σ+

(
−2(1− ϵ)

r + κ
K1(γ1, γ3, 0, ν0) +H(γ1, γ2, γ3, γ1, γ2, γ3, 0, ν0)

)
Σp′fpfΣ.

(D.23)
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Equations (D.20), (D.22) and (D.23) imply that the unconditional Sharpe ratio of the value strategy

can be deduced from Lemma D.2 by setting It = ∅,

Φ1t =
L1

r
,

Φ2t =
L2

r
,

ΦΛ
t = − 1− ϵ

r + κ
K1(γ

R
1 , γ

R
3 , 0, ν0) +H(γR1 , γ

R
2 , γ

R
3 , γ1, γ2, γ3, 0, ν0),

Φ̂Σ
t =

(1− ϵ)2ϕ2

2(r + κ)2κ
,

Φ̂t = −2(1− ϵ)

r + κ
K1(γ1, γ3, 0, ν0) +H(γ1, γ2, γ3, γ1, γ2, γ3, 0, ν0).

The proposition follows from this observation and (D.8).

Lemma D.3 computes moments of value weights conditional on It = (Ĉt, yt). We denote the

covariance matrix of (Ĉt, yt) by

ΣĈy =

 Var(Ĉt) Cov(Ĉt, yt)

Cov(Ĉt, yt) Var(yt)



=

 H(1, 0, 0, 1, 0, 0, 0, ν0) H(1, 0, 0, 0, 0, 1, 0, ν0)

H(1, 0, 0, 0, 0, 1, 0, ν0) H(0, 0, 1, 0, 0, 1, 0, ν0)

 .

Lemma D.3. For t′′ ≥ t′ ≥ t,

EIt
(
wV
t′
)
=
L1

r
ηΣ+

(
L2

r
+ δV12,t′−t(Ĉt − C̄) + δV3,t′−t(yt − ȳ)

)
pfΣ, (D.24)

EIt(Λt′) =
1

f + k∆
ηΣη′

(
L2 + δΛ12,t′−t(Ĉt − C̄) + δΛ3,t′−t(yt − ȳ)

)
, (D.25)

CovIt
(
wV
t′ ,Λt′′

)
=

1

f + k∆
ηΣη′

CV Λ
t′−t,t′′−tpfΣ, (D.26)

CovIt
(
Λt′ , w

V
t′′
)
=

1

f + k∆
ηΣη′

CΛV
t′−t,t′′−tpfΣ, (D.27)

CovIt
((
wV
t′
)′
, wV

t′′

)
= CV Σ

t′′−t′Σ+ CV
t′−t,t′′−tΣp

′
fpfΣ, (D.28)

CovIt (Λt′ ,Λt′′) = CΛ
t′−t,t′′−t, (D.29)

66



where δV12,t′−t

δV3,t′−t

 ≡
(
ΣĈy

)−1

 − (1−ϵ)K1(1,0,t′−t,ν0)
r+κ +H(1, 0, 0, γ1, γ2, γ3, t

′ − t, ν0)

− (1−ϵ)K1(0,1,t′−t,ν0)
r+κ +H(0, 0, 1, γ1, γ2, γ3, t

′ − t, ν0)

 , (D.30)

 δΛ12,t′−t

δΛ3,t′−t

 ≡
(
ΣĈy

)−1

 H(1, 0, 0, γR1 , γ
R
2 , γ

R
3 , t

′ − t, ν0)

H(0, 0, 1, γR1 , γ
R
2 , γ

R
3 , t

′ − t, ν0)

 , (D.31)

CV Λ
t′−t,t′′−t ≡ −(1− ϵ)K2(γ

R
1 , γ

R
3 , t

′′ − t′, ν0)

r + κ
+H(γ1, γ2, γ3, γ

R
1 , γ

R
2 , γ

R
3 , t

′′ − t′, ν0)

− (δV12,t′−t, δ
V
3,t′−t)Σ

Ĉy

 δΛ12,t′′−t

δΛ3,t′′−t

 ,

CΛV
t′−t,t′′−t ≡ −(1− ϵ)K1(γ

R
1 , γ

R
3 , 0, ν0)

r + κ
+H(γR1 , γ

R
2 , γ

R
3 , γ1, γ2, γ3, 0, ν0)

− (δΛ12,t′−t, δ
Λ
3,t′−t)Σ

Ĉy

 δV12,t′′−t

δV3,t′′−t

 ,

CV Σ
t′′−t′ ≡

(1− ϵ)2ϕ2

2(r + κ)2κ
ν0(κ, t

′′ − t′)

CV
t′−t,t′′−t ≡ − 1− ϵ

r + κ

[
K1(γ1, γ3, t

′′ − t′, ν0) +K2(γ1, γ3, t
′′ − t′, ν0)

]

+H(γ1, γ2, γ3, γ1, γ2, γ3, t
′′ − t′, ν0)− (δV12,t′−t, δ

V
3,t′−t)Σ

Ĉy

 δV12,t′′−t

δV3,t′′−t

 ,

CΛ
t′−t,t′′−t ≡ H(γR1 , γ

R
2 , γ

R
3 , γ

R
1 , γ

R
2 , γ

R
3 , t

′′ − t′, ν0)− (δΛ12,t′−t, δ
Λ
3,t′−t)Σ

Ĉy

 δΛ12,t′′−t

δΛ3,t′′−t

 .

Proof: Using the joint normality of
((
wV
t′
)′
,Λt′ , Ĉt, yt

)
, (D.8) and (D.20), we can set

wV
t′ −

(
L1

r
ηΣ+

L2

r
pfΣ

)
= ∆V

12,t′−t(Ĉt − C̄) + ∆V
3,t′−t(yt − ȳ) + ζVt′ , (D.32)

Λt′ −
1

f + k∆
ηΣη′

L2 =
1

f + k∆
ηΣη′

[
δΛ12,t′−t(Ĉt − C̄) + δΛ3,t′−t(yt − ȳ) + ζΛt′

]
, (D.33)

where the error terms
(
ζVt′ , ζ

Λ
t′
)
have mean zero and are independent of (Ĉt, yt).
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Taking covariances of both sides of (D.32) with Ĉt and yt, and using (B.13), (B.14), (D.19) and

the independence of ζVt′ from (Ĉt, yt), we find(
−(1− ϵ)K1(1, 0, t

′ − t, ν0)

r + κ
+H(1, 0, 0, γ1, γ2, γ3, t

′ − t, ν0)

)
pfΣ = ∆V

12,t′−tΣ
Ĉy
11 +∆V

3,t′−tΣ
Ĉy
12 ,

(D.34)(
−(1− ϵ)K1(0, 1, t

′ − t, ν0)

r + κ
+H(0, 0, 1, γ1, γ2, γ3, t

′ − t, ν0)

)
pfΣ = ∆V

12,t′−tΣ
Ĉy
21 +∆V

3,t′−tΣ
Ĉy
22 ,

(D.35)

respectively. Equations (D.34) and (D.35) imply ∆V
12,t′−t = δV12,t′−tpfΣ and ∆V

3,t′−t = δV3,t′−tpfΣ for

two scalars (δV12,t′−t, δ
V
3,t′−t). Writing (D.34) and (D.35) in terms of (δV12,t′−t, δ

V
3,t′−t), and solving for

(δV12,t′−t, δ
V
3,t′−t), we find (D.30). Equation (D.24) follows from (D.32) because ζVt′ has mean zero

and is independent of (Ĉt, yt).

Taking covariances of both sides of (D.33) with Ĉt and yt, and using (3.6), (B.13), (B.14) and

the independence of ζΛt′ from (Ĉt, yt), we find

H(1, 0, 0, γR1 , γ
R
2 , γ

R
3 , t

′ − t, ν0) = δΛ12,t′−tΣ
Ĉy
11 + δΛ3,t′−tΣ

Ĉy
12 , (D.36)

H(0, 0, 1, γR1 , γ
R
2 , γ

R
3 , t

′ − t, ν0) = δΛ12,t′−tΣ
Ĉy
21 + δΛ3,t′−tΣ

Ĉy
22 , (D.37)

respectively. Solving (D.36) and (D.37) for (δΛ12,t′−t, δ
Λ
3,t′−t), we find (D.31). Equation (D.25) follows

from (D.33) because ζΛt′ has mean zero and is independent of (Ĉt, yt).

Writing that the covariance between the left-hand side of (D.32) evaluated at t′ and the left-

hand side of (D.33) evaluated at t′′ is equal to the covariance between the corresponding right-hand

sides, and using (3.6), (B.13), (B.14), (D.19), ∆V
12,t′−t = δV12,t′−tpfΣ, ∆

V
3,t′−t = δV3,t′−tpfΣ and the

independence of (ζVt′ , ζ
Λ
t′′) from (Ĉt, yt), we find

(
−(1− ϵ)K2(γ

R
1 , γ

R
3 , t

′′ − t′, ν0)

r + κ
+H(γ1, γ2, γ3, γ

R
1 , γ

R
2 , γ

R
3 , t

′′ − t′, ν0)

)
pfΣ

= (δV12,t′−t, δ
V
3,t′−t)

 ΣĈy
11

ΣĈy
21

 δΛ12,t′′−t

δΛ3,t′′−t

 pfΣ+ Cov(ζVt′ , ζ
Λ
t′′). (D.38)

Equation (D.26) follows from (D.38) by noting that 1
f+ k∆

ηΣη′
Cov(ζVt′ , ζ

Λ
t′′) = CovIt

(
wV
t′ ,Λt′′

)
.
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Writing that the covariance between the left-hand side of (D.33) evaluated at t′ and the left-

hand side of (D.32) evaluated at t′′ is equal to the covariance between the corresponding right-hand

sides, and using (3.6), (B.13), (B.14), (D.19), ∆V
12,t′−t = δV12,t′−tpfΣ, ∆

V
3,t′−t = δV3,t′−tpfΣ and the

independence of (ζΛt′ , ζ
V
t′′) from (Ĉt, yt), we find

(
−(1− ϵ)K1(γ

R
1 , γ

R
3 , t

′′ − t′, ν0)

r + κ
+H(γR1 , γ

R
2 , γ

R
3 , γ1, γ2, γ3, t

′′ − t′, ν0)

)
pfΣ

= (δΛ12,t′−t, δ
Λ
3,t′−t)

 ΣĈy
11

ΣĈy
21

 δV12,t′′−t

δV3,t′′−t

 pfΣ+ Cov(ζΛt′ , ζ
V
t′′). (D.39)

Equation (D.27) follows from (D.39) by noting that 1
f+ k∆

ηΣη′
Cov(ζΛt′ , ζ

V
t′′) = CovIt

(
Λt′ , w

V
t′′
)
.

Writing that the covariance between the left-hand side of (D.32) evaluated at t′′ and the trans-

pose of the left-hand side of (D.32) evaluated at t′ is equal to the covariance between the correspond-

ing right-hand sides, and using (B.13)-(B.16), (D.19), ∆V
12,t′−t = δV12,t′−tpfΣ, ∆

V
3,t′−t = δV3,t′−tpfΣ

and the independence of (ζVt′ , ζ
V
t′′) from (Ĉt, yt), we find

(1− ϵ)2ϕ2

2κ
ν0(κ, t

′′ − t′)Σ +

(
− 1− ϵ

r + κ

[
K1(γ1, γ3, t

′′ − t′, ν0) +K2(γ1, γ3, t
′′ − t′, ν0)

]
+H(γ1, γ2, γ3, γ1, γ2, γ3, t

′′ − t′, ν0)

)
Σp′fpfΣ

= (δV12,t′−t, δ
V
3,t′−t)

 ΣĈy
11

ΣĈy
21

 δV12,t′′−t

δV3,t′′−t

Σp′fpfΣ+ Cov
((
ζVt′
)′
, ζVt′′

)
. (D.40)

Equation (D.26) follows from (D.38) by noting that Cov
((
ζVt′
)′
, ζVt′′

)
= CovIt

((
wV
t′
)′
, wV

t′′

)
.

Writing that the covariance of the left-hand side of (D.33) evaluated at t′′ and the left-hand

side of (D.33) evaluated at t′ is equal to the covariance between the corresponding right-hand sides,

and using (3.6), (B.13) and the independence of (ζΛt′ , ζ
Λ
t′′) from (Ĉt, yt), we find

H(γR1 , γ
R
2 , γ

R
3 , γ

R
1 , γ

R
2 , γ

R
3 , t

′′ − t′, ν0) = (δΛ12,t′−t, δ
Λ
3,t′−t)

 ΣĈy
11

ΣĈy
21

 δΛ12,t′′−t

δΛ3,t′′−t

+Cov(ζΛt′ , ζ
Λ
t′′).

(D.41)
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Equation (D.29) follows from (D.41) by noting that Cov(ζΛt′ , ζ
Λ
t′′) = CovIt (Λt′ ,Λt′′).

Proposition D.3 computes the Sharpe ratio of the value strategy conditional on (Ĉt, yt).

Proposition D.3. The Sharpe ratio of the value strategy (4.1) conditional on (Ĉt, yt) is SRwV ,t =

N
wV ,t√
D

wV ,t

, where

NwV ,t =
[
L2 + δΛ12,0(Ĉt − C̄) + δΛ3,0(yt − ȳ)

]
×
[
L1

r
ηΣ2p′f +

(
L2

r
+ δV12,0(Ĉt − C̄) + δV3,0(yt − ȳ)

)
pfΣ

2p′f

]
+ CV L

0,0 pfΣ
2p′f ,

DwV ,t =
L2
1

r2
∆1 + 2

L1

r

(
L2

r
+ δV12,0(Ĉt − C̄) + δV3,0(yt − ȳ)

)
∆2

+

[(
L2

r
+ δV12,0(Ĉt − C̄) + δV3,0(yt − ȳ)

)2

+ CV
0,0

]
∆3 + CV Σ

0 ∆4.

Proof: Lemma D.3 implies that the Sharpe ratio of the value strategy conditional on (Ĉt, yt) can

be deduced from Lemma D.2 by setting It = {Ĉt, yt},

Φ1t =
L1

r
,

Φ2t =
L2

r
+ δV12,0(Ĉt − C̄) + δV3,0(yt − ȳ),

ΦΛ
t = CV Λ

0,0 ,

Φ̂Σ
t = CV Σ

0 ,

Φ̂t = CV
0,0.

The proposition follows from this observation and (D.25).

We next compute the value spread. We define the value spread as the standard deviation of

the market-to-book ratio in the cross-section of assets,

V St =

√√√√√√∑N
n=1

(
Snt
Bnt

−
∑N

n′=1

Sn′t
Bn′t

N

)2

N
, (D.42)
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and assume that all assets have the same book value, which we take to be the average price in the

cross-section of assets and over time,

Bnt =
1

N

N∑
n=1

E(Snt) ≡ B. (D.43)

Proposition D.4 computes the variance of the market-to-book ratio conditional on (Ĉt, yt) in the

cross-section of symmetric assets. We take the square root of that quantity as our measure of the

value spread conditional on (Ĉt, yt).

Proposition D.4. Suppose η = 1′, F̄ = F1 and Σ = σ̂2(I + ω11′). The value spread conditional

on It = (Ĉt, yt) is

√
EItV S

2
t =

√[(
L2
r + δV12,0(Ĉt − C̄) + δV3,0(yt − ȳ)

)2
+ CV

0,0

]
σ̂4σ(θ)2 + CV Σ

0
(N−1)σ̂2

N

F
r − αᾱf

α+ᾱ θ̄σ̂
2(1 + ωN)

, (D.44)

where (δV12,0, δ
V
3,0, CV

0,0, CV Σ
0 ) are derived in Lemma D.3 for ϵ = 0.

Proof: Using Bnt = B, we can write (D.42) as

V St =
1

B

√√√√√∑N
n=1

(
Snt −

∑N
n′=1 Sn′t

N

)2

N
=

1

B

√√√√√∑N
n=1

(
wV
nt −

∑N
n′=1 w

V
n′t

N

)2

N
, (D.45)

where the second step follows by using (4.1) and setting ϵ = 0 and F̄ = F1. Equation (D.32)

implies

wV
nt −

∑N
n′=1w

V
n′t

N
=
L1

r

(
(ηΣ)n −

∑N
n′=1 (ηΣ)n′

N

)

+

(
L2

r
+ δV12,0(Ĉt − C̄) + δV3,0(yt − ȳ)

)(
(pfΣ)n −

∑N
n′=1 (pfΣ)n′

N

)
+
(
ζVt
)
n
−
∑N

n′=1

(
ζVt
)
n′

N

=

(
L2

r
+ δV12,0(Ĉt − C̄) + δV3,0(yt − ȳ)

)
(pfΣ)n +

(
ζVt
)
n
−
∑N

n′=1

(
ζVt
)
n′

N
, (D.46)

where the second step follows from η = 1′ and Σ = σ̂2(I + ω11′). Squaring both sides of (D.46),
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taking expectations conditional on It = (Ĉt, yt), and denoting by en the N × 1 vector with n’th

element equal to one and all other elements equal to zero, we find

EIt

(
wV
nt −

∑N
n′=1w

V
n′t

N

)2

=

(
L2

r
+ δV12,0(Ĉt − C̄) + δV3,0(yt − ȳ)

)2 (
(pfΣ)n

)2
+ EIt

((
ζVt
)
n
−
∑N

n′=1

(
ζVt
)
n′

N

)2

=

(
L2

r
+ δV12,0(Ĉt − C̄) + δV3,0(yt − ȳ)

)2 (
(pfΣ)n

)2
+

(
en − 1

N
1

)′ (
CV Σ
0 Σ+ CV

0,0Σp
′
fpfΣ

)(
en − 1

N
1

)
,

=

[(
L2

r
+ δV12,t′−t(Ĉt − C̄) + δV3,t′−t(yt − ȳ)

)2 (
(pfΣ)n

)2
+ CV

0,0

] (
(pfΣ)n

)2
+ CV Σ

0

(N − 1)σ̂2

N
,

(D.47)

where the second step follows from (D.28) and the third step follows from

(
en − 1

N
1

)′
Σp′fpfΣ

(
en − 1

N
1

)
=

(
pfΣ

(
en − 1

N
η′
))2

= (pfΣen)
2 =

(
(pfΣ)n

)2
and (

en − 1

N
1

)′
Σ

(
en − 1

N
1

)
=

(
en − 1

N
1

)′
σ̂2(I + ω11′)

(
en − 1

N
1

)

=

(
en − 1

N
1

)′
σ̂2I

(
en − 1

N
1

)′

= σ̂2

[(
N − 1

N

)2

+ (N − 1)

(
1

N

)2
]
= σ̂2

N − 1

N
.

Summing (D.47) across assets and using (C.30), we find the term inside the square root in (D.44).

To compute B, we note that since η = 1′, B = ηE(St)
N = E(ηSt)

N . Using the expression for E(ηSt)

in the denominator of (C.21), together with η = 1′, (C.26) and (C.34), we find the denominator of

(D.44).

Proposition D.5 computes the unconditional Sharpe ratio of the momentum strategy.

Proposition D.5. The unconditional Sharpe ratio of the momentum strategy (4.2) is SRwM =
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N
wM√
D

wM
where

NwM = L1L2τηΣ
2p′f +

[
L2
2τ +H(γR1 , γ

R
2 , γ

R
3 , γ

R
1 , γ

R
2 , γ

R
3 , T , ν2) +G(γR1 , γ

R
2 , γ

R
3 , T , ν2)

]
pfΣ

2p′f ,

DwM = L2
1τ

2∆1 + 2L1L2τ
2∆2

+
[
L2
2τ

2 + 2H(γR1 , γ
R
2 , γ

R
3 , γ

R
1 , γ

R
2 , γ

R
3 , T , ν4) + 2G(γR1 , γ

R
2 , γ

R
3 , T , ν4) + kτ

]
∆3 + fτ∆4,

and T = (0, τ).

Proof: Substituting (3.3) into (4.1), we can write the momentum weights as

wM
t =

rαᾱf

α+ ᾱ

ηΣθ′

ηΣη′
τηΣ+

(
f +

k∆

ηΣη′

)(∫ t

t−τ
Λudu

)
pfΣ+

∫ t

t−τ
[dRu − Eu(dRu)]

′ (D.48)

Taking unconditional expectations in (D.48), we find

E
(
wM
t

)
=
rαᾱf

α+ ᾱ

ηΣθ′

ηΣη′
τηΣ+

(
f +

k∆

ηΣη′

)(∫ t

t−τ
E (Λu) du

)
pfΣ

= L1τηΣ+ L2τpfΣ, (D.49)

where the second step follows from (B.5) and (D.8). Taking the unconditional covariance of (D.48)

with (3.6), we find

Cov
(
Λt, w

M
t

)
=

(
f +

k∆

ηΣη′

)(∫ t

t−τ
Cov (Λt,Λu) du

)
pfΣ+

∫ t

t−τ
Cov

(
Λt, [dRu − Eu(dRu)]

′) .
(D.50)

To compute the second term in (D.50), we note that for a random variable Xt that depends on

information up to time t

Cov (Xt, dRu − Eu(dRu)) = E (Xt[dRu − Eu(dRu)])

= E [Eu (Xt[dRu − Eu(dRu)])]

= E [Covu (Xt, dRu)] . (D.51)
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Using (3.6), (B.10), (B.13) and (D.51), we can write (D.50) as

Cov
(
Λt, w

M
t

)
=

1

f + k∆
ηΣη′

[
H(γR1 , γ

R
2 , γ

R
3 , γ

R
1 , γ

R
2 , γ

R
3 , T , ν2) +G(γR1 , γ

R
2 , γ

R
3 , T , ν2)

]
pfΣ. (D.52)

Taking the unconditional covariance of (D.48) with the transpose of (D.48), we find

Cov
((
wM
t

)′
, wM

t

)
=

(
f +

k∆

ηΣη′

)2(∫ t

u′=t−τ

∫ t

u=t−τ
Cov (Λu,Λu′) dudu′

)
Σp′fpfΣ

+

(
f +

k∆

ηΣη′

)
Σp′f

(∫ t

u′=t−τ

∫ t

u=t−τ
Cov

(
Λu, [dRu′ − Eu′(dRu′)]′

)
du

)

+

(
f +

k∆

ηΣη′

)(∫ t

u′=t−τ

∫ t

u=t−τ
Cov (Λu′ , dRu − Eu(dRu)) du

′
)
pfΣ

+

∫ t

t−τ
Cov

(
dRu − Eu(dRu), [dRu − Eu(dRu)]

′) . (D.53)

To compute the second and third terms in (D.53), we note that the covariance in (D.51) is zero for

t < u. To compute the fourth term in (D.53), we note that it is equal to E[Covu(dRu, dR
′
u)]. We

can thus write (D.53) as

Cov
((
wM
t

)′
, wM

t

)
= 2

(
f +

k∆

ηΣη′

)2(∫ t

u′=t−τ

∫ t

u=u′−τ
Cov (Λu,Λu′) dudu′

)
Σp′fpfΣ

+

(
f +

k∆

ηΣη′

)
Σp′f

(∫ t

u′=t−τ

∫ t

u=u′
Cov

(
Λu, [dRu′ − Eu′(dRu′)]′

)
du′
)

+

(
f +

k∆

ηΣη′

)(∫ t

u=t−τ

∫ t

u′=u
Cov (Λu′ , dRu − Eu(dRu)) du

)
pfΣ

+

∫ t

t−τ
E[Covu(dRu, dR

′
u)]. (D.54)

Using (A.2), (3.6), (B.10), (B.13) and (D.54), we find

Cov
((
wM
t

)′
, wM

t

)
=
[
2H(γR1 , γ

R
2 , γ

R
3 , γ

R
1 , γ

R
2 , γ

R
3 , T , ν4) + 2G(γR1 , γ

R
2 , γ

R
3 , T , ν4)

]
Σp′fpfΣ

+ τ
(
fΣ+ kΣp′fpfΣ

)
. (D.55)

Equations (D.49), (D.52) and (D.55) imply that the unconditional Sharpe ratio of the momentum
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strategy can be deduced from Lemma D.2 by setting It = ∅,

Φ1t = L1τ,

Φ2t = L2τ,

ΦΛ
t = H(γR1 , γ

R
2 , γ

R
3 , γ

R
1 , γ

R
2 , γ

R
3 , T , ν2) +G(γR1 , γ

R
2 , γ

R
3 , T , ν2),

Φ̂Σ
t = fτ,

Φ̂t = 2H(γR1 , γ
R
2 , γ

R
3 , γ

R
1 , γ

R
2 , γ

R
3 , T , ν4) + 2G(γR1 , γ

R
2 , γ

R
3 , T , ν4) + kτ.

The proposition follows from this observation and (D.8).

Lemma D.4 computes moments of momentum weights conditional on It = (Ĉt, yt).

Lemma D.4. For t′′ ≥ t′ ≥ t,

EIt
(
wM
t′
)
= L1τηΣ+

(
L2τ + δM12,t′−t(Ĉt − C̄) + δM3,t′−t(yt − ȳ)

)
pfΣ, (D.56)

CovIt
(
wM
t′ ,Λt′′

)
=

1

f + k∆
ηΣη′

CMΛ
t′−t,t′′−tpfΣ, (D.57)

CovIt
(
Λt′ , w

M
t′′
)
=

1

f + k∆
ηΣη′

CΛM
t′−t,t′′−tpfΣ, (D.58)

CovIt
((
wM
t′
)′
, wM

t′′

)
= CMΣ

t′′−t′Σ+ CM
t′−t,t′′−tΣp

′
fpfΣ, (D.59)

where

 δM12,t′−t

δM3,t′−t

 ≡
(
ΣĈy

)−1


H(1, 0, 0, γR1 , γ

R
2 , γ

R
3 , T , ν1)

+H(γR1 , γ
R
2 , γ

R
3 , 1, 0, 0, T , ν2) +G(1, 0, 0, T , ν2)

H(0, 0, 1, γR1 , γ
R
2 , γ

R
3 , T , ν1)

+H(γR1 , γ
R
2 , γ

R
3 , 0, 0, 1, T , ν2) +G(0, 0, 1, T , ν2)

 , (D.60)

CMΛ
t′−t,t′′−t ≡ H(γR1 , γ

R
2 , γ

R
3 , γ

R
1 , γ

R
2 , γ

R
3 , T ′−, ν2) +G(γR1 , γ

R
2 , γ

R
3 , T ′−, ν2)

− (δM12,t′−t, δ
M
3,t′−t)Σ

Ĉy

 δΛ12,t′′−t

δΛ3,t′′−t

 ,

CΛM
t′−t,t′′−t ≡ H(γR1 , γ

R
2 , γ

R
3 , γ

R
1 , γ

R
2 , γ

R
3 , T ′, ν1) +H(γR1 , γ

R
2 , γ

R
3 , γ

R
1 , γ

R
2 , γ

R
3 , T ′, ν2)
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+G(γR1 , γ
R
2 , γ

R
3 , T ′, ν2)− (δΛ12,t′−t, δ

Λ
3,t′−t)Σ

Ĉy

 δM12,t′′−t

δM3,t′′−t

 ,

CMΣ
t′′−t′ ≡ f max{τ + t′ − t′′, 0}, (D.61)

CM
t′−t,t′′−t ≡ H(γR1 , γ

R
2 , γ

R
3 , γ

R
1 , γ

R
2 , γ

R
3 , T ′, ν3) +H(γR1 , γ

R
2 , γ

R
3 , γ

R
1 , γ

R
2 , γ

R
3 , T ′, ν4)

+G(γR1 , γ
R
2 , γ

R
3 , T ′, ν3) +G(γR1 , γ

R
2 , γ

R
3 , T ′, ν4)

+ kmax{τ + t′ − t′′, 0} − (δM12,t′−t, δ
M
3,t′−t)Σ

Ĉy

 δM12,t′′−t

δM3,t′′−t

 ,

T ≡ (t′ − t, τ), T ′ ≡ (t′′ − t′, τ) and T ′− ≡ (t′ − t′′, τ).

Proof: Using the joint normality of
((
wM
t′
)′
, Ĉt, yt

)
and (D.49), we can set

wM
t′ − (L1τηΣ+ L2τpfΣ) = ∆M

12,t′−t(Ĉt − C̄) + ∆M
3,t′−t(yt − ȳ) + ζMt′ , (D.62)

where the error term ζMt′ has mean zero and is independent of (Ĉt, yt).

Taking covariances of both sides of (D.62) with Ĉt and yt, and using (D.48) and the independence

of ζMt′ from (Ĉt, yt), we find

(
f +

k∆

ηΣη′

)[∫ t′

t′−τ
Cov

(
Ĉt,Λu

)
du

]
pfΣ+

∫ t′

t′−τ
Cov

(
Ĉt, [dRu − Eu(dRu)]

′
)

= ∆M
12,t′−tΣ

Ĉy
11 +∆M

3,t′−tΣ
Ĉy
12 , (D.63)

(
f +

k∆

ηΣη′

)[∫ t′

t′−τ
Cov (yt,Λu) du

]
pfΣ+

∫ t′

t′−τ
Cov

(
yt, [dRu − Eu(dRu)]

′)
= ∆M

12,t′−tΣ
Ĉy
21 +∆M

3,t′−tΣ
Ĉy
22 . (D.64)

Noting that the covariances in the second term of (D.63) and (D.64) are zero for t < u, and using

(3.6), (B.10), (B.13) and (D.51), we can write (D.63) and (D.64) as

[
H(1, 0, 0, γR1 , γ

R
2 , γ

R
3 , T , ν1) +H(γR1 , γ

R
2 , γ

R
3 , 1, 0, 0, T , ν2) +G(1, 0, 0, T , ν2)

]
pfΣ

= ∆M
12,t′−tΣ

Ĉy
11 +∆M

3,t′−tΣ
Ĉy
12 , (D.65)
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[
H(0, 0, 1, γR1 , γ

R
2 , γ

R
3 , T , ν1) +H(γR1 , γ

R
2 , γ

R
3 , 0, 0, 1, T , ν2) +G(0, 0, 1, T , ν2)

]
pfΣ

= ∆M
12,t′−tΣ

Ĉy
21 +∆M

3,t′−tΣ
Ĉy
22 , (D.66)

respectively. Equations (D.65) and (D.66) imply ∆M
12,t′−t = δM12,t′−tpfΣ and ∆M

3,t′−t = δM3,t′−tpfΣ for

two scalars (δM12,t′−t, δ
M
3,t′−t). Writing (D.65) and (D.66) in terms of (δM12,t′−t, δ

M
3,t′−t), and solving for

(δM12,t′−t, δ
M
3,t′−t), we find (D.60). Equation (D.56) follows from (D.62) because ζMt′ has mean zero

and is independent of (Ĉt, yt).

Writing that the covariance between the left-hand side of (D.62) evaluated at t′ and the left-

hand side of (D.33) evaluated at t′′ is equal to the covariance between the corresponding right-hand

sides, and using

Cov
(
wM
t′ ,Λt′′

)
=

(
f +

k∆

ηΣη′

)(∫ t′

t′−τ
Cov (Λu,Λt′′) du

)
pfΣ+

∫ t′

t′−τ
Cov

(
[dRu − Eu(dRu)]

′,Λt′′
)

(D.67)

which generalizes (D.50) from (Λt, w
M
t ) to (Λt′′ , w

M
t′ ), together with (3.6), (B.10), (B.13), (D.51),

∆M
12,t′−t = δM12,t′−tpfΣ, ∆

M
3,t′−t = δM3,t′−tpfΣ and the independence of (ζMt′ , ζ

Λ
t′′) from (Ĉt, yt), we find

[
H(γR1 , γ

R
2 , γ

R
3 , γ

R
1 , γ

R
2 , γ

R
3 , T ′−, ν2) +G(γR1 , γ

R
2 , γ

R
3 , T ′−, ν2)

]
pfΣ

= (δM12,t′−t, δ
M
3,t′−t)

 ΣĈy
11

ΣĈy
21

 δΛ12,t′′−t

δΛ3,t′′−t

 pfΣ+ Cov(ζMt′ , ζ
Λ
t′′). (D.68)

Equation (D.57) follows from (D.68) by noting that 1
f+ k∆

ηΣη′
Cov(ζMt′ , ζ

Λ
t′′) = CovIt

(
wM
t′ ,Λt′′

)
.

Writing that the covariance between the left-hand side of (D.33) evaluated at t′ and the left-

hand side of (D.62) evaluated at t′′ is equal to the covariance between the corresponding right-hand

sides, and using

Cov
(
Λt′ , w

M
t′′
)
=

(
f +

k∆

ηΣη′

)(∫ t′′

t′′−τ
Cov (Λt′ ,Λu) du

)
pfΣ+

∫ t′′

t′′−τ
Cov

(
Λt′ , [dRu − Eu(dRu)]

′)
(D.69)
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which generalizes (D.50) from (Λt, w
M
t ) to (Λt′ , w

M
t′′ ), together with (3.6), (B.10), (B.13), (D.51),

∆M
12,t′−t = δM12,t′−tpfΣ, ∆

M
3,t′−t = δM3,t′−tpfΣ and the independence of (ζΛt′ , ζ

M
t′′ ) from (Ĉt, yt), we find

[
H(γR1 , γ

R
2 , γ

R
3 , γ

R
1 , γ

R
2 , γ

R
3 , T ′, ν1) +H(γR1 , γ

R
2 , γ

R
3 , γ

R
1 , γ

R
2 , γ

R
3 , T ′, ν2) +G(γR1 , γ

R
2 , γ

R
3 , T ′, ν2)

]
pfΣ

= (δM12,t′−t, δ
M
3,t′−t)

 ΣĈy
11

ΣĈy
21

 δΛ12,t′′−t

δΛ3,t′′−t

 pfΣ+ Cov(ζΛt′ , ζ
M
t′′ ). (D.70)

Equation (D.26) follows from (D.38) by noting that 1
f+ k∆

ηΣη′
Cov(ζΛt′ , ζ

M
t′′ ) = CovIt

(
Λt′ , w

M
t′′
)
.

Writing that the covariance between the left-hand side of (D.62) evaluated at t′′ and the trans-

pose of the left-hand side of (D.62) evaluated at t′ is equal to the covariance between the corre-

sponding right-hand sides, and using

Cov
((
wM
t′
)′
, wM

t′′

)
=

(
f +

k∆

ηΣη′

)2
(∫ t′′

u′′=t′′−τ

∫ t′

u′=t′−τ
Cov (Λu′ ,Λu′′) du′du′′

)
Σp′fpfΣ

+

(
f +

k∆

ηΣη′

)
Σp′f

(∫ t′′

u′′=t′′−τ

∫ t′

u′=t′−τ
Cov

(
Λu′ , [dRu′′ − Eu′′(dRu′′)]′

)
du′

)

+

(
f +

k∆

ηΣη′

)(∫ t′′

u′′=t′′−τ

∫ t′

u′=t′−τ
Cov (dRu′ − Eu′(dRu′),Λu′′) du′′

)
pfΣ

+ 1{τ+t′−t′′>0}

∫ t′

t′′−τ
Cov

(
dRu − Eu(dRu), [dRu − Eu(dRu)]

′) , (D.71)

which generalizes (D.53) from (wM
t , w

M
t ) to (wM

t′ , w
M
t′′ ), together with (A.2), (3.6), (B.10), (B.13),

(D.51), ∆M
12,t′−t = δM12,t′−tpfΣ, ∆

M
3,t′−t = δM3,t′−tpfΣ and the independence of ζMt′ from (Ĉt, yt), we

find [
H(γR1 , γ

R
2 , γ

R
3 , γ

R
1 , γ

R
2 , γ

R
3 , T ′, ν3) +H(γR1 , γ

R
2 , γ

R
3 , γ

R
1 , γ

R
2 , γ

R
3 , T ′, ν4)

+G(γR1 , γ
R
2 , γ

R
3 , T ′, ν3) +G(γR1 , γ

R
2 , γ

R
3 , T ′, ν4)

]
Σp′fpfΣ

+max{τ + t′ − t′′, 0}
(
fΣ+ kΣp′fpfΣ

)
= (δM12,t′−t, δ

M
3,t′−t)

 ΣĈy
11

ΣĈy
21

 δM12,t′′−t

δM3,t′′−t

Σp′fpfΣ+ Cov
((
ζMt′
)′
, ζMt′′

)
. (D.72)
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Equation (D.59) follows from (D.72) by noting that Cov
((
ζMt′
)′
, ζMt′′

)
= CovIt

((
wM
t′
)′
, wM

t′′

)
.

Proposition D.6 computes the Sharpe ratio of the momentum strategy conditional on (Ĉt, yt).

Proposition D.6. The Sharpe ratio of the momentum strategy (4.2) conditional on (Ĉt, yt) is

SRwM ,t =
N

wM,t√
D

wM,t

, where

NwM ,t =
[
L2 + δΛ12,0(Ĉt − C̄) + δΛ3,0(yt − ȳ)

]
×
[
L1τηΣ

2p′f +
(
L2τ + δM12,0(Ĉt − C̄) + δM3,0(yt − ȳ)

)
pfΣ

2p′f

]
+ CMΛ

0,0 pfΣ
2p′f ,

DwM ,t = L2
1τ

2∆1 + 2L1τ
(
L2τ + δM12,0(Ĉt − C̄) + δM3,0(yt − ȳ)

)
∆2

+

[(
L2τ + δM12,0(Ĉt − C̄) + δM3,0(yt − ȳ)

)2
+ CM

0,0

]
∆3 + CMΣ

0 ∆4.

Proof: Lemma D.4 implies that the Sharpe ratio of the momentum strategy conditional on (Ĉt, yt)

can be deduced from Lemma D.2 by setting It = {Ĉt, yt},

Φ1t = L1τ,

Φ2t = L2τ + δM12,0(Ĉt − C̄) + δM3,0(yt − ȳ),

ΦΛ
t = CMΛ

0,0 ,

Φ̂Σ
t = CMΣ

0 ,

Φ̂t = CM
0,0.

The proposition follows from this observation and (D.25).

Lemma D.5 computes the Sharpe ratio of the optimal (mean-variance maximizing) combination

of two strategies (wA
t , w

B
t ).

Lemma D.5. The maximum Sharpe ratio of a combination of (wA
t , w

B
t ) is given by (5.6).

Proof: Consider an investor at time t with infinitesimal horizon dt, who can invest in the riskless

asset, the index η and the strategies (wA
t , w

B
t ). The investor’s optimization problem is as in Lemma
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C.1, except that the budget constraint (C.2) is replaced by

dWt = rWtdt+ ˆ̂xtηdRt + ŷAt ŵ
A
t dR

A
t + ŷM ŵB

t dR
B
t . (D.73)

Substituting dWt from (D.73), and noting that ηdRt is uncorrelated with (ŵA
t dRt, ŵ

B
t dRt), we can

write the investor’s objective (C.1) as

ˆ̂xtEIt(ηdRt) + ŷAt EIt(ŵ
A
t dRt) + ŷMEIt(ŵ

B
t dRt)−

a

2

(
ˆ̂x2tVarIt(ηdRt)

+
(
ŷAt
)2VarIt (ŵA

t dRt

)
+
(
ŷM
)2VarIt (ŵB

t dRt

)
+ 2ŷAt ŷ

MCovIt
(
ŵA
t dRt, ŵ

B
t dRt

))
. (D.74)

Maximizing (D.74) over (ˆ̂xt, ŷ
A
t , ŷ

M ) yields the utility

1

2a

(
SR2

η,tdt+
(
EAB
It
)′ (CovAB

It
)−1 EAB

It

)
, (D.75)

where EAB
It ≡

(
EIt(ŵ

A
t dRt),EIt(ŵ

B
t dRt)

)′
and

CovAB
It ≡

 VarIt
(
ŵA
t dRt

)
CovIt

(
ŵA
t dRt, ŵ

B
t dRt

)
CovIt

(
ŵA
t dRt, ŵ

B
t dRt

)
VarIt

(
ŵB
t dRt

)
 .

Comparison of (C.5) and (D.75) yields

SRwAB ,t =

√
1

dt

(
EAB
It
)′ (CovAB

It
)−1 EAB

It . (D.76)

The term inside the square root in (D.76) has numerator

(
EIt(ŵ

A
t dRt)

)2VarIt (ŵB
t dRt

)
+
(
EIt(ŵ

B
t dRt)

)2VarIt (ŵA
t dRt

)
− 2EIt(ŵ

A
t dRt)EIt(ŵ

B
t dRt)CovIt

(
ŵA
t dRt, ŵ

B
t dRt

)
and denominator

[
VarIt

(
ŵA
t dRt

)
VarIt

(
ŵB
t dRt

)
− CovIt

(
ŵA
t dRt, ŵ

B
t dRt

)2]
dt.

Dividing numerator and denominator by VarIt
(
ŵA
t dRt

)
VarIt

(
ŵB
t dRt

)
dt, we can write the term
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inside the square root in (D.76) as the term inside the square root in (5.6).

Lemma D.5 computes the covariance between the returns of (the index-adjusted versions of)

two strategies (wA
t , w

B
t ).

Lemma D.6. The covariance between the returns of (wA
t , w

B
t ) conditional on It is given by

GwA,wB ,t ≡
1

dt
CovIt

(
ŵA
t dRt, ŵ

B
t dRt

)
= f

[
EIt

(
wA
t Σ
(
wB
t

)′)− EIt
(
wA
t Ση

′wB
t Ση

′)
ηΣη′

]
+ kEIt

(
wA
t Σp

′
fw

B
t Σp

′
f

)
. (D.77)

Suppose that for i = A,B

EIt
(
wi
t

)
= Φi

1tηΣ+ Φi
2tpfΣ (D.78)

CovIt
((
wA
t

)′
, wB

t

)
= Φ̂ABΣ

t Σ+ Φ̂AB
t Σp′fpfΣ. (D.79)

Then, the covariance between the returns of (wA
t , w

B
t ) conditional on It is given by

GwA,wB ,t = ΦA
1tΦ

B
1t∆1 +

(
ΦA
1tΦ

B
2t +ΦB

1tΦ
A
2t

)
∆2 +

(
ΦA
2tΦ

B
2t + Φ̂AB

t

)
∆3 + Φ̂ABΣ

t ∆4. (D.80)

Proof: The covariance between the returns of (wA
t , w

B
t ) conditional on It is

CovIt
(
ŵA
t dRt, ŵ

B
t dRt

)
= EIt

(
ŵA
t dRtŵ

B
t dRt

)
− EIt

(
ŵA
t dRt

)
EIt

(
ŵA
t dRt

)
= EIt

(
ŵA
t dRtŵ

B
t dRt

)
= EItEt

(
ŵA
t dRtŵ

B
t dRt

)
= EIt

(
ŵA
t Et(dRtdR

′
t)
(
ŵB
t

)′)
= EIt

(
ŵA
t

(
Covt(dRtdR

′
t) + Et(dRt)Et(dRt)

′) (ŵB
t

)′)
= EIt

(
ŵA
t Covt(dRtdR

′
t)
(
ŵB
t

)′)
= EIt

(
ŵA
t

(
fΣ+ kΣp′fpfΣ

) (
ŵB
t

)′)
dt, (D.81)

where the second and sixth steps follow because the term that is dropped is of order (dt)2 while

the term that is kept is of order dt, and the last step follows from (A.2).
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Using (4.3), we can write (D.81) divided by dt as

GwA,wB ,t = EIt

[(
wA
t − Covt(wA

t dRt, ηdRt)

Vart(ηdRt)
η

)(
fΣ+ kΣp′fpfΣ

)(
wB
t − Covt(wB

t dRt, ηdRt)

Vart(ηdRt)
η

)′]

EIt

[(
wA
t − wA

t Ση
′

ηΣη′
η

)(
fΣ+ kΣp′fpfΣ

)(
wB
t − wB

t Ση
′

ηΣη′
η

)′]
, (D.82)

where the second step follows from (A.2) and ηΣp′f = 0. Expanding the products in (D.82) and

using ηΣp′f = 0 yields (D.77).

We can write the right-hand side of (D.77) as

f

[
EIt

(
wA
t

)
ΣEIt

((
wB
t

)′)− EIt
(
wA
t

)
Ση′EIt

(
wB
t

)
Ση′

ηΣη′

]
+ kEIt

(
wA
t

)
Σp′fEIt

(
wB
t

)
Σp′f

+ f

[
CovIt

(
wA
t ,Σ

(
wB
t

)′)− CovIt
(
wA
t Ση

′, wB
t Ση

′)
ηΣη′

]
+ kCovIt

(
wA
t Σp

′
f , w

B
t Σp

′
f

)
. (D.83)

Using (D.78), (D.79) and (D.83), and proceeding as in the derivation of (D.18), we can derive

(D.80).

Lemma D.7 computes covariances between the weights of value and momentum strategies con-

ditional on It = (Ĉt, yt).

Lemma D.7. For t′′ ≥ t′ ≥ t,

CovIt
((
wV
t′
)′
, wM

t′′

)
= CVMΣ

t′′−t′ Σ+ CVM
t′−t,t′′−tΣp

′
fpfΣ, (D.84)

CovIt
((
wM
t′
)′
, wV

t′′

)
= CMV Σ

t′′−t′ Σ+ CMV
t′−t,t′′−tΣp

′
fpfΣ, (D.85)

where

CVM
t′−t,t′′−t ≡ − 1− ϵ

r + κ
[K2(γ

R
1 , γ

R
3 , T ′, ν1) +K1(γ

R
1 , γ

R
3 , T ′, ν2)]−

(1− ϵ)ϕ2

(r + κ)2
β2γ1ν2(κ, T ′)

+H(γ1, γ2, γ3, γ
R
1 , γ

R
2 , γ

R
3 , T ′, ν1) +H(γR1 , γ

R
2 , γ

R
3 , γ1, γ2, γ3, T ′, ν2)

+G(γ1, γ2, γ3, T ′, ν2)− (δV12,t′−t, δ
V
3,t′−t)Σ

Ĉy

 δM12,t′′−t

δM3,t′′−t

 ,
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CVMΣ
t′′−t′ ≡ −(1− ϵ)ϕ2

(r + κ)2
ν2(κ, T ′),

CMV
t′−t,t′′−t ≡ − 1− ϵ

r + κ
K1(γ

R
1 , γ

R
3 , T ′−, ν2)−

(1− ϵ)ϕ2

(r + κ)2
β2γ1ν2(κ, T ′−)

+H(γR1 , γ
R
2 , γ

R
3 , γ1, γ2, γ3, T ′−, ν2) +G(γ1, γ2, γ3, T ′−, ν2)

− (δM12,t′−t, δ
M
3,t′−t)Σ

Ĉy

 δV12,t′′−t

δV3,t′′−t

 ,

CMV Σ
t′−t,t′′−t ≡ −(1− ϵ)ϕ2

(r + κ)2
ν2(κ, T ′−),

T ′ ≡ (t′′ − t′, τ), T ′− ≡ (t′ − t′′, τ), and (δV12,u, δ
V
3,u) and (δM12,u, δ

M
3,u) are defined in Lemmas D.3 and

D.4, respectively.

Proof: Writing that the covariance between the left-hand side of (D.62) evaluated at t′′ and

the transpose of the left-hand side of (D.32) evaluated at t′ is equal to the covariance between

the corresponding right-hand sides, and using (D.19), (D.48), ∆V
12,t′′−t = δV12,t′′−tpfΣ, ∆

V
3,t′′−t =

δV3,t′′−tpfΣ, ∆M
12,t′−t = δM12,t′−tpfΣ, ∆M

3,t′−t = δM3,t′−tpfΣ and the independence of (ζVt′ , ζ
M
t′′ ) from

(Ĉt, yt), we find

(
f +

k∆

ηΣη′

)(
− 1− ϵ

r + κ

∫ t′′

u′′=t′′−τ
Cov (Λu′′ , Ft′) du

′′pfΣ (D.86)

+

∫ t′′

u′′=t′′−τ
Cov

(
Λu′′ , γ1Ĉt′ + γ2Ct′ + γ3yt′

)
du′′Σp′fpfΣ

)

+

(
− 1− ϵ

r + κ

∫ t′′

u′′=t′′−τ
Cov

(
Ft′ , [dRu′′ − Eu′′(dRu′′)]′

)
du′

+Σp′f

∫ t′′

u′′=t′′−τ
Cov

(
γ1Ĉt′ + γ2Ct′ + γ3yt′ , [dRu′′ − Eu′′(dRu′′)]′

)
du′′

)

= (δV12,t′−t, δ
V
3,t′−t)

 ΣĈy
11

ΣĈy
21

 δM12,t′′−t

δM3,t′′−t

Σp′fpfΣ+
((
ζVt′
)′
, ζMt′′

)
. (D.87)
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Using (3.6), (B.10), (B.11), (B.13), (B.14), and (D.51), we can write (D.87) as

− (1− ϵ)ϕ2

(r + κ)2
ν2(κ, T ′)Σ +

[
− 1− ϵ

r + κ
[K2(γ

R
1 , γ

R
3 , T ′, ν1) +K1(γ

R
1 , γ

R
3 , T ′−, ν2)]

+H(γ1, γ2, γ3, γ
R
1 , γ

R
2 , γ

R
3 , T ′, ν1) +H(γR1 , γ

R
2 , γ

R
3 , γ1, γ2, γ3, T ′, ν2)

− (1− ϵ)ϕ2

(r + κ)2
β2γ1ν2(κ, T ′) +G(γ1, γ2, γ3, T ′, ν2)

]
Σp′fpfΣ

= (δV12,t′−t, δ
V
3,t′−t)

 ΣĈy
11

ΣĈy
21

 δM12,t′′−t

δM3,t′′−t

Σp′fpfΣ+ Cov
((
ζVt′
)′
, ζMt′′

)
. (D.88)

Equation (D.84) follows from (D.88) by noting that Cov
((
ζVt′
)′
, ζMt′′

)
= CovIt

((
wV
t′
)′
, wM

t′′

)
.

Writing that the covariance between the left-hand side of (D.32) evaluated at t′′ and the trans-

pose of the left-hand side of (D.62) evaluated at t′ is equal to the covariance between the corre-

sponding right-hand sides, we likewise find

(
f +

k∆

ηΣη′

)(
− 1− ϵ

r + κ
Σp′f

∫ t′

u′=t′−τ
Cov

(
Λu′ , F ′

t′′
)
du′ (D.89)

+

∫ t′

u′=t′−τ
Cov

(
Λu′ , γ1Ĉt′′ + γ2Ct′′ + γ3yt′′

)
du′Σp′fpfΣ

)

+

(
− 1− ϵ

r + κ

∫ t′

u′=t′−τ
Cov

(
dRu′ − Eu′(dRu′), F ′

t′′
)
du′

+

∫ t′

u′=t′−τ
Cov

(
dRu′ − Eu′(dRu′), γ1Ĉt′′ + γ2Ct′′ + γ3yt′′

)
du′pfΣ

)

= (δM12,t′−t, δ
M
3,t′−t)

 ΣĈy
11

ΣĈy
21

 δM12,t′′−t

δM3,t′′−t

Σp′fpfΣ+ Cov
((
ζMt′
)′
, ζVt′′

)
. (D.90)

Using (3.6), (B.10), (B.11), (B.13), (B.14), and (D.51), we can write (D.90) as

− (1− ϵ)ϕ2

(r + κ)2
ν2(κ, T ′−)Σ +

[
− 1− ϵ

r + κ
K1(γ

R
1 , γ

R
3 , T ′−, ν2) +H(γR1 , γ

R
2 , γ

R
3 , γ1, γ2, γ3, T ′−, ν2)

− (1− ϵ)ϕ2

(r + κ)2
β2γ1ν2(κ, T ′−) +G(γ1, γ2, γ3, T ′−, ν2)

]
Σp′fpfΣ
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= (δM12,t′−t, δ
M
3,t′−t)

 ΣĈy
11

ΣĈy
21

 δV12,t′′−t

δV3,t′′−t

Σp′fpfΣ+ Cov
((
ζMt′
)′
, ζVt′′

)
. (D.91)

Equation (D.85) follows from (D.91) by noting that Cov
((
ζMt′
)′
, ζVt′′

)
= CovIt

((
wM
t′
)′
, wV

t′′

)
.

Proposition D.7 computes the correlation between the returns of value and momentum strate-

gies, both unconditionally and conditionally on (Ĉt, yt).

Proposition D.7. The unconditional correlation between the returns of the value strategy (4.1)

and the momentum strategy (4.2) is Corr(ŵV
t dRt, ŵ

M
t dRt) =

G
wV ,wM√
D

wV D
wM

, where

GwV ,wM =
L2
1

r
τ∆1 + 2

L1L2

r
τ∆2 +

(
L2
2

r
τ − 1− ϵ

r + κ
K1(γ

R
1 , γ

R
3 , T , ν2)−

(1− ϵ)ϕ2

(r + κ)2
β2γ1ν2(κ, T )

+H(γR1 , γ
R
2 , γ

R
3 , γ1, γ2, γ3, T , ν2) +G(γ1, γ2, γ3, T , ν2)

)
∆3 −

(1− ϵ)ϕ2

(r + κ)2
ν2(κ, T )∆4,

T = (0, τ), and DwV and DwM are defined in Propositions D.2 and D.5, respectively. The cor-

relation between the returns of the value and momentum strategies conditional on It = (Ĉt, yt) is

CorrIt(ŵV
t dRt, ŵ

M
t dRt) =

G
wV ,wM,t√

D
wV ,t

D
wM,t

, where

GwV ,wM ,t =
L2
1

r
τ∆1 +

L1

r

(
L2τ + δM12,0(Ĉt − C̄) + δM3,0(yt − ȳ)

)
∆2 + L1τ

(
L2

r
+ δV12,0(Ĉt − C̄) + δV3,0(yt − ȳ)

)
∆2

+

[(
L2

r
+ δV12,0(Ĉt − C̄) + δV3,0(yt − ȳ)

)(
L2τ + δM12,0(Ĉt − C̄) + δM3,0(yt − ȳ)

)
+ CMV

0,0

]
∆3 + CMV Σ

0 ∆4,

and DwV ,t and DwM ,t are defined in Propositions D.3 and D.6, respectively.

Proof: To show the equation for the unconditional correlation, we need to show that the uncondi-

tional covariance between the returns of the value and momentum strategies is GwV ,wMdt. Since the

unconditional expectation of value weights is given by (D.20) and of momentum weights is given

by (D.49), the result follows from Lemma D.6 provided that

Cov
((
wM
t

)′
, wV

t

)
= −(1− ϵ)ϕ2

(r + κ)2
ν2(κ, T )Σ +

(
− 1− ϵ

r + κ
K1(γ

R
1 , γ

R
3 , T , ν2)−

(1− ϵ)ϕ2

(r + κ)2
β2γ1ν2(κ, T )

+H(γR1 , γ
R
2 , γ

R
3 , γ1, γ2, γ3, T , ν2) +G(γ1, γ2, γ3, T , ν2)

)
Σp′fpfΣ.

(D.92)
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Equation (D.92) follows by noting that Cov
((
wM
t

)′
, wV

t

)
is equal to the left-hand side of (D.91)

for t′′ = t′ = t.

To show the equation for the correlation conditional on It = (Ĉt, yt), we need to show that the

conditional covariance between the returns of the value and momentum strategies is GwV ,wM ,tdt.

Since the conditional expectation of value weights is given by (D.24) and of momentum weights is

given by (D.56), the result follows from Lemma D.6 provided that

CovIt
((
wM
t

)′
, wV

t

)
= CMV Σ

0 Σ+ CMV
0,0 Σp′fpfΣ. (D.93)

Equation (D.93) follows from Lemma D.7, by setting t′′ = t′ = t in (D.85).

The unconditional expectations and standard deviations of functions of (Ĉt, yt) are calculated

using the unconditional distribution of (Ĉt, yt), which is normal with mean (C̄, ȳ) and covariance

matrix ΣĈy.

E Proofs of Results in Section 6

Lemma E.1 expresses the Sharpe ratio over investment horizon T of a general strategy wt in terms

of expectations, variances, and autocovariances of instantaneous returns.

Lemma E.1. The Sharpe ratio of a strategy wt over investment horizon T is SRw,t,T =
Nw,t,T√

Dw,t,T+DCov1
w,t,T+DCov2

w,t,T

,

where

Nw,t,T ≡ 1

T

∫ t+T

t
EIt(ŵudRu), (E.1)

Dw,t,T ≡ 1

T

∫ t+T

t
VarIt(ŵudRu), (E.2)

DCov1
w,t,T ≡ 2

T

∫ t+T

u=t

∫ t+T

u′=u
CovIt [ŵuEu(dRu), ŵu′Eu′(dRu′)] , (E.3)

DCov2
w,t,T ≡ 2

T

∫ t+T

u=t

∫ t+T

u′=u
EIt {ŵuCovu [dRu, ŵu′Eu′(dRu′)]} . (E.4)
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Proof: The Lemma will follow from the definition (4.5) of the Sharpe ratio provided that

1

T
VarIt

(∫ t+T

t
ŵudRu

)
= Dw,t,T +DCov1

w,t,T +DCov2
w,t,T . (E.5)

We can write the left-hand side of (E.5) as

1

T
CovIt

(∫ t+T

t
ŵudRu,

∫ t+T

t
ŵudRu

)

=
1

T

∫ t+T

t
CovIt (ŵudRu, ŵudRu) +

1

T

∫ t+T

u=t

∫ t+T

u′=t
CovIt (ŵudRu, ŵu′dRu′)

= Dw,t,T +
2

T

∫ t+T

u=t

∫ t+T

u′=u
CovIt (ŵudRu, ŵu′dRu′) , (E.6)

where the second step follows by separating the covariance between contemporaneous returns and

the covariance between lagged returns. We can write the second term in (E.6) as

2

T

∫ t+T

u=t

∫ t+T

u′=u
{CovIt [ŵudRu,Eu′(ŵu′dRu′)] + CovIt [ŵudRu, ŵu′dRu′ − Eu′(ŵu′dRu′)]}

=
2

T

∫ t+T

u=t

∫ t+T

u′=u
CovIt [ŵudRu,Eu′(ŵu′dRu′)]

=
2

T

∫ t+T

u=t

∫ t+T

u′=u
{CovIt [Eu(ŵudRu),Eu′(ŵu′dRu′)] + CovIt [ŵudRu − Eu(ŵudRu),Eu′(ŵu′dRu′)]}

=
2

T

∫ t+T

u=t

∫ t+T

u′=u
{CovIt [Eu(ŵudRu),Eu′(ŵu′dRu′)] + EIt [Covu(ŵudRu,Eu′(ŵu′dRu′))]}

=
2

T

∫ t+T

u=t

∫ t+T

u′=u
{CovIt [ŵuEu(dRu), ŵu′Eu′(dRu′)] + EIt [ŵuCovu(dRu, ŵu′Eu′(dRu′))]}

= DCov1
w,t,T +DCov2

w,t,T , (E.7)

where the second step follows from writing CovIt [ŵudRu, ŵu′dRu′ − Eu′(ŵu′dRu′)] as

EIt [ŵudRu(ŵu′dRu′ − Eu′(ŵu′dRu′))]− EIt(ŵudRu)EIt [ŵu′dRu′ − Eu′(ŵu′dRu′)]

and noting that each term is zero because of the Law of Iterative Expectations, and the fourth step

follows from (D.51). Combining (E.6) and (E.7), we find (E.5).

Lemma E.2 specializes Lemma E.1 to the unconditional Sharpe ratio (It = ∅).
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Lemma E.2. The unconditional Sharpe ratio of a strategy wt over investment horizon T is

SRw,T = Nw√
Dw+DCov1

w,T +DCov2
w,T

, where

Nw ≡ 1

dt
E(ŵtdRt) =

(
f +

k∆

ηΣη′

)
E
(
ΛtwtΣp

′
f

)
,

Dw ≡ 1

dt
Var(ŵtdRt) = f

[
E(wtΣw

′
t)−

E
[
(wtΣη

′)2
]

ηΣη′

]
+ kE[(wtΣp

′
f )

2],

are the unconditional versions of (Nw,t,Dw,t) defined in Lemma D.1, and

DCov1
w,T ≡ 2

dt

∫ t+T

t

(
1− u− t

T

)
Cov [ŵtEt(dRt), ŵuEu(dRu)] , (E.8)

DCov2
w,T ≡ 2

dt

∫ t+T

t

(
1− u− t

T

)
E {ŵtCovt [dRt, ŵuEu(dRu)]} . (E.9)

Proof: The lemma follows from Lemma E.1 by noting that when It = ∅:

Nw,t,T =
1

T

∫ t+T

t
E(ŵudRu) =

1

T

∫ t+T

t

E(ŵudRu)

du
du =

1

T

∫ t+T

t

E(ŵtdRt)

dt
du = Nw,

where the third step follows because the expectation is unconditional;

Dw,t,T =
1

T

∫ t+T

t
Var(ŵudRu) =

1

T

∫ t+T

t

Var(ŵudRu)

du
du =

1

T

∫ t+T

t

Var(ŵtdRt)

dt
du = Dw,

where the third step follows because the variance is unconditional;

DCov1
w,t,T =

2

T

∫ t+T

u=t

∫ t+T−u

s=0
Cov [ŵuEu(dRu), ŵu+sEu+s(dRu+s)]

=
2

T

∫ T

s=0

∫ t+T−s

u=t
Cov [ŵuEu(dRu), ŵu+sEu+s(dRu+s)]

=
2

T

∫ T

s=0

∫ t+T−s

u=t

Cov [ŵuEu(dRu), ŵu+sEu+s(dRu+s)]

du
du

=
2

T

∫ T

s=0

∫ t+T−s

u=t

Cov [ŵtEt(dRt), ŵt+sEt+s(dRt+s)]

dt
du

=
2

T

∫ T

s=0
(T − s)

Cov [ŵtEt(dRt), ŵt+sEt+s(dRt+s)]

dt
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=
2

T

∫ t+T

u=t
[T − (u− t)]

Cov [ŵtEt(dRt), ŵuEu(dRu)]

dt
= DCov1

w,T ,

where the first and sixth steps follow from the change of variable s = u − t, the second step

follows by changing the order of the integrals, and the fourth step follows because the covariance

is unconditional and depends only on s; and

DCov2
w,t,T =

2

T

∫ t+T

u=t

∫ t+T−u

s=0
E {ŵuCovu [dRu, ŵu+sEu+s(dRu+s)]}

=
2

T

∫ T

s=0

∫ t+T−s

u=t
E {ŵuCovu [dRu, ŵu+sEu+s(dRu+s)]}

=
2

T

∫ T

s=0

∫ t+T−s

u=t

E {ŵuCovu [dRu, ŵu+sEu+s(dRu+s)]}
du

du

=
2

T

∫ T

s=0

∫ t+T−s

u=t

E {ŵtCovt [dRt, ŵt+sEt+s(dRt+s)]}
dt

du

=
2

T

∫ T

s=0
(T − s)

E {ŵtCovt [dRt, ŵt+sEt+s(dRt+s)]}
dt

=
2

T

∫ t+T

u=t
[T − (u− t)]

E {ŵtCovt [dRt, ŵt+sEt+s(dRt+s)]}
dt

= DCov2
w,T ,

where the first and sixth steps follow from the change of variable s = u − t, and the fourth step

follows because the expectation is unconditional and depends only on s.

Since the same argument as in the derivation of (E.7) implies

DCov1
w,T +DCov2

w,T =
2

dt

∫ t+T

t

(
1− u− t

T

)
Cov (ŵtdRt, ŵudRu) ,

we can write the Sharpe ratio SRw,T as

SRw,T =
1
dtE(ŵtdRt)√

1
dtVar(ŵtdRt) +

2
dt

∫ t+T
t

(
1− u−t

T

)
Cov (ŵtdRt, ŵudRu)

.

Dividing numerator and denominator by
√

1
dtVar(ŵtdRt) and using the definition (4.5) of the

Sharpe ratio over an infinitesimal horizon, we find (6.1).

The terms {DCovi
w,t,T }i=1,2 in Lemma E.1 and {DCovi

w,T }i=1,2 in Lemma E.2 involve covariances
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between products of random variables, such as ŵuEu(dRu) and ŵu′Eu′(dRu′). Lemma E.3 computes

covariances between products of normal random variables.

Lemma E.3. If the random variables {Xi}i=1,2,3,4 are jointly normal, then

Cov(X1X2, X3) =E(X1)Cov(X2, X3) + E(X2)Cov(X1, X3) (E.10)

Cov(X1X2, X3X4) =E(X1)E(X3)Cov(X2, X4) + E(X1)E(X4)Cov(X2, X3)

+ E(X2)E(X3)Cov(X1, X4) + E(X2)E(X4)Cov(X1, X3)

+ Cov(X1, X3)Cov(X2, X4) + Cov(X1, X4)Cov(X2, X3). (E.11)

Proof: We first show (E.10) and (E.11) in the special case where {Xi}i=1,2,3,4 are mean zero. Since

these variables are normal, we can set

Xi =
Cov(Xi, X3)

Var(X3)
X3 + ϵi, (E.12)

for i = 1, 2, 4, where ϵi is normal, mean zero and independent of X3.

Using (E.12), we can write the left-hand side of (E.10) as

Cov(X1, X3)Cov(X2, X3)

Var(X3)2
Cov(X2

3 , X3) +
Cov(X1, X3)

Var(X3)
Cov(X3ϵ2, X3)

+
Cov(X2, X3)

Var(X3)
Cov(X3ϵ1, X3) + Cov(ϵ1ϵ2, X3). (E.13)

The first term in (E.13) is zero because

Cov(X2
3 , X3) = E(X3

3 )− E(X2
3 )E(X3) = 0,

where the second step follows because the normality and mean zero properties of X3 imply E(X3
3 ) =

E(X3) = 0. The second and third terms in (E.13) are zero because

Cov(X3ϵi, X3) = E(X2
3 ϵi)− E(X3ϵi)E(X3) =

[
E(X2

3 )− E(X3)
2
]
E(ϵi) = 0,

for i = 1, 2, where the second step follows because ϵi is independent of X3, and the third step

follows because ϵi is mean zero. The fourth term in (E.13) is zero because (ϵ1, ϵ2) are independent

of X3. Therefore, (E.13) is equal to zero, which implies (E.10).
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Using (E.12), we can write the left-hand side of (E.11) as

Cov(X3, X4)

Var(X3)
Cov(X1X2, X

2
3 ) + Cov(X1X2, X3ϵ4)

=
Cov(X3, X4)

Var(X3)

[
Cov(X1, X3)Cov(X2, X3)

Var(X3)2
Cov(X2

3 , X
2
3 ) +

Cov(X1, X3)

Var(X3)
Cov(X3ϵ2, X

2
3 )

+
Cov(X2, X3)

Var(X3)
Cov(X3ϵ1, X

2
3 ) + Cov(ϵ1ϵ2, X2

3 )

]
+

Cov(X1, X3)Cov(X2, X3)

Var(X3)2
Cov(X2

3 , X3ϵ4)

+
Cov(X1, X3)

Var(X3)
Cov(X3ϵ2, X3ϵ4) +

Cov(X2, X3)

Var(X3)
Cov(X3ϵ1, X3ϵ4) + Cov(ϵ1ϵ2, X3ϵ4). (E.14)

To compute the first term in (E.14), we note that

Cov(X2
3 , X

2
3 ) = E(X4

3 )− E(X2
3 )

2 = 2E(X2
3 )

2 = 2Var(X3)
2, (E.15)

where the second step follows because the mean-zero property of X3 implies that
E(X4

3 )

E(X2
3 )

2 is the

kurtosis of X3 and because the normality of X3 implies that X3 has a kurtosis of three. The second

and third terms in (E.14) are zero because

Cov(X3ϵi, X
2
3 ) = E(X3

3 ϵi)− E(X3ϵi)E(X2
3 ) =

[
E(X3

3 )− E(X3)E(X2
3 )
]
E(ϵi) = 0,

for i = 1, 2, where the second step follows because ϵi is independent of X3, and the third step

follows because ϵi is mean zero. The fourth term in (E.14) is zero because (ϵ1, ϵ2) are independent

of X3. The fifth term in (E.14) is zero because

Cov(X2
3 , X3ϵ4) = E(X3

3 ϵ4)− E(X2
3 )E(X3ϵ4) =

[
E(X3

3 )− E(X2
3 )E(X3)

]
E(ϵ4) = 0,

where the second step follows because ϵ4 is independent of X3, and the third step follows because

ϵ4 is mean zero. To compute the sixth and seventh terms in (E.14), we note that

Cov(X3ϵi, X3ϵ4) = E(X2
3 ϵiϵ4)− E(X3ϵi)E(X3ϵ4)

= E(X2
3 )E(ϵiϵ4)− E(X3)

2E(ϵi)E(ϵ4)

= E(X2
3 )E(ϵiϵ4)

= Var(X2
3 )Cov(ϵi, ϵ4)
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= Var(X2
3 )Cov(Xi, ϵ4), (E.16)

for i = 1, 2, where the second step follows because (ϵi, ϵ4) are independent of X3, the third and

fourth step follow because (X3, ϵi, ϵ4) are mean zero, and the fifth step follows from (E.12) and the

independence of (X3, ϵ4). The eighth term in (E.14) is zero because

Cov(ϵ1ϵ2, X3ϵ4) = E(ϵ1ϵ2X3ϵ4)− E(ϵ1ϵ2)E(X3ϵ4) = E(X3) [E(ϵ1ϵ2ϵ4)− E(ϵ1ϵ2)E(ϵ4)] = 0,

where the second step follows because (ϵ1, ϵ2, ϵ4) are independent of X3, and the third step follows

because X3 is mean zero. Suppressing all zero terms and using (E.15) and (E.16), we can write

(E.14) as

2Cov(X1, X3)Cov(X2, X3)Cov(X3, X4)

Var(X3)
+ Cov(X1, X3)Cov(X2, ϵ4) + Cov(X2, X3)Cov(X1, ϵ4)

= Cov(X1, X3)Cov
[
X2,

Cov(X3, X4)

Var(X3)
X3 + ϵ4

]
+ Cov(X2, X3)Cov

[
X1,

Cov(X3, X4)

Var(X3)
X3 + ϵ4

]
= Cov(X1, X3)Cov(X2, X4) + Cov(X2, X3)Cov(X1, X4),

which implies (E.11).

We next show (E.10) and (E.11) when {Xi}i=1,2,3,4 can have a non-zero mean. We set X̂i ≡

Xi − E(Xi) for i = 1, 2, 3, 4.

We can write the left-hand side of (E.10) as

Cov
[
(E(X1) + X̂1)(E(X2) + X̂2), X3

]
= E(X1)Cov(X̂2, X3) + E(X2)Cov(X̂1, X3) + Cov(X̂1X̂2, X3)

= E(X1)Cov(X2, X3) + E(X2)Cov(X1, X3) + Cov(X̂1X̂2, X̂3). (E.17)

Combining (E.17) with (E.10) applied to {X̂i}i=1,2,3, we find (E.10) applied to {Xi}i=1,2,3.

We can write the left-hand side of (E.10) as

Cov
[
(E(X1) + X̂1)(E(X2) + X̂2), X3X4

]
= E(X1)Cov(X̂2, X3X4) + E(X2)Cov(X̂1, X3X4) + Cov(X̂1X̂2, X3X4). (E.18)
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Equation (E.10) implies

Cov(X̂i, X3X4) =E(X3)Cov(X̂i, X4) + E(X4)Cov(X̂i, X3)

=E(X3)Cov(Xi, X4) + E(X4)Cov(Xi, X3) (E.19)

for i = 1, 2. Moreover,

Cov(X̂1X̂2, X3X4) =Cov
[
X̂1X̂2, (E(X3) + X̂3)(E(X4) + X̂4)

]
=E(X3)Cov(X̂1X̂2, X̂4) + E(X4)Cov(X̂1X̂2, X̂3) + Cov(X̂1X̂2, X̂3X̂4)

=Cov(X̂1X̂2, X̂3X̂4), (E.20)

where the second step follows from (E.10) and because X̂i is mean zero. Combining (E.18)-(E.20)

with (E.11) applied to X̂i, and noting that

Cov(X̂i, X̂i′) = Cov(Xi, Xi′)

for i = 1, 2 and i′ = 3, 4, we find (E.11) applied to Xi.

Lemmas E.4 and E.5 use Lemma E.3 to compute the terms {DCovi
w,t,T }i=1,2 in Lemma E.1 and

{DCovi
w,T }i=1,2 in Lemma E.2. To ensure that the normality assumption in Lemma E.3 is met, we

restrict trading strategies to be linear, in the sense that strategy weights must be integrals of the

Brownian shocks with constant coefficients. The value strategy (4.1), the momentum strategy (4.2),

and all strategies of the form wt = (δ0 + δ1Ĉt + δ2Ct + δ3yt)pf are linear.

Lemma E.4. For linear trading strategies, DCov1
w,t,T = 2

T

∑6
i=1

∫ t+T
u=t

∫ t+T
u′=uD

Cov1,i
w,t (u, u′)dudu′, where

DCov1,1
w,t (u, u′) ≡

(
f +

k∆

ηΣη′

)2

EIt(Λu)EIt(Λu′)CovIt(wuΣp
′
f , wu′Σp′f ),

DCov1,2
w,t (u, u′) ≡

(
f +

k∆

ηΣη′

)2

EIt(Λu)EIt(wu′Σp′f )CovIt(wuΣp
′
f ,Λu′),

DCov1,3
w,t (u, u′) ≡

(
f +

k∆

ηΣη′

)2

EIt(wuΣp
′
f )EIt(Λu′)CovIt(Λu, wu′Σp′f ),

DCov1,4
w,t (u, u′) ≡

(
f +

k∆

ηΣη′

)2

EIt(wuΣp
′
f )EIt(wu′Σp′f )CovIt(Λu,Λu′),
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DCov1,5
w,t (u, u′) ≡

(
f +

k∆

ηΣη′

)2

CovIt(Λu,Λu′)CovIt(wuΣp
′
f , wu′Σp′f ),

DCov1,6
w,t (u, u′) ≡

(
f +

k∆

ηΣη′

)2

CovIt(Λu, wu′Σp′f )CovIt(wuΣp
′
f ,Λu′),

and DCov2
w,t = 2

T

∑2
i=1

∫ t+T
u=t

∫ t+T
u′=uD

Cov2,i
w,t (u, u′)dudu′, where

DCov2,1
w,t (u, u′) ≡ 1

du

(
f +

k∆

ηΣη′

)
EIt

[
ŵuΛu′Covu(dRu, wu′Σp′f )

]
,

DCov2,2
w,t (u, u′) ≡ 1

du

(
f +

k∆

ηΣη′

)
EIt

[
ŵuwu′Σp′fCovu(dRu,Λu′)

]
.

Proof: Equations (4.3) and (A.13) imply

ŵtEu(dRt) =

(
wt −

Covt(wtdRt, ηdRt)

Vart(ηdRt)
η

)[
rαᾱf

α+ ᾱ

ηΣθ′

ηΣη′
Ση′ +

(
f +

k∆

ηΣη′

)
ΛtΣp

′
f

]
dt

=

(
wt −

wtΣη
′

ηΣη′
η

)[
rαᾱf

α+ ᾱ

ηΣθ′

ηΣη′
Ση′ +

(
f +

k∆

ηΣη′

)
ΛtΣp

′
f

]
dt

=

(
f +

k∆

ηΣη′

)
ΛtwtΣp

′
f , (E.21)

where the second step follows from (A.2), (C.19) and ηΣp′f = 0, and the third step follows from

ηΣp′f = 0.

Using (E.21), we can write (E.3) as

DCov1
w,t,T =

2

T

(
f +

k∆

ηΣη′

)2 ∫ t+T

u=t

∫ t+T

u′=u
CovIt(ΛuwuΣp

′
f ,Λu′wu′Σp′f )dudu

′. (E.22)

The equation for DCov1
w,t,T in the lemma follows from (E.22) by using (E.11) and setting X1 = Λu,

X2 = wuΣp
′
f , X3 = Λu′ and X4 = wu′Σp′f .

Using (E.21), we can write (E.4) as

DCov2
w,t,T =

2

T

(
f +

k∆

ηΣη′

)∫ t+T

u=t

∫ t+T

u′=u
EIt

[
ŵuCovu(dRu,Λu′wu′Σp′f )

]
du′. (E.23)

The equation for DCov2
w,t,T in the lemma follows from (E.23) by using (E.10) and the Law of Iterative

94



Expectations and setting X1 = dRu, X2 = Λu′ and X3 = wu′Σp′f .

Lemma E.5. For linear trading strategies, DCov1
w,T = 2

∑6
i=1

∫ t+T
t

(
1− u−t

T

)
DCov1,i

w (u)du, where

DCov1,1
w (u) ≡

(
f +

k∆

ηΣη′

)2

E(Λt)
2Cov(wtΣp

′
f , wuΣp

′
f ),

DCov1,2
w (u) ≡

(
f +

k∆

ηΣη′

)2

E(Λt)E(wtΣp
′
f )Cov(wtΣp

′
f ,Λu),

DCov1,3
w (u) ≡

(
f +

k∆

ηΣη′

)2

E(Λt)E(wtΣp
′
f )Cov(Λt, wuΣp

′
f ),

DCov1,4
w (u) ≡

(
f +

k∆

ηΣη′

)2

E(wtΣp
′
f )

2Cov(Λt,Λu),

DCov1,5
w (u) ≡

(
f +

k∆

ηΣη′

)2

Cov(Λt,Λu)Cov(wtΣp
′
f , wuΣp

′
f ),

DCov1,6
w (u) ≡

(
f +

k∆

ηΣη′

)2

Cov(Λt, wuΣp
′
f )Cov(wtΣp

′
f ,Λu),

and DCov2
w,T = 2

∑2
i=1

∫ t+T
t

(
1− u−t

T

)
DCov2,i

w (u)du, where

DCov2,1
w (u) ≡ 1

dt

(
f +

k∆

ηΣη′

)
E
[
ŵtΛuCovt(dRt, wuΣp

′
f )
]
,

DCov2,2
w (u) ≡ 1

dt

(
f +

k∆

ηΣη′

)
E
[
ŵtwuΣp

′
fCovt(dRt,Λu)

]
.

Proof: Using (E.21), we can write (E.8) as

DCov1
w,T = 2

(
f +

k∆

ηΣη′

)2 ∫ t+T

t

(
1− u− t

T

)
Cov(ΛtwtΣp

′
f ,ΛuwuΣp

′
f )du. (E.24)

The equation for DCov1
w,T in the lemma follows from (E.24) by using (E.11) and setting X1 = Λt,

X2 = wtΣp
′
f , X3 = Λu and X4 = wuΣp

′
f , and by noting that when expectations are unconditional,

E(Λt) = E(Λu) and E(wtΣp
′
f ) = E(wuΣp

′
f ).

Using (E.21), we can write (E.9) as

DCov2
w,T =

2

dt

(
f +

k∆

ηΣη′

)∫ t+T

t

(
1− u− t

T

)
E
{
ŵtCovt

[
dRt,ΛuwuΣp

′
f

]}
du. (E.25)
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The equation for DCov2
w,T in the lemma follows from (E.25) by using (E.10) and the Law of Iterative

Expectations and setting X1 = dRt, X2 = Λu and X3 = wuΣp
′
f .

Proposition E.1 computes the unconditional Sharpe ratio over investment horizon T of a general

strategy of the form wt = (δ0+δ1Ĉt+δ2Ct+δ3yt)pf . The formula for the Sharpe ratio is expressed

in terms of integrals. While the integrals can be computed in closed form, we do not present the

closed-form solutions because they require introducing additional notation.

Proposition E.1. The unconditional Sharpe ratio of a strategy wt = (δ0 + δ1Ĉt + δ2Ct + δ3yt)pf

over investment horizon T is SRw,T = Nw√
Dw+DCov1

w,T +DCov2
w,T

, where

Nw =
[
L2

(
δ0 + (δ1 + δ2)C̄ + δ3ȳ

)
+H(γR1 , γ

R
2 , γ

R
3 , δ1, δ2, δ3, 0, ν0)

] ∆

ηΣη′
,

Dw =

(
f +

k∆

ηΣη′

)[(
δ0 + (δ1 + δ2)C̄ + δ3ȳ

)2
+H(δ1, δ2, δ3, δ1, δ2, δ3, 0, ν0)

] ∆

ηΣη′
,

and (DCov1
w,T ,DCov2

w,T ) are derived in Lemma E.5, with

DCov1,1
w (u) = L2

2H(δ1, δ2, δ3, δ1, δ2, δ3, u− t, ν0)

(
∆

ηΣη′

)2

,

DCov1,2
w (u) = L2

(
δ0 + (δ1 + δ2)C̄ + δ3ȳ

)
H(δ1, δ2, δ3, γ

R
1 , γ

R
2 , γ

R
3 , u− t, ν0)

(
∆

ηΣη′

)2

,

DCov1,3
w (u) = L2

(
δ0 + (δ1 + δ2)C̄ + δ3ȳ

)
H(γR1 , γ

R
2 , γ

R
3 , δ1, δ2, δ3, u− t, ν0)

(
∆

ηΣη′

)2

,

DCov1,4
w (u) =

(
δ0 + (δ1 + δ2)C̄ + δ3ȳ

)2
H(γR1 , γ

R
2 , γ

R
3 , γ

R
1 , γ

R
2 , γ

R
3 , u− t, ν0)

(
∆

ηΣη′

)2

,

DCov1,5
w (u) = H(γR1 , γ

R
2 , γ

R
3 , γ

R
1 , γ

R
2 , γ

R
3 , u− t, ν0)H(δ1, δ2, δ3, δ1, δ2, δ3, u− t, ν0)

(
∆

ηΣη′

)2

,

DCov1,6
w (u) = H(γR1 , γ

R
2 , γ

R
3 , δ1, δ2, δ3, u− t, ν0)H(δ1, δ2, δ3, γ

R
1 , γ

R
2 , γ

R
3 , u− t, ν0)

(
∆

ηΣη′

)2

,

DCov2,1
w (u) =

[
L2

(
δ0 + (δ1 + δ2)C̄ + δ3ȳ

)
+H(δ1, δ2, δ3, γ

R
1 , γ

R
2 , γ

R
3 , u− t, ν0)

]
×G(δ1, δ2, δ3, u− t, ν0)

(
∆

ηΣη′

)2

,

DCov2,2
w (u) =

[(
δ0 + (δ1 + δ2)C̄ + δ3ȳ

)2
+H(δ1, δ2, δ3, δ1, δ2, δ3, u− t, ν0)

]
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×G(γR1 , γ
R
2 , γ

R
3 , u− t, ν0)

(
∆

ηΣη′

)2

.

Proof: The Sharpe ratio has the form in Lemma E.2. To compute Nw, we note from Lemma E.2

that

Nw =

(
f +

k∆

ηΣη′

)
E
[
Λt(δ0 + δ1Ĉt + δ2Ct + δ3yt)

]
pfΣp

′
f

=

(
f +

k∆

ηΣη′

)[
E(Λt)E(δ0 + δ1Ĉt + δ2Ct + δ3yt) + Cov(Λt, δ0 + δ1Ĉt + δ2Ct + δ3yt)

] ∆

ηΣη′

=
[
L2

(
δ0 + (δ1 + δ2)C̄ + δ3ȳ

)
+H(γR1 , γ

R
2 , γ

R
3 , δ1, δ2, δ3, 0, ν0)

] ∆

ηΣη′
,

where the first step follows from wt = (δ0 + δ1Ĉt + δ2Ct + δ3yt)pf , the second step follows from

pfΣp
′
f = ∆

ηΣη′ , and the third step follows from (3.6), (B.13) and (D.8). To compute Dw, we note

from Lemma E.2 that

Dw = fE
[
(δ0 + δ1Ĉt + δ2Ct + δ3yt)

2
]
pfΣp

′
f + kE

[
(δ0 + δ1Ĉt + δ2Ct + δ3yt)

2
] (
pfΣp

′
f

)2
=

(
f +

k∆

ηΣη′

)
E
[
(δ0 + δ1Ĉt + δ2Ct + δ3yt)

2
] ∆

ηΣη′

=

(
f +

k∆

ηΣη′

)[
E(δ0 + δ1Ĉt + δ2Ct + δ3yt)

2 + Var(δ0 + δ1Ĉt + δ2Ct + δ3yt)
] ∆

ηΣη′

=

(
f +

k∆

ηΣη′

)[(
δ0 + (δ1 + δ2)C̄ + δ3ȳ

)2
+H(δ1, δ2, δ3, δ1, δ2, δ3, 0, ν0)

] ∆

ηΣη′
,

where the first step follows from wt = (δ0 + δ1Ĉt + δ2Ct + δ3yt)pf and ηΣp′f = 0, the second step

follows from pfΣp
′
f = ∆

ηΣη′ , and the fourth step follows from (B.13). To compute {DCov1,i
w (u)}i=1,..,6,

we use their definitions in Lemma E.5 together with wt = (δ0+δ1Ĉt+δ2Ct+δ3yt)pf , pfΣp
′
f = ∆

ηΣη′ ,

(3.6), (B.13) and (D.8). To compute {DCov2,i
w (u)}i=1,2, we use their definitions in Lemma E.5

together with wt = (δ0 + δ1Ĉt + δ2Ct + δ3yt)pf , ηΣp
′
f = 0, pfΣp

′
f = ∆

ηΣη′ , (3.6), (B.10), (B.13) and

(D.8).

To determine the optimal strategy for a given investment horizon T , we maximize numerically

the Sharpe ratio in Proposition E.1 over (δ0, δ1, δ2, δ3). Since the Sharpe ratio is the same for

(δ0, δ1, δ2, δ3) and (λδ0, λδ1, λδ2, λδ3) for any λ > 0, we can fix the value of one of the four arguments

(δ0, δ1, δ2, δ3) to one if the argument is positive at the optimum and to minus one if it is negative.
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We do that for δ3, which we set to minus one because it is negative at the optimum. Proposition

E.2 computes the unconditional Sharpe ratio over investment horizon T of the value strategy.

Proposition E.2. The unconditional Sharpe ratio of the value strategy (4.1) over investment

horizon T is SRwV ,T =
N

wV√
D

wV +DCov1
wV ,T

+DCov2
wV ,T

, where (NwV ,DwV ) are derived in Proposition D.2

and (DCov1
wV ,T

,DCov2
wV ,T

) are defined in Lemma E.5, with

DCov1,1
wV (u) = L2

2

[(
− 1− ϵ

r + κ
[K1(γ1, γ3, u− t, ν0) +K2(γ1, γ3, u− t, ν0)]

+H(γ1, γ2, γ3, γ1, γ2, γ3, u− t, ν0)

)(
pfΣ

2p′f
)2

+
(1− ϵ)2ϕ2

2(r + κ)2κ
ν0(κ, u− t)pfΣ

3p′f

]
,

DCov1,2
wV (u) = L2

(
L1

r
ηΣ2p′f +

L2

r
pfΣ

2p′f

)(
− 1− ϵ

r + κ
K2(γ

R
1 , γ

R
3 , u− t, ν0)

+H(γ1, γ2, γ3, γ
R
1 , γ

R
2 , γ

R
3 , u− t, ν0)

)
pfΣ

2p′f ,

DCov1,3
wV (u) = L2

(
L1

r
ηΣ2p′f +

L2

r
pfΣ

2p′f

)(
− 1− ϵ

r + κ
K1(γ

R
1 , γ

R
3 , u− t, ν0)

+H(γR1 , γ
R
2 , γ

R
3 , γ1, γ2, γ3, u− t, ν0)

)
pfΣ

2p′f ,

DCov1,4
wV (u) =

(
L1

r
ηΣ2p′f +

L2

r
pfΣ

2p′f

)2

H(γR1 , γ
R
2 , γ

R
3 , γ

R
1 , γ

R
2 , γ

R
3 , u− t, ν0),

DCov1,5
wV (u) = H(γR1 , γ

R
2 , γ

R
3 , γ

R
1 , γ

R
2 , γ

R
3 , u− t, ν0)

[(
− 1− ϵ

r + κ
[K1(γ1, γ3, u− t, ν0) +K2(γ1, γ3, u− t, ν0)]

+H(γ1, γ2, γ3, γ1, γ2, γ3, u− t, ν0)

)(
pfΣ

2p′f
)2

+
(1− ϵ)2ϕ2

2(r + κ)2κ
ν0(κ, u− t)pfΣ

3p′f

]
,

DCov1,6
wV (u) =

(
− 1− ϵ

r + κ
K1(γ

R
1 , γ

R
3 , u− t, ν0) +H(γR1 , γ

R
2 , γ

R
3 , γ1, γ2, γ3, u− t, ν0)

)

×
(
− 1− ϵ

r + κ
K2(γ

R
1 , γ

R
3 , u− t, ν0) +H(γ1, γ2, γ3, γ

R
1 , γ

R
2 , γ

R
3 , u− t, ν0)

)(
pfΣ

2p′f
)2

DCov2,1
wV (u) =

[
L1L2

r
ηΣ2p′f +

(
L2
2

r
− 1− ϵ

r + κ
K2(γ

R
1 , γ

R
3 , u− t, ν0)

+H(γ1, γ2, γ3, γ
R
1 , γ

R
2 , γ

R
3 , u− t, ν0)

)
pfΣ

2p′f

]

×
(
−(1− ϵ)ϕ2

(r + κ)2
β2γ1ν0(κ, u− t) +G(γ1, γ2, γ3, u− t, ν0)

)
pfΣ

2p′f
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−

[
L1L2

r

(
ηΣ3p′f −

ηΣ2η′ηΣ2p′f
ηΣη′

)
+

(
L2
2

r
− 1− ϵ

r + κ
K2(γ

R
1 , γ

R
3 , u− t, ν0)

+H(γ1, γ2, γ3, γ
R
1 , γ

R
2 , γ

R
3 , u− t, ν0)

)(
pfΣ

3p′f −
(ηΣ2p′f )

2

ηΣη′

)]
(1− ϵ)ϕ2

(r + κ)2
ν0(κ, u− t),

DCov2,2
wV (u) =

[(
L1

r
ηΣ2p′f +

L2

r
pfΣ

2p′f

)2

+

(
− 1− ϵ

r + κ
[K1(γ1, γ3, u− t, ν0) +K2(γ1, γ3, u− t, ν0)]

+H(γ1, γ2, γ3, γ1, γ2, γ3, u− t, ν0)

)(
pfΣ

2p′f
)2

+
(1− ϵ)2ϕ2

2(r + κ)2κ
ν0(κ, u− t)pfΣ

3p′f

]
×G(γR1 , γ

R
2 , γ

R
3 , u− t, ν0).

Proof: The Sharpe ratio has the form in Lemma E.2. To compute {DCov1,i
wV (u)}i=1,..,6, we use

their definitions in Lemma E.5, together with (3.6), (B.13)-(B.16), (D.8), (D.19), (D.20), and the

derivations in the proof of Lemma D.3. To compute DCov2,1
wV (u), we use its definition in Lemma E.5

and note that (B.10), (B.11) and (D.19) imply

Covt(dRt, w
V
u Σp

′
f ) = −(1− ϵ)ϕ2

(r + κ)2
(
Σ2p′f + β2γ1pfΣ

2p′fΣp
′
f

)
ν0(κ, u− t)dt

+G(γ1, γ2, γ3, u− t, ν0)pfΣ
2p′fΣp

′
fdt. (E.26)

Combining (E.26) with (4.3) and ηΣp′f = 0, we find

E
[
ŵV
t ΛuCovt(dRt, w

V
u Σp

′
f )
]

= E(wV
t Σp

′
fΛu)

(
−(1− ϵ)ϕ2

(r + κ)2
β2γ1ν0(κ, u− t) +G(γ1, γ2, γ3, u− t, ν0)

)
pfΣ

2p′fdt

− E
(
wV
t

(
Σ2p′f − Ση′

ηΣη′
ηΣ2p′f

)
Λu

)
(1− ϵ)ϕ2

(r + κ)2
ν0(κ, u− t)dt. (E.27)

Combining (E.27) with (3.6), (B.13), (B.15), (D.8), (D.19) and (D.20), we find that DCov2,1
wV (u) is

as in the proposition. To compute DCov2,2
wV (u), we use its definition in Lemma E.5 and note that

(B.10) and (3.6) imply

Covt(dRt,Λu) =
1

f + k∆
ηΣη′

G(γR1 , γ
R
2 , γ

R
3 , u− t, ν0)Σp

′
fdt. (E.28)
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Combining (E.28) with (4.3) and ηΣp′f = 0, we find

E
[
ŵV
t w

V
u Σp

′
fCovt(dRt,Λu)

]
=

1

f + k∆
ηΣη′

E(wV
t Σp

′
fw

V
u Σp

′
f )G(γ

R
1 , γ

R
2 , γ

R
3 , u− t, ν0)dt. (E.29)

Combining (E.29) with (D.20) and Cov(wV
t Σp

′
f , w

V
u Σp

′
f ) from the derivation of DCov1,1

wV (u), we find

that DCov2,2
wV (u) is as in the proposition.

Proposition E.3 computes the unconditional Sharpe ratio over investment horizon T of the

momentum strategy.

Proposition E.3. The unconditional Sharpe ratio of the momentum strategy (4.2) over investment

horizon T is SRwM ,T =
N

wM√
D

wM+DCov1
wM,T

+DCov2
wM,T

, where (NwM ,DwM ) are derived in Proposition D.5

and (DCov1
wM ,T

,DCov2
wM ,T

) are defined in Lemma E.5, with

DCov1,1
wM (u) = L2

2

[(
H(γR1 , γ

R
2 , γ

R
3 , γ

R
1 , γ

R
2 , γ

R
3 , T ′, ν3) +H(γR1 , γ

R
2 , γ

R
3 , γ

R
1 , γ

R
2 , γ

R
3 , T ′, ν4)

+G(γR1 , γ
R
2 , γ

R
3 , T ′, ν3) +G(γR1 , γ

R
2 , γ

R
3 , T ′, ν4) + kmax{τ + t− u, 0}

) (
pfΣ

2p′f
)2

+f max{τ + t− u, 0}pfΣ3p′f
]
,

DCov1,2
wM (u) = L2(L1τηΣ

2p′f + L2τpfΣ
2p′f )(H(γR1 , γ

R
2 , γ

R
3 , γ

R
1 , γ

R
2 , γ

R
3 , T ′−, ν2)

+G(γR1 , γ
R
2 , γ

R
3 , T ′−, ν2))pfΣ

2p′f ,

DCov1,3
wM (u) = L2(L1τηΣ

2p′f + L2τpfΣ
2p′f )(H(γR1 , γ

R
2 , γ

R
3 , γ

R
1 , γ

R
2 , γ

R
3 , T ′, ν1)

+H(γR1 , γ
R
2 , γ

R
3 , γ

R
1 , γ

R
2 , γ

R
3 , T ′, ν2) +G(γR1 , γ

R
2 , γ

R
3 , T ′, ν2))pfΣ

2p′f ,

DCov1,4
wM (u) = (L1τηΣ

2p′f + L2τpfΣ
2p′f )

2H(γR1 , γ
R
2 , γ

R
3 , γ

R
1 , γ

R
2 , γ

R
3 , u− t, ν0),

DCov1,5
wM (u) = H(γR1 , γ

R
2 , γ

R
3 , γ

R
1 , γ

R
2 , γ

R
3 , u− t, ν0)

[(
H(γR1 , γ

R
2 , γ

R
3 , γ

R
1 , γ

R
2 , γ

R
3 , T ′, ν3)

+H(γR1 , γ
R
2 , γ

R
3 , γ

R
1 , γ

R
2 , γ

R
3 , T ′, ν4) +G(γR1 , γ

R
2 , γ

R
3 , T ′, ν3) +G(γR1 , γ

R
2 , γ

R
3 , T ′, ν4)

+kmax{τ + t− u, 0})
(
pfΣ

2p′f
)2

+ f max{τ + t− u, 0}pfΣ3p′f

]
,

DCov1,6
wM (u) = (H(γR1 , γ

R
2 , γ

R
3 , γ

R
1 , γ

R
2 , γ

R
3 , T ′−, ν2) +G(γR1 , γ

R
2 , γ

R
3 , T ′−, ν2))

× (H(γR1 , γ
R
2 , γ

R
3 , γ

R
1 , γ

R
2 , γ

R
3 , T ′, ν1) +H(γR1 , γ

R
2 , γ

R
3 , γ

R
1 , γ

R
2 , γ

R
3 , T ′, ν2)
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+G(γR1 , γ
R
2 , γ

R
3 , T ′, ν2))

(
pfΣ

2p′f
)2

DCov2,1
wM (u) =

[
L1L2τηΣ

2p′f +
(
L2
2τ +H(γR1 , γ

R
2 , γ

R
3 , γ

R
1 , γ

R
2 , γ

R
3 , T ′−, ν2) +G(γR1 , γ

R
2 , γ

R
3 , T ′−, ν2)

)
pfΣ

2p′f
]

×
(
G(γR1 , γ

R
2 , γ

R
3 , T ′, ν1) + k1{τ+t−u>0}

)
pfΣ

2p′f

+

[
L1L2τ

(
ηΣ3p′f −

ηΣ2η′ηΣ2p′f
ηΣη′

)
+
(
L2
2τ +H(γR1 , γ

R
2 , γ

R
3 , γ

R
1 , γ

R
2 , γ

R
3 , T ′−, ν2)

+G(γR1 , γ
R
2 , γ

R
3 , T ′−, ν2))

(
pfΣ

3p′f −
(ηΣ2p′f )

2

ηΣη′

)]
f1{τ+t−u>0},

DCov2,2
wM (u) =

[(
L1τηΣ

2p′f + L2τpfΣ
2p′f
)2

+
(
H(γR1 , γ

R
2 , γ

R
3 , γ

R
1 , γ

R
2 , γ

R
3 , T ′, ν3)

+H(γR1 , γ
R
2 , γ

R
3 , γ

R
1 , γ

R
2 , γ

R
3 , T ′, ν4) +G(γR1 , γ

R
2 , γ

R
3 , T ′, ν3) +G(γR1 , γ

R
2 , γ

R
3 , T ′, ν4)

+kmax{τ + t− u, 0})
(
pfΣ

2p′f
)2

+ f max{τ + t− u, 0}pfΣ3p′f

]
G(γR1 , γ

R
2 , γ

R
3 , u− t, ν0),

where T ′ = (u− t, τ) and T ′− = (t− u, τ).

Proof: The Sharpe ratio has the form in Lemma E.2. To compute {DCov1,i
wM (u)}i=1,..6, we use their

definitions in Lemma E.5 together with (A.2), (3.6), (B.10), (B.13), (D.8), (D.48), (D.49), (D.51)

and the derivations in the proof of Lemma D.4. To compute DCov2,1
wM (u), we use its definition in

Lemma E.5 and note that (D.48) implies

Covt(dRt, w
M
u Σp′f ) =

(
f +

k∆

ηΣη′

)(∫ u

u−τ
Covt (dRt,Λt′) dt

′
)
pfΣ

2p′f + Covt(dRt, dR
′
t)1{τ+t−u>0}Σp

′
f

= G(γR1 , γ
R
2 , γ

R
3 , T ′, ν1)pfΣ

2p′fΣp
′
f + (fΣ2p′f + kpfΣ

2p′fΣp
′
f )1{τ+t−u>0},

(E.30)

where the second step follows from (A.2), (3.6) and (B.10). Combining (E.30) with (4.3) and

ηΣp′f = 0, we find

E
[
ŵM
t ΛuCovt(dRt, w

M
u Σp′f )

]
= E(wM

t Σp′fΛu)
(
G(γR1 , γ

R
2 , γ

R
3 , T ′, ν1) + k1{τ+t−u>0}

)
pfΣ

2p′fdt

− E
(
wM
t

(
Σ2p′f − Ση′

ηΣη′
ηΣ2p′f

)
Λu

)
f1{τ+t−u>0}dt. (E.31)
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Combining (E.31) with (D.8), (D.49) and Cov(wM
t Σp′f ,Λu) from the derivation of DCov1,2

wM (u), we

find that DCov2,1
wM (u) is as in the proposition. To compute DCov2,2

wM (u), we use its definition in Lemma

E.5 and combine

E
[
ŵM
t w

M
u Σp′fCovt(dRt,Λu)

]
=

1

f + k∆
ηΣη′

E(wM
t Σp′fw

M
u Σp′f )G(γ

R
1 , γ

R
2 , γ

R
3 , u− t, ν0)dt,

which is the counterpart of (E.29) for momentum, with (D.49) and Cov(wM
t Σp′f , w

M
u Σp′f ) from the

derivation of DCov1,1
wM (u).

Proposition E.4 computes the Sharpe ratios of the value strategy and the momentum strategy

conditional on (Ĉt, yt) and over investment horizon T .

Proposition E.4. The Sharpe ratios of the value strategy (4.1) and the momentum strategy (4.2)

conditional on (Ĉt, yt) and over investment horizon T are SRwj ,t,T =
N

wj,t,T√
D

wj,t,T
+DCov1

wj,t,T
+DCov2

wj,t,T

,

where j = V for value and j =M for momentum,

Nwj ,t,T =
1

T

∫ t+T

t

[(
L2 + δΛ12,u−t(Ĉt − C̄) + δΛ3,u−t(yt − ȳ)

)
×
(
L1z

jηΣ2p′f +
(
L2z

j + δj12,u−t(Ĉt − C̄) + δj3,u−t(yt − ȳ)
)
pfΣ

2p′f

)
+ CjΛ

u−t,u−tpfΣ
2p′f

]
du,

Dwj ,t,T =
1

T

∫ t+T

t

[
L2
1(z

j)2∆1 + 2L1z
j
(
L2z

j + δj12,u−t(Ĉt − C̄) + δj3,u−t(yt − ȳ)
)
∆2

×
((

L2z
j + δj12,u−t(Ĉt − C̄) + δj3,u−t(yt − ȳ)

)2
+ Cj

u−t,u−t

)
∆3 + CjΣ

u−t∆4

]
du,

and (DCov1
wj ,t,T

,DCov2
wj ,t,T

) are defined in Lemma E.4, with

DCov1,1
wj ,t

(u, u′) =
(
L2 + δΛ12,u−t(Ĉt − C̄) + δΛ3,u−t(yt − ȳ)

)
×
(
L2 + δΛ12,u′−t(Ĉt − C̄) + δΛ3,u′−t(yt − ȳ)

)(
Cj
u−t,u′−t(pfΣ

2p′f )
2 + CjΣ

u′−upfΣ
3p′f

)
,

DCov1,2
wj ,t

(u, u′) =
(
L2 + δΛ12,u−t(Ĉt − C̄) + δΛ3,u−t(yt − ȳ)

)
×
(
L1z

jηΣ2p′f +
(
L2z

j + δj12,u′−t(Ĉt − C̄) + δj3,u′−t(yt − ȳ)
)
pfΣ

2p′f

)
CjΛ
u−t,u′−tpfΣ

2p′f ,

DCov1,3
wj ,t

(u, u′) =
(
L1z

jηΣ2p′f +
(
L2z

j + δj12,u−t(Ĉt − C̄) + δj3,u−t(yt − ȳ)
)
pfΣ

2p′f

)
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×
(
L2 + δΛ12,u′−t(Ĉt − C̄) + δΛ3,u′−t(yt − ȳ)

)
CΛj
u−t,u′−tpfΣ

2p′f ,

DCov1,4
wj ,t

(u, u′) =
(
L1z

jηΣ2p′f +
(
L2z

j + δj12,u−t(Ĉt − C̄) + δj3,u−t(yt − ȳ)
)
pfΣ

2p′f

)
×
(
L1z

jηΣ2p′f +
(
L2z

j + δj12,u′−t(Ĉt − C̄) + δj3,u′−t(yt − ȳ)
)
pfΣ

2p′f

)
CΛ
u−t,u′−t,

DCov1,5
wM ,t

(u, u′) = CΛ
u−t,u′−t

(
Cj
u−t,u′−t(pfΣ

2p′f )
2 + CjΣ

u′−upfΣ
3p′f

)
,

DCov1,6
wM ,t

(u, u′) = CjΛ
u−t,u′−tC

Λj
u−t,u′−t(pfΣ

2p′f )
2,

DCov2,1
wM ,t

(u, u′) =
[(
L1z

jηΣ2p′f +
(
L2z

j + δj12,u−t(Ĉt − C̄) + δj3,u−t(yt − ȳ)
)
pfΣ

2p′f

)
×
(
L2 + δΛ12,u′−t(Ĉt − C̄) + δΛ3,u′−t(yt − ȳ)

)
+ CjΛ

u−t,u′−tpfΣ
2p′f

]
×
[
1{j=V }

(
−(1− ϵ)ϕ2

(r + κ)2
β2γ1ν0(κ, u

′ − u) +G(γ1, γ2, γ3, u
′ − u, ν0)

)

+ 1{j=M}
(
G(γR1 , γ

R
2 , γ

R
3 , (u

′ − u, τ), ν1) + k1{τ+u−u′>0}
)]
pfΣ

2p′f

+

[(
L2 + δΛ12,u−t(Ĉt − C̄) + δΛ3,u−t(yt − ȳ)

)(
L1z

j

(
ηΣ3p′f −

ηΣ2η′ηΣ2p′f
ηΣη′

)

+
(
L2z

j + δj12,u′−t(Ĉt − C̄) + δj3,u′−t(yt − ȳ)
)(

pfΣ
3p′f −

(ηΣ2p′f )
2

ηΣη′

))

+CjΛ
u−t,u′−t

(
pfΣ

3p′f −
(ηΣ2p′f )

2

ηΣη′

)][
1{j=M}f1{τ+u−u′>0} − 1{j=V }

(1− ϵ)ϕ2

(r + κ)2
ν0(κ, u

′ − u)

]
,

DCov2,2
wM ,t

(u, u′) =
[(
L1z

jηΣ2p′f +
(
L2z

j + δj12,u−t(Ĉt − C̄) + δj3,u−t(yt − ȳ)
)
pfΣ

2p′f

)
×
(
L1z

jηΣ2p′f +
(
L2z

j + δj12,u′−t(Ĉt − C̄) + δj3,u′−t(yt − ȳ)
)
pfΣ

2p′f

)
+Cj

u−t,u′−t(pfΣ
2p′f )

2 + CjΣ
u′−upfΣ

3p′f

]
G(γR1 , γ

R
2 , γ

R
3 , u− t, ν0),

and (zV , zM ) =
(
1
r , τ
)
.

Proof: The Sharpe ratio has the form in Lemma E.1. To compute Nwj ,t,T , we note that (D.1) and

(E.1) imply

Nwj ,t,T ≡ 1

T

∫ t+T

t

(
f +

k∆

ηΣη′

)
EIt

(
Λuw

j
uΣp

′
f

)
du,
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and we compute the integrand using the decomposition in (D.17) together with (D.24)-(D.26),

(D.56) and (D.57). To compute Dwj ,t,T , we note that (D.2) and (E.2) imply

Dwj ,t,T ≡ 1

T

∫ t+T

t

f
EIt

(
wj
uΣ(w

j
u)

′)− EIt

[(
wj
uΣη′

)2]
ηΣη′

+ kEIt

[(
wj
uΣp

′
f

)2]
 du,

and we compute the integrand using the decomposition in (D.18) together with (D.24), (D.28)

(D.56) and (D.59). To compute {DCov1,i
wj ,t

(u)}i=1,..,6, we use their definitions in Lemma E.4 together

with (D.24)-(D.29) and (D.56)-(D.59). To compute {DCov2,i
wj ,t

(u)}i=1,2, we use their definitions in

Lemma E.4 and proceed as in the proofs of Propositions E.2 and E.3 replacing unconditional

expectations E(wj
tΣp

′
fΛu) and E(wj

tΣp
′
fw

j
uΣp′f ) by conditional expectations EIt(w

j
uΣp′fΛu′) and

EIt(w
j
uΣp′fw

j
u′Σp′f ).

Lemma E.6 computes the unconditional covariance between the returns of (the index-adjusted

versions of) two strategies (wA
t , w

B
t ) over investment horizon T .

Lemma E.6. The unconditional covariance between the returns of (wA
t , w

B
t ) over investment hori-

zon T is given by

1

T
Cov

(∫ T

0
ŵA
t dRt,

∫ T

0
ŵB
t dRt

)
= GwA,wB + GCov1

wA,wB ,T
+ GCov2

wA,wB ,T
, (E.32)

where

GwA,wB ≡ 1

dt
Cov

(
ŵA
t dRt, ŵ

B
t dRt

)
= f

[
E
(
wA
t Σ
(
wB
t

)′)− E
(
wA
t Ση

′wB
t Ση

′)
ηΣη′

]
+ kE

(
wA
t Σp

′
fw

B
t Σp

′
f

)
,

is the unconditional version of GwA,wB ,t defined in Lemma D.6, and

GCov1
wA,wB ,T

≡ 1

dt

∫ t+T

t

(
1− u− t

T

){
Cov

[
ŵA
t Et(dRt), ŵ

B
u Eu(dRu)

]
+ Cov

[
ŵB
t Et(dRt), ŵ

A
u Eu(dRu)

]}
,

(E.33)
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GCov2
wA,wB ,T

≡ 1

dt

∫ t+T

t

(
1− u− t

T

)(
E
{
ŵA
t Covt

[
dRt, ŵ

B
u Eu(dRu)

]}
+ E

{
ŵB
t Covt

[
dRt, ŵ

A
u Eu(dRu)

]})
.

(E.34)

When the strategies (wA
t , w

B
t ) are linear, G

Cov1
wA,wB ,T

=
∑6

i=1

∫ t+T
t

(
1− u−t

T

) [
GCov1,i
wA,wB (u) + GCov1,i

wB ,wA(u)
]
du,

where

GCov1,1
wj ,wk (u) ≡

(
f +

k∆

ηΣη′

)2

E(Λt)
2Cov(wj

tΣp
′
f , w

k
uΣp

′
f ),

GCov1,2
wj ,wk (u) ≡

(
f +

k∆

ηΣη′

)2

E(Λt)E(wk
tΣp

′
f )Cov(w

j
tΣp

′
f ,Λu),

GCov1,3
wj ,wk (u) ≡

(
f +

k∆

ηΣη′

)2

E(Λt)E(wj
tΣp

′
f )Cov(Λt, w

k
uΣp

′
f ),

GCov1,4
wj ,wk (u) ≡

(
f +

k∆

ηΣη′

)2

E(wj
tΣp

′
f )E(wk

tΣp
′
f )Cov(Λt,Λu),

GCov1,5
wj ,wk (u) ≡

(
f +

k∆

ηΣη′

)2

Cov(Λt,Λu)Cov(wj
tΣp

′
f , w

k
uΣp

′
f ),

GCov1,6
wj ,wk (u) ≡

(
f +

k∆

ηΣη′

)2

Cov(wj
tΣp

′
f ,Λu)Cov(Λt, w

k
uΣp

′
f ),

and GCov2
wA,wB ,T

=
∑2

i=1

∫ t+T
t

(
1− u−t

T

) [
GCov2,i
wA,wB (u) + GCov2,i

wB ,wA(u)
]
du, where

GCov2,1
wj ,wk (u) ≡

1

dt

(
f +

k∆

ηΣη′

)
E
[
ŵj
tΛuCovt(dRt, w

k
uΣp

′
f )
]
,

GCov2,2
wj ,wk (u) ≡

1

dt

(
f +

k∆

ηΣη′

)
E
[
ŵj
tw

k
uΣp

′
fCovt(dRt,Λu)

]
,

for j, k ∈ {A,B} and j ̸= k.

Proof: The covariance between the returns of (wA
t , w

B
t ) conditional on It and over investment

horizon T is given by

1

T
CovIt

(∫ t+T

t
ŵA
u dRu,

∫ t+T

t
ŵB
u dRu

)

=
1

T

∫ t+T

t
CovIt

(
ŵA
u dRu, ŵ

B
u dRu

)
+

1

T

∫ t+T

u=t

∫ t+T

u′=t
CovIt

(
ŵA
u dRu, ŵ

B
u′dRu′

)
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=
1

T

∫ t+T

t
CovIt

(
ŵA
u dRu, ŵ

B
u dRu

)
+

1

T

∫ t+T

u=t

∫ t+T

u′=u
CovIt

(
ŵA
u dRu, ŵ

B
u′dRu′

)
+

1

T

∫ t+T

u=t

∫ t+T

u′=u
CovIt

(
ŵB
u dRu, ŵ

A
u′dRu′

)
(E.35)

where the first step follows by separating the covariance between contemporaneous returns and

the covariance between lagged returns. Proceeding as in the derivation of (E.7), we can write the

second term in (E.35) as

1

T

∫ t+T

u=t

∫ t+T

u′=u

{
CovIt

[
ŵA
u Eu(dRu), ŵ

B
u′Eu′(dRu′)

]
+ EIt

[
ŵB
u Covu(dRu, ŵ

A
u′Eu′(dRu′))

]}
(E.36)

and the third term as

1

T

∫ t+T

u=t

∫ t+T

u′=u

{
CovIt

[
ŵB
u Eu(dRu), ŵ

A
u′Eu′(dRu′)

]
+ EIt

[
ŵB
u Covu(dRu, ŵ

A
u′Eu′(dRu′))

]}
. (E.37)

When the covariance is unconditional (It = ∅), we can proceed as in the proof of Lemma E.2 to

show that the first term in (E.35) becomes GwA,wB , and (E.36) and (E.37) become GCov1
wA,wB ,T

and

GCov2
wA,wB ,T

, respectively. When the strategies (wA
t , w

B
t ) are linear, we can proceed as in the proof of

Lemma E.5 to show GCov1
wA,wB ,T

=
∑6

i=1

∫ t+T
t

(
1− u−t

T

) [
GCov1,i
wA,wB (u) + GCov1,i

wB ,wA(u)
]
du and GCov2

wA,wB ,T
=∑2

i=1

∫ t+T
t

(
1− u−t

T

) [
GCov2,i
wA,wB (u) + GCov2,i

wB ,wA(u)
]
du, with

{
{GCov1,i

wj ,wk (u)}i=1,..,6, {GCov2,i
wj ,wk (u)}i=1,2

}
j,k∈{A,B},j ̸=k

as in the proposition.

Proposition E.5 computes the unconditional instantaneous correlation of a general strategy of

the form wt = (δ0 + δ1Ĉt + δ2Ct + δ3yt)pf with value and momentum.

Proposition E.5. The unconditional instantaneous correlation of a strategy wt = (δ0 + δ1Ĉt +

δ2Ct + δ3yt)pf with value and momentum is Corr(ŵj
tdRt, ŵtdRt) =

G
wj,w√
D

wjDw
, where j = V for

value and j = M for momentum, Dw is derived in Proposition E.1, {Dwj}j=V,M are derived in

Propositions D.2 and D.5,

GwV ,w =

(
f +

k∆

ηΣη′

)[(
L1

r
ηΣ2p′f +

L2

r
pfΣ

2p′f

)(
δ0 + (δ1 + δ2)C̄ + δ3ȳ

)
+

(
− 1− ϵ

r + κ
K1(δ1, δ3, 0, ν0) +H(γ1, γ2, γ3, δ1, δ2, δ3, 0, ν0)

)
pfΣ

2p′f

]
,
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GwM ,w =

(
f +

k∆

ηΣη′

)[(
L1τηΣ

2p′f + L2τpfΣ
2p′f
) (
δ0 + (δ1 + δ2)C̄ + δ3ȳ

)
+
(
H(γR1 , γ

R
2 , γ

R
3 , δ1, δ2, δ3, T , ν2) +G(δ1, δ2, δ3, T , ν2)

)
pfΣ

2p′f
]
,

and T = (0, τ).

Proof: Since DwV = Var(ŵV
t dRt), DwM = Var(ŵM

t dRt) and Dw = Var(ŵtdRt), the results on the

unconditional instantaneous correlation will follow if we show Cov(ŵV
t dRt, ŵtdRt) = GwV ,wdt and

Cov(ŵM
t dRt, ŵtdRt) = GwM ,wdt. Using Lemma D.6 and noting that ηΣp′f = 0 implies wtΣη

′ = 0,

we find

Cov
(
ŵj
tdRt, ŵtdRt

)
= fE

(
wj
tΣw

′
t

)
+ kE

(
wj
tΣp

′
fwtΣp

′
f

)
= fE(wj

t )ΣE(wt)
′ + kE

(
wj
t

)
Σp′fE(wt)Σp

′
f + fCov

(
wj
t ,Σw

′
t

)
+ kCov

(
wj
tΣp

′
f , wtΣp

′
f

)
=

(
f +

k∆

ηΣη′

)[
E
(
wj
t

)
Σp′f

(
δ0 + (δ1 + δ2)C̄ + δ3ȳ

)
+ Cov

(
wj
t , δ0 + δ1Ĉt + δ2Ct + δ3yt

)
Σp′f

]
(E.38)

for j = V,M , where the third step follows from wt = (δ0 + δ1Ĉt + δ2Ct + δ3yt)pf . Combin-

ing (E.38) with (D.20), and computing Cov
(
wV
t , δ0 + δ1Ĉt + δ2Ct + δ3yt

)
as in the derivation of

(D.22), we find Cov(ŵV
t dRt, ŵtdRt) = GwV ,wdt. Combining (E.38) with (D.49), and computing

Cov
(
wM
t , δ0 + δ1Ĉt + δ2Ct + δ3yt

)
as in the derivation of (D.52), we find Cov(ŵM

t dRt, ŵtdRt) =

GwM ,wdt.

Proposition E.6 computes the unconditional correlation of a general strategy of the form wt =

(δ0 + δ1Ĉt + δ2Ct + δ3yt)pf with value and momentum over investment horizon T .

Proposition E.6. The unconditional correlation of a strategy wt = (δ0 + δ1Ĉt + δ2Ct + δ3yt)pf

with value and momentum over investment horizon T is

Corr
(∫ t+T

t
ŵj
udRu,

∫ t+T

t
ŵudRu

)
=

Gwj ,w + GCov1
wj ,w,T

+ GCov2
wj ,w,T√(

Dwj +DCov1
wj ,T

+DCov2
wj ,T

)(
Dw +DCov1

w,T +DCov2
w,T

) , (E.39)
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where j = V for value and j = M for momentum,
(
Dw,DCov1

w,T ,DCov2
w,T

)
are derived in Proposition

E.1, {Dwj}j=V,M are derived in Propositions D.2 and D.5,
{(

DCov1
wj ,T

,DCov2
wj ,T

)}
j=V,M

are derived in

Propositions E.2 and E.3, {Gwj ,w}j=V,M are derived in Proposition E.5, and
{(

GCov1
wj ,w,T

,GCov2
wj ,w,T

)}
j=V,M

are defined in Lemma E.6, with

GCov1,1
wV ,w

(u) = L2
2

(
− 1− ϵ

r + κ
K2(δ1, δ3, u− t, ν0) +H(γ1, γ2, γ3, δ1, δ2, δ3, u− t, ν0)

)
pfΣ

2p′f∆

ηΣη′
,

GCov1,1
w,wV (u) = L2

2

(
− 1− ϵ

r + κ
K1(δ1, δ3, u− t, ν0) +H(δ1, δ2, δ3, γ1, γ2, γ3, u− t, ν0)

)
pfΣ

2p′f∆

ηΣη′
,

GCov1,1
wM ,w

(u) = L2
2

(
H(γR1 , γ

R
2 , γ

R
3 , δ1, δ2, δ3, T ′−, ν2) +G(δ1, δ2, δ3, T ′−, ν2)

) pfΣ2p′f∆

ηΣη′
,

GCov1,1
w,wM (u) = L2

2

(
H(δ1, δ2, δ3, γ

R
1 , γ

R
2 , γ

R
3 , T ′, ν1) +H(γR1 , γ

R
2 , γ

R
3 , δ1, δ2, δ3, T ′, ν2)

+G(δ1, δ2, δ3, T ′, ν2)
) pfΣ2p′f∆

ηΣη′
,

GCov1,2
wV ,w

(u) = L2

(
δ0 + (δ1 + δ2)C̄ + δ3ȳ

)
×
(
− 1− ϵ

r + κ
K2(γ

R
1 , γ

R
3 , u− t, ν0) +H(γ1, γ2, γ3, γ

R
1 , γ

R
2 , γ

R
3 , u− t, ν0)

)
pfΣ

2p′f∆

ηΣη′
,

GCov1,2
w,wV (u) = L2

(
L1

r
ηΣ2p′f +

L2

r
pfΣ

2p′f

)
H(δ1, δ2, δ3, γ

R
1 , γ

R
2 , γ

R
3 , u− t, ν0)

∆

ηΣη′
,

GCov1,2
wM ,w

(u) = L2

(
δ0 + (δ1 + δ2)C̄ + δ3ȳ

)
×
(
H(γR1 , γ

R
2 , γ

R
3 , γ

R
1 , γ

R
2 , γ

R
3 , T ′−, ν2) +G(γR1 , γ

R
2 , γ

R
3 , T ′−, ν2)

) pfΣ2p′f∆

ηΣη′
,

GCov1,2
w,wM (u) = L2

(
L1τηΣ

2p′f + L2τpfΣ
2p′f
)
H(δ1, δ2, δ3, γ

R
1 , γ

R
2 , γ

R
3 , u− t, ν0)

∆

ηΣη′
,

GCov1,3
wV ,w

(u) = L2

(
L1

r
ηΣ2p′f +

L2

r
pfΣ

2p′f

)
H(γR1 , γ

R
2 , γ

R
3 , δ1, δ2, δ3, u− t, ν0)

∆

ηΣη′
,

GCov1,3
w,wV (u) = L2

(
δ0 + (δ1 + δ2)C̄ + δ3ȳ

)
×
(
− 1− ϵ

r + κ
K1(γ

R
1 , γ

R
3 , u− t, ν0) +H(γR1 , γ

R
2 , γ

R
3 , γ1, γ2, γ3, u− t, ν0)

)
pfΣ

2p′f∆

ηΣη′
,

GCov1,3
wM ,w

(u) = L2

(
L1τηΣ

2p′f + L2τpfΣ
2p′f
)
H(γR1 , γ

R
2 , γ

R
3 , δ1, δ2, δ3, u− t, ν0)

∆

ηΣη′
,
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GCov1,3
wM ,w

(u) = L2

(
δ0 + (δ1 + δ2)C̄ + δ3ȳ

) (
H(γR1 , γ

R
2 , γ

R
3 , γ

R
1 , γ

R
2 , γ

R
3 , T ′, ν1)

+H(γR1 , γ
R
2 , γ

R
3 , γ

R
1 , γ

R
2 , γ

R
3 , T ′, ν2) +G(γR1 , γ

R
2 , γ

R
3 , T ′, ν2)

) pfΣ2p′f∆

ηΣη′
,

GCov1,4
wV ,w

(u) = GCov1,4
w,wV (u) =

(
L1

r
ηΣ2p′f +

L2

r
pfΣ

2p′f

)(
δ0 + (δ1 + δ2)C̄ + δ3ȳ

)
×H(γR1 , γ

R
2 , γ

R
3 , γ

R
1 , γ

R
2 , γ

R
3 , u− t, ν0)

∆

ηΣη′
,

GCov1,4
wM ,w

(u) = GCov1,4
w,wM (u) =

(
L1τηΣ

2p′f + L2τpfΣ
2p′f
) (
δ0 + (δ1 + δ2)C̄ + δ3ȳ

)
×H(γR1 , γ

R
2 , γ

R
3 , γ

R
1 , γ

R
2 , γ

R
3 , u− t, ν0)

∆

ηΣη′
,

GCov1,5
wV ,w

(u) = H(γR1 , γ
R
2 , γ

R
3 , γ

R
1 , γ

R
2 , γ

R
3 , u− t, ν0)

×
(
− 1− ϵ

r + κ
K2(δ1, δ3, u− t, ν0) +H(γ1, γ2, γ3, δ1, δ2, δ3, u− t, ν0)

)
pfΣ

2p′f∆

ηΣη′
,

GCov1,5
w,wV (u) = H(γR1 , γ

R
2 , γ

R
3 , γ

R
1 , γ

R
2 , γ

R
3 , u− t, ν0)

×
(
− 1− ϵ

r + κ
K1(δ1, δ3, u− t, ν0) +H(δ1, δ2, δ3, γ1, γ2, γ3, u− t, ν0)

)
pfΣ

2p′f∆

ηΣη′
,

GCov1,5
wM ,w

(u) = H(γR1 , γ
R
2 , γ

R
3 , γ

R
1 , γ

R
2 , γ

R
3 , u− t, ν0)

×
(
H(γR1 , γ

R
2 , γ

R
3 , δ1, δ2, δ3, T ′−, ν2) +G(δ1, δ2, δ3, T ′−, ν2)

) pfΣ2p′f∆

ηΣη′
,

GCov1,5
wM ,w

(u) = H(γR1 , γ
R
2 , γ

R
3 , γ

R
1 , γ

R
2 , γ

R
3 , u− t, ν0)

(
H(δ1, δ2, δ3, γ

R
1 , γ

R
2 , γ

R
3 , T ′, ν1)

+H(γR1 , γ
R
2 , γ

R
3 , δ1, δ2, δ3, T ′, ν2) +G(δ1, δ2, δ3, T ′, ν2)

) pfΣ2p′f∆

ηΣη′
,

GCov1,6
wV ,w

(u) =

(
− 1− ϵ

r + κ
K2(γ

R
1 , γ

R
3 , u− t, ν0) +H(γ1, γ2, γ3, γ

R
1 , γ

R
2 , γ

R
3 , u− t, ν0)

)

×H(γR1 , γ
R
2 , γ

R
3 , δ1, δ2, δ3, u− t, ν0)

pfΣ
2p′f∆

ηΣη′
,

GCov1,6
w,wV (u) = H(δ1, δ2, δ3, γ

R
1 , γ

R
2 , γ

R
3 , u− t, ν0)

×
(
− 1− ϵ

r + κ
K1(γ

R
1 , γ

R
3 , u− t, ν0) +H(γR1 , γ

R
2 , γ

R
3 , γ1, γ2, γ3, u− t, ν0)

)
pfΣ

2p′f∆

ηΣη′
,

GCov1,6
wM ,w

(u) =
(
H(γR1 , γ

R
2 , γ

R
3 , γ

R
1 , γ

R
2 , γ

R
3 , T ′−, ν2) +G(γR1 , γ

R
2 , γ

R
3 , T ′−, ν2)

)
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×H(γR1 , γ
R
2 , γ

R
3 , δ1, δ2, δ3, u− t, ν0)

pfΣ
2p′f∆

ηΣη′
,

GCov1,6
w,wM (u) = H(δ1, δ2, δ3, γ

R
1 , γ

R
2 , γ

R
3 , u− t, ν0)

(
H(γR1 , γ

R
2 , γ

R
3 , γ

R
1 , γ

R
2 , γ

R
3 , T ′, ν1)

+H(γR1 , γ
R
2 , γ

R
3 , γ

R
1 , γ

R
2 , γ

R
3 , T ′, ν2) +G(γR1 , γ

R
2 , γ

R
3 , T ′, ν2)

) pfΣ2p′f∆

ηΣη′
,

GCov2,1
wV ,w

(u) =

[
L1L2

r
ηΣ2p′f +

(
L2
2

r
− 1− ϵ

r + κ
K2(γ

R
1 , γ

R
3 , u− t, ν0) +H(γ1, γ2, γ3, γ

R
1 , γ

R
2 , γ

R
3 , u− t, ν0)

)

× pfΣ
2p′f

]
G(δ1, δ2, δ3, u− t, ν0)

∆

ηΣη′
,

GCov2,1
w,wV (u) =

[
L2

(
δ0 + (δ1 + δ2)C̄ + δ3ȳ

)
+H(δ1, δ2, δ3, γ

R
1 , γ

R
2 , γ

R
3 , u− t, ν0)

]
pfΣ

2p′f

×
[(

−(1− ϵ)ϕ2

(r + κ)2
β2γ1ν0(κ, u− t) +G(γ1, γ2, γ3, u− t, ν0)

)
∆

ηΣη′
− (1− ϵ)ϕ2

(r + κ)2
ν0(κ, u− t)

]
,

GCov2,1
wM ,w

(u) =
[
L1L2τηΣ

2p′f +
(
L2
2τ +H(γR1 , γ

R
2 , γ

R
3 , γ

R
1 , γ

R
2 , γ

R
3 , T ′−, ν2) +G(γR1 , γ

R
2 , γ

R
3 , T ′−, ν2)

)
×pfΣ2p′f

]
G(δ1, δ2, δ3, u− t, ν0)

∆

ηΣη′
,

GCov2,1
w,wM (u) =

[
L2

(
δ0 + (δ1 + δ2)C̄ + δ3ȳ

)
+H(δ1, δ2, δ3, γ

R
1 , γ

R
2 , γ

R
3 , u− t, ν0)

]
pfΣ

2p′f

×
[(
G(γR1 , γ

R
2 , γ

R
3 , T ′, ν1) + k1{τ+t−u>0}

) ∆

ηΣη′
+ f1{τ+t−u>0}

]
,

GCov2,2
wV ,w

(u) =

[(
L1

r
ηΣ2p′f +

L2

r
pfΣ

2p′f

)(
δ0 + (δ1 + δ2)C̄ + δ3ȳ

)
+

(
− 1− ϵ

r + κ
K2(δ1, δ3, u− t, ν0)

+H(γ1, γ2, γ3, δ1, δ2, δ3, u− t, ν0)

)
pfΣ

2p′f

]
G(γR1 , γ

R
2 , γ

R
3 , u− t, ν0)

∆

ηΣη′
,

GCov2,2
w,wV (u) =

[(
L1

r
ηΣ2p′f +

L2

r
pfΣ

2p′f

)(
δ0 + (δ1 + δ2)C̄ + δ3ȳ

)
+

(
− 1− ϵ

r + κ
K1(δ1, δ3, u− t, ν0)

+H(δ1, δ2, δ3, γ1, γ2, γ3, u− t, ν0)

)
pfΣ

2p′f

]
G(γR1 , γ

R
2 , γ

R
3 , u− t, ν0)

∆

ηΣη′
,

GCov2,2
wM ,w

(u) =
[(
L1τηΣ

2p′f + L2τpfΣ
2p′f
) (
δ0 + (δ1 + δ2)C̄ + δ3ȳ

)
+
(
H(γR1 , γ

R
2 , γ

R
3 , δ1, δ2, δ3, T ′−, ν2)

+G(δ1, δ2, δ3, T ′−, ν2)
)
pfΣ

2p′f
]
G(γR1 , γ

R
2 , γ

R
3 , u− t, ν0)

∆

ηΣη′
,

GCov2,2
w,wM (u) =

[(
L1τηΣ

2p′f + L2τpfΣ
2p′f
) (
δ0 + (δ1 + δ2)C̄ + δ3ȳ

)
+
(
H(δ1, δ2, δ3, γ

R
1 , γ

R
2 , γ

R
3 , T ′, ν1)

+H(γR1 , γ
R
2 , γ

R
3 , δ1, δ2, δ3, T ′, ν2) +G(δ1, δ2, δ3, T ′, ν2)

)
pfΣ

2p′f
]
G(γR1 , γ

R
2 , γ

R
3 , u− t, ν0)

∆

ηΣη′
,
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where T ′ = (u− t, τ) and T ′− = (t− u, τ).

Proof: To show the proposition, we need to show that the definitions of

{{
GCov1,i
wj ,w,T

(u)
}
i=1,..,6

,

{
GCov2,i
wj ,w,T

(u)
}
i=1,2

}
j=V,M

in Lemma E.6 yield the equations in the proposition. The equations fol-

low from the derivations in Propositions E.2 and E.3. (These derivations determine the covariances{
Cov(wj

tΣp
′
f , (δ0 + δ1Ĉu + δ2Cu + δ3yu))

}
j=V,M

and
{
Cov((δ0 + δ1Ĉt + δ2Ct + δ3yt), w

j
uΣp′f )

}
j=V,M

by replacing (γR1 , γ
R
2 , γ

R
3 ) by (δ1, δ2, δ3).)

Proposition E.7 computes the unconditional correlation between the returns of value and mo-

mentum strategies over investment horizon T .

Proposition E.7. The unconditional correlation between the returns of the value strategy (4.1)

and the momentum strategy (4.2) over investment horizon T is

Corr
(∫ t+T

t
ŵV
u dRu,

∫ t+T

t
ŵM
u dRu

)
=

GwV ,wM + GCov1
wV ,wM ,T

+ GCov2
wV ,wM ,T√(

DwV +DCov1
wV ,T

+DCov2
wV ,T

)(
DwM +DCov1

wM ,T
+DCov2

wM ,T

) ,
(E.40)

where DwV , DwM and GwV ,wM are derived in Propositions D.2, D.5 and D.7, respectively, (DCov1
wV ,T

,DCov2
wV ,T

)

and (DCov1
wM ,T

,DCov2
wM ,T

) are derived in Propositions E.2 and E.3, respectively, and (GCov1
wV ,wM ,T

,GCov2
wV ,wM ,T

)

are defined in Lemma E.6, with

GCov1,1
wV ,wM (u) = L2

2

[(
− 1− ϵ

r + κ

[
K2(γ

R
1 , γ

R
3 , T ′, ν1) +K1(γ

R
1 , γ

R
3 , T ′, ν2)

]
− (1− ϵ)ϕ2

(r + κ)2
β2γ1ν2(κ, T ′)

+H(γ1, γ2, γ3, γ
R
1 , γ

R
2 , γ

R
3 , T ′, ν1) +H(γR1 , γ

R
2 , γ

R
3 , γ1, γ2, γ3, T ′, ν2)

+G(γ1, γ2, γ3, T ′, ν2)

)
(pfΣp

′
f )

2 − (1− ϵ)ϕ2

(r + κ)2
ν2(κ, T ′)pfΣ

3p′f

]
,

GCov1,1
wM ,wV (u) = L2

2

[(
− 1− ϵ

r + κ
K1(γ

R
1 , γ

R
3 , T ′−, ν2)−

(1− ϵ)ϕ2

(r + κ)2
β2γ1ν2(κ, T ′−) +H(γR1 , γ

R
2 , γ

R
3 , γ1, γ2, γ3, T ′−, ν2)

+G(γ1, γ2, γ3, T ′−, ν2)

)
(pfΣp

′
f )

2 − (1− ϵ)ϕ2

(r + κ)2
ν2(κ, T ′−)pfΣ

3p′f

]
,

GCov1,2
wV ,wM (u) = L2

(
L1τηΣ

2p′f + L2τpfΣ
2p′f
)
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×
(
− 1− ϵ

r + κ
K2(γ

R
1 , γ

R
3 , u− t, ν0) +H(γ1, γ2, γ3, γ

R
1 , γ

R
2 , γ

R
3 , u− t, ν0)

)
pfΣ

2p′f ,

GCov1,2
wM ,wV (u) = L2

(
L1

r
ηΣ2p′f +

L2

r
pfΣ

2p′f

)
×
(
H(γR1 , γ

R
2 , γ

R
3 , γ

R
1 , γ

R
2 , γ

R
3 , T ′−, ν2) +G(γR1 , γ

R
2 , γ

R
3 , T ′−, ν2)

)
pfΣ

2p′f ,

GCov1,3
wV ,wM (u) = L2

(
L1

r
ηΣ2p′f +

L2

r
pfΣ

2p′f

)(
H(γR1 , γ

R
2 , γ

R
3 , γ

R
1 , γ

R
2 , γ

R
3 , T ′, ν1)

+H(γR1 , γ
R
2 , γ

R
3 , γ

R
1 , γ

R
2 , γ

R
3 , T ′, ν2) +G(γR1 , γ

R
2 , γ

R
3 , T ′, ν2)

)
pfΣ

2p′f ,

GCov1,3
wM ,wV (u) = L2

(
L1τηΣ

2p′f + L2τpfΣ
2p′f
)

×
(
− 1− ϵ

r + κ
K1(γ

R
1 , γ

R
3 , u− t, ν0) +H(γR1 , γ

R
2 , γ

R
3 , γ1, γ2, γ3, u− t, ν0)

)
pfΣ

2p′f ,

GCov1,4
wV ,wM (u) = GCov1,4

wM ,wV (u) =
(
L1ηΣ

2p′f + L2pfΣ
2p′f
)2 τ
r
H(γR1 , γ

R
2 , γ

R
3 , γ

R
1 , γ

R
2 , γ

R
3 , u− t, ν0),

GCov1,5
wV ,wM (u) = H(γR1 , γ

R
2 , γ

R
3 , γ

R
1 , γ

R
2 , γ

R
3 , u− t, ν0)

[(
− 1− ϵ

r + κ

[
K2(γ

R
1 , γ

R
3 , T ′, ν1) +K1(γ

R
1 , γ

R
3 , T ′, ν2)

]
− (1− ϵ)ϕ2

(r + κ)2
β2γ1ν2(κ, T ′) +H(γ1, γ2, γ3, γ

R
1 , γ

R
2 , γ

R
3 , T ′, ν1) +H(γR1 , γ

R
2 , γ

R
3 , γ1, γ2, γ3, T ′, ν2)

+G(γ1, γ2, γ3, T ′, ν2)

)
(pfΣp

′
f )

2 − (1− ϵ)ϕ2

(r + κ)2
ν2(κ, T ′)pfΣ

3p′f

]
,

GCov1,5
wM ,wV (u) = H(γR1 , γ

R
2 , γ

R
3 , γ

R
1 , γ

R
2 , γ

R
3 , u− t, ν0)

[(
− 1− ϵ

r + κ
K1(γ

R
1 , γ

R
3 , T ′−, ν2)

− (1− ϵ)ϕ2

(r + κ)2
β2γ1ν2(κ, T ′−) +H(γR1 , γ

R
2 , γ

R
3 , γ1, γ2, γ3, T ′−, ν2)

+G(γ1, γ2, γ3, T ′−, ν2)

)
(pfΣp

′
f )

2 − (1− ϵ)ϕ2

(r + κ)2
ν2(κ, T ′−)pfΣ

3p′f

]
,

GCov1,6
wV ,wM (u) =

(
− 1− ϵ

r + κ
K2(γ

R
1 , γ

R
3 , u− t, ν0) +H(γ1, γ2, γ3, γ

R
1 , γ

R
2 , γ

R
3 , u− t, ν0)

)
×
(
H(γR1 , γ

R
2 , γ

R
3 , γ

R
1 , γ

R
2 , γ

R
3 , T ′, ν1) +H(γR1 , γ

R
2 , γ

R
3 , γ

R
1 , γ

R
2 , γ

R
3 , T ′, ν2)

+G(γR1 , γ
R
2 , γ

R
3 , T ′, ν2)

) (
pfΣ

2p′f
)2
,

GCov1,6
wM ,wV (u) =

(
H(γR1 , γ

R
2 , γ

R
3 , γ

R
1 , γ

R
2 , γ

R
3 , T ′−, ν2) +G(γR1 , γ

R
2 , γ

R
3 , T ′−, ν2)

)
×
(
− 1− ϵ

r + κ
K1(γ

R
1 , γ

R
3 , u− t, ν0) +H(γR1 , γ

R
2 , γ

R
3 , γ1, γ2, γ3, u− t, ν0)

)(
pfΣ

2p′f
)2
,
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GCov2,1
wV ,wM (u) =

[
L1L2

r
ηΣ2p′f +

(
L2
2

r
− 1− ϵ

r + κ
K2(γ

R
1 , γ

R
3 , u− t, ν0) +H(γ1, γ2, γ3, γ

R
1 , γ

R
2 , γ

R
3 , u− t, ν0)

)

× pfΣ
2p′f

] (
G(γR1 , γ

R
2 , γ

R
3 , T ′, ν1) + k1{τ+t−u>0}

)
pfΣ

2p′f

+

[
L1L2

r

(
ηΣ3p′f −

ηΣ2η′ηΣ2p′f
ηΣη′

)
+

(
L2
2

r
− 1− ϵ

r + κ
K2(γ

R
1 , γ

R
3 , u− t, ν0)

+H(γ1, γ2, γ3, γ
R
1 , γ

R
2 , γ

R
3 , u− t, ν0)

)(
pfΣ

3p′f −
(ηΣ2p′f )

2

ηΣη′

)]
f1{τ+t−u>0},

GCov2,1
wM ,wV (u) =

[
L1L2τηΣ

2p′f +
(
L2
2τ +H(γR1 , γ

R
2 , γ

R
3 , γ

R
1 , γ

R
2 , γ

R
3 , T ′−, ν2) +G(γR1 , γ

R
2 , γ

R
3 , T ′−, ν2)

)
×pfΣ2p′f

](
−(1− ϵ)ϕ2

(r + κ)2
β2γ1ν0(κ, u− t) +G(γ1, γ2, γ3, u− t, ν0)

)
pfΣ

2p′f

−

[
L1L2τ

(
ηΣ3p′f −

ηΣ2η′ηΣ2p′f
ηΣη′

)
+
(
L2
2τ +H(γR1 , γ

R
2 , γ

R
3 , γ

R
1 , γ

R
2 , γ

R
3 , T ′−, ν2)

+G(γR1 , γ
R
2 , γ

R
3 , T ′−, ν2))

(
pfΣ

3p′f −
(ηΣ2p′f )

2

ηΣη′

)]
(1− ϵ)ϕ2

(r + κ)2
ν0(κ, u− t),

GCov2,2
wV ,wM (u) =

[(
L1ηΣ

2p′f + L2pfΣ
2p′f
)2 τ
r
+

(
− 1− ϵ

r + κ

[
K2(γ

R
1 , γ

R
3 , T ′, ν1) +K1(γ

R
1 , γ

R
3 , T ′, ν2)

]
− (1− ϵ)ϕ2

(r + κ)2
β2γ1ν2(κ, T ′) +H(γ1, γ2, γ3, γ

R
1 , γ

R
2 , γ

R
3 , T ′, ν1) +H(γR1 , γ

R
2 , γ

R
3 , γ1, γ2, γ3, T ′, ν2)

+G(γ1, γ2, γ3, T ′, ν2)

)
(pfΣp

′
f )

2 − (1− ϵ)ϕ2

(r + κ)2
ν2(κ, T ′)pfΣ

3p′f

]
G(γR1 , γ

R
2 , γ

R
3 , u− t, ν0),

GCov2,2
wM ,wV (u) =

[(
L1ηΣ

2p′f + L2pfΣ
2p′f
)2 τ
r
+

(
− 1− ϵ

r + κ
K1(γ

R
1 , γ

R
3 , T ′−, ν1)

− (1− ϵ)ϕ2

(r + κ)2
β2γ1ν2(κ, T ′−) +H(γR1 , γ

R
2 , γ

R
3 , γ1, γ2, γ3, T ′−, ν2)

+G(γ1, γ2, γ3, T ′−, ν2)

)
(pfΣp

′
f )

2 − (1− ϵ)ϕ2

(r + κ)2
ν2(κ, T ′−)pfΣ

3p′f

]
G(γR1 , γ

R
2 , γ

R
3 , u− t, ν0),

where T ′ = (u− t, τ) and T ′− = (t− u, τ).

Proof: To show the proposition, we need to show that the definitions of {GCov1,i
wV ,wM ,T

(u)}i=1,..6 and

{GCov2,i
wV ,wM ,T

(u)}i=1,2 in Lemma E.6 yield the equations in the proposition. The equations follow

from the derivations in Propositions E.2 and E.3, and the derivations of Cov(wV
t Σp

′
f , w

M
u Σp′f ) and
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Cov(wM
t Σp′f , w

V
u Σp

′
f ) in Lemma D.7.

Proposition E.8 computes the unconditional correlation between the return of strategy wj
t over

an interval [t, t + T ] and the return of strategy wk
t over a subsequent interval [t′, t′ + T ′], with

j, k ∈ {V,M} and t′ ≥ t+T . The autocorrelation of value returns follows by setting j = k = V , the

autocorrelation of momentum returns follows by setting j = k =M , and the cross-autocorrelations

between the two strategies’ returns follow by setting (j, k) = (V,M) and (j, k) = (M,V ).

Proposition E.8. Consider intervals [t, t+T ] and [t′, t′+T ′], with (T, T ′) positive and t′ ≥ t+T .

The autocorrelation between the return of strategy wj
t over the interval [t, t + T ] and the return of

strategy wk
t over the interval [t′, t′ + T ′], with j, k ∈ {V,M}, is

Corr

(∫ t+T

t
ŵj
udRu,

∫ t′+T ′

t′
ŵk
udRu

)
=

ACov1
wj ,wk,T,t′,T ′ +ACov2

wj ,wk,T,t′T ′√(
Dwj +DCov1

wj ,T
+DCov2

wj ,T

)(
Dwk +DCov1

wk,T ′ +DCov2
wk,T ′

) ,

where {Dwj}j=V,M are derived in Propositions D.2 and D.5,
{
(DCov1

wj ,T
,DCov2

wj ,T
)
}
j=V,M

are derived in

Propositions E.2 and E.3, and (ACov1
wj ,wk,T,t′,T ′ ,ACov2

wj ,wk,T,t′,T ′) are defined as

ACov1
wj ,wk,T,t′,T ′ ≡

1√
TT ′

6∑
i=1

∫ t′+T ′

t′−T
F (u)DCov1,i

wj (u)du,

ACov2
wj ,wk,T,t′,T ′ ≡

1√
TT ′

2∑
i=1

∫ t′+T ′

t′−T
F (u)DCov2,i

wj (u)du,

for j = k with

{{
DCov1,i

wj (u)
}
i=1,..,6

,
{
DCov2,i

wj (u)
}
i=1,2

}
j=V,M

derived in Propositions E.2 and E.3

and F (u) ≡ min{T, t′ + T ′ − u} −max{0, t′ − u}, and as

ACov1
wj ,wk,T,t′,T ′ ≡

1√
TT ′

6∑
i=1

∫ t′+T ′

t′−T
F (u)GCov1,i

wj ,wk (u)du,

ACov2
wj ,wk,T,t′,T ′ ≡

1√
TT ′

2∑
i=1

∫ t′+T ′

t′−T
F (u)GCov2,i

wj ,wk (u)du,

for j ̸= k with

{{
GCov1,i
wj ,wk (u)

}
i=1,..,6

,
{
GCov2,i
wj ,wk (u)

}
i=1,2

}
j,k∈{V,M}

derived in Proposition E.7.

114



Proof: To show the proposition, we need to show

Cov

(∫ t+T

t
ŵj
udRu,

∫ t′+T ′

t′
ŵk
udRu

)
=

√
TT ′

(
ACov1

wj ,wk,T,t′,T ′ +ACov2
wj ,wk,T,t′T ′

)
. (E.41)

Proceeding as in the proof of Lemma E.1 and using t′ ≥ t+ T , we find

Cov

(∫ t+T

t
ŵj
udRu,

∫ t′+T ′

t′
ŵk
udRu

)

=

∫ t+T

u=t

∫ t′+T ′

u′=t′
Cov

(
ŵj
udRu, ŵ

k
u′dRu′

)

=

∫ t+T

u=t

∫ t′+T

u′=t′

{
Cov

[
ŵj
uEu(dRu), ŵ

k
u′Eu′(dRu′)

]
+ E

[
ŵj
uCovu(dRu, ŵ

k
u′Eu′(dRu′))

]}
(E.42)

To compute (E.42), we proceed as in the proof of Lemma E.2. Equation (E.42) becomes

∫ t+T

u=t

∫ t′+T ′−u

s=t′−u

{
Cov

[
ŵj
uEu(dRu), ŵ

k
u+sEu+s(dRu+s)

]
+ E

[
ŵj
uCovu(dRu, ŵ

k
u+sEu+s(dRu+s))

]}

=

∫ t′+T ′−t

s=t′−(t+T )

∫ min{t+T,t′+T ′−s}

u=max{t,t′−s}

{
Cov

[
ŵj
uEu(dRu), ŵ

k
u+sEu+s(dRu+s)

]
+E

[
ŵj
uCovu(dRu, ŵ

k
u+sEu+s(dRu+s))

]}
=

∫ t′+T ′−t

s=t′−(t+T )

∫ min{t+T,t′+T ′−s}

u=max{t,t′−s}

1

du

{
Cov

[
ŵj
uEu(dRu), ŵ

k
u+sEu+s(dRu+s)

]
+E

[
ŵj
uCovu(dRu, ŵ

k
u+sEu+s(dRu+s))

]}
du

=

∫ t′+T ′−t

s=t′−(t+T )

∫ min{t+T,t′+T ′−s}

u=max{t,t′−s}

1

dt

{
Cov

[
ŵj
tEt(dRt), ŵ

k
t+sEt+s(dRt+s)

]
+E

[
ŵj
tCovt(dRt, ŵ

k
t+sEt+s(dRt+s))

]}
du

=

∫ t′+T ′−t

s=t′−(t+T )

(
min{t+ T, t′ + T ′ − s} −max{t, t′ − s}

) 1

dt

{
Cov

[
ŵj
tEu(dRt), ŵ

k
t+sEt+s(dRt+s)

]
+E

[
ŵj
tCovt(dRt, ŵ

k
t+sEt+s(dRt+s))

]}
=

∫ t′+T ′

u=t′−T

(
min{t+ T, t′ + T ′ + t− u} −max{t, t′ + t− u}

) 1

dt

{
Cov

[
ŵj
tEu(dRt), ŵ

k
uEu(dRu)

]
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+E
[
ŵj
tCovt(dRt, ŵ

k
uEu(dRu))

]}
=

∫ t′+T ′

u=t′−T

(
min{T, t′ + T ′ − u} −max{0, t′ − u}

) 1

dt

{
Cov

[
ŵj
tEu(dRt), ŵ

k
uEu(dRu)

]
+E

[
ŵj
tCovt(dRt, ŵ

k
uEu(dRu))

]}
=

∫ t′+T ′

u=t′−T
F (u)

1

dt

{
Cov

[
ŵj
tEu(dRt), ŵ

k
uEu(dRu)

]
+ E

[
ŵj
tCovt(dRt, ŵ

k
uEu(dRu))

]}
, (E.43)

where the first and sixth steps follow from the change of variable s = u′−u, the second step follows

by changing the order of the integrals, the third step follows because the covariance in the first

term and the expectation in the second term are unconditional and depend only on s, and the last

step follows from the definition of F (u). Combining (E.43) with Lemmas E.2, E.5 and E.6, we find

(E.41).

Proposition E.9 computes the weights of value and momentum in their unconditionally optimal

(mean-variance maximizing) combination over investment horizon T . The proposition assumes

symmetric assets.

Proposition E.9. Suppose η = 1′ and Σ = σ̂2(I +ω11′). The weights of value and momentum in

their combination that maximizes an unconditional mean-variance objective over investment horizon

T are

ŷV =
1

a

SRwV ,T − SRwM ,TCorr
(∫ t+T

t ŵV
u dRu,

∫ t+T
t ŵM

u dRu

)
1− Corr

(∫ t+T
t ŵV

u dRu,
∫ t+T
t ŵM

u dRu

)2
√√√√ T

Var
(∫ t+T

t ŵV
u dRu

) , (E.44)

ŷM =
1

a

SRwM ,T − SRwV ,TCorr
(∫ t+T

t ŵV
u dRu,

∫ t+T
t ŵM

u dRu

)
1− Corr

(∫ t+T
t ŵV

u dRu,
∫ t+T
t ŵM

u dRu

)2
√√√√ T

Var
(∫ t+T

t ŵM
u dRu

) .
(E.45)

Proof: Consider an investor at time t with horizon T , who can invest in the riskless asset, the

index η and the strategies (wV
t , w

M
t ). The investor’s optimization problem is as in Lemma C.2,

except that the budget constraint (C.10) is replaced by

∆Wt+T = ˆ̂xt

∫ t+T

t
ηdRu + ŷVt

∫ t+T

t
ŵV
u dRu + ŷMt

∫ t+T

t
ŵM
u dRu. (E.46)
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Substituting ∆Wt+T from (E.46) and setting It = ∅, we can write the investor’s objective (C.7) as

ˆ̂xE
(∫ t+T

t
ηdRu

)
+ ŷV E

(∫ t+T

t
ŵV
u dRu

)
+ ŷME

(∫ t+T

t
ŵM
u dRu

)

− a

2

[
ˆ̂x2Var

(∫ t+T

t
ηdRu

)
+ (ŷV )2Var

(∫ t+T

t
ŵV
u dRu

)
+ (ŷM )2Var

(∫ t+T

t
ŵM
u dRu

)

+ 2ˆ̂xŷV Cov
(∫ t+T

t
ηdRu,

∫ t+T

t
ŵV
u dRu

)
+ 2ˆ̂xŷMCov

(∫ t+T

t
ηdRu,

∫ t+T

t
ŵM
u dRu

)

+2ŷV ŷMCov
(∫ t+T

t
ŵV
u dRu,

∫ t+T

t
ŵM
u dRu

)]
. (E.47)

The proof of Lemma C.2 implies that the first and second covariances in (E.47) are zero if

Cov(ηdRu, ŵ
j
u′dRu′) = 0 for u < u′ and j = V,M . The proof of Lemma E.1 implies

Cov(ηdRu, ŵ
j
u′dRu′) = Cov

[
ηEu(dRu), ŵ

j
u′Eu′(dRu′)

]
+ E

[
ηCovu(dRu, ŵ

j
u′Eu′(dRu′))

]
= E

[
ηCovu(dRu, ŵ

j
u′Eu′(dRu′))

]
=

1

du

(
f +

k∆

ηΣη′

){
E
[
ηΛu′Covu(dRu, w

j
u′Σp

′
f )
]
+ E

[
ηwj

u′Σp
′
fCovu(dRu,Λu′)

]}
,

(E.48)

where the second step follows because (C.6) implies ηEu(dRu) = rαᾱf
α+ᾱ ηΣθ

′dt, which is constant

over time, and the third step follows from the proof of Lemma E.4. Since (3.6) and (B.10) imply

that Covu(dRu,Λu′) is collinear to Σp′f , the second term in (E.48) is zero because ηΣp′f = 0. Since

(B.10), (B.11) and (D.19) imply that Covu(dRu, w
V
u′Σp′f ) is a linear combination of Σp′f and Σ2p′f ,

the first term in (E.48) is zero for j = V because ηΣp′f = 0 and because for symmetric assets,

Lemma C.5 implies ηΣ2p′f = 0. Since (A.2), (B.10) and (D.48) imply that Covu(dRu, w
M
u′ Σp′f )

is a linear combination of Σp′f and Σ2p′f , the first term in (E.48) is zero for j = M because

ηΣp′f = ηΣ2p′f = 0.

Setting the first and second covariances in (E.47) to zero, we can simplify (E.47) to

ˆ̂xE
(∫ t+T

t
ηdRu

)
+ ŷV E

(∫ t+T

t
ŵV
u dRu

)
+ ŷME

(∫ t+T

t
ŵM
u dRu

)

− a

2

[
ˆ̂x2Var

(∫ t+T

t
ηdRu

)
+ (ŷV )2Var

(∫ t+T

t
ŵV
u dRu

)
+ (ŷM )2Var

(∫ t+T

t
ŵM
u dRu

)
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+2ŷV ŷMCov
(∫ t+T

t
ŵV
u dRu,

∫ t+T

t
ŵM
u dRu

)]
.

The first-order conditions over ŷVt and ŷMt are

E
(∫ t+T

t
ŵV
u dRu

)
= a

[
ŷV Var

(∫ t+T

t
ŵV
u dRu

)
+ ŷMCov

(∫ t+T

t
ŵV
u dRu,

∫ t+T

t
ŵM
u dRu

)]
,

(E.49)

E
(∫ t+T

t
ŵM
u dRu

)
= a

[
ŷV Cov

(∫ t+T

t
ŵM
u dRu,

∫ t+T

t
ŵM
u dRu

)
+ ŷMVar

(∫ t+T

t
ŵM
u dRu

)]
,

(E.50)

respectively. Solving the linear system of (E.49) and (E.50), we find (E.44) and (E.45). We

normalize ŷV and ŷM by setting a

√
Var(

∫ t+T
t ŵV

u dRu)
T = a

√
Var(

∫ t+T
t ŵM

u dRu)
T = 1.

Proposition E.10 computes the weights of value and momentum in the combination that best

approximates the strategy that is optimal over investment horizon T . We construct the approximat-

ing combination by minimizing the unconditional variance of the difference in returns over horizon

T between that combination and the optimal strategy. The proposition assumes symmetric assets.

Proposition E.10. Suppose η = 1′ and Σ = σ̂2(I + ω11′). The weights (λV , λM ) of value and

momentum in the combination that minimizes

Var
[∫ t+T

t
wudRu −

(
λη
∫ t+T

t
ηdRu + λV

∫ t+T

t
ŵV
u dRu + λM

∫ t+T

t
ŵM
u dRu

)]
, (E.51)

where wt is the optimal strategy over investment horizon T derived in Section 6.1, are

λV =

[
Corr

(∫ t+T

t
ŵV
u dRu,

∫ t+T

t
wudRu

)
− Corr

(∫ t+T

t
ŵM
u dRu,

∫ t+T

t
wudRu

)

×Corr
(∫ t+T

t
ŵV
u dRu,

∫ t+T

t
ŵM
u dRu

)]
1

1− Corr
(∫ t+T

t ŵV
u dRu,

∫ t+T
t ŵM

u dRu

)2
√√√√√Var

(∫ t+T
t wudRu

)
Var

(∫ t+T
t ŵV

u dRu

) ,
(E.52)

λM =

[
Corr

(∫ t+T

t
ŵM
u dRu,

∫ t+T

t
wudRu

)
− Corr

(∫ t+T

t
ŵV
u dRu,

∫ t+T

t
wudRu

)
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×Corr
(∫ t+T

t
ŵV
u dRu,

∫ t+T

t
ŵM
u dRu

)]
1

1− Corr
(∫ t+T

t ŵV
u dRu,

∫ t+T
t ŵM

u dRu

)2
√√√√√ Var

(∫ t+T
t wudRu

)
Var

(∫ t+T
t ŵM

u dRu

) .
(E.53)

Proof: The first-order conditions from minimizing (E.51) over λV and λM are

Cov
(∫ t+T

t
ŵV
u dRu,

∫ t+T

t
wudRu

)
= ληCov

(∫ t+T

t
ηdRu,

∫ t+T

t
ŵV
u dRu

)

+ λV Var
(∫ t+T

t
ŵV
u dRu

)
+ λMCov

(∫ t+T

t
ŵV
u dRu,

∫ t+T

t
ŵM
u dRu

)
, (E.54)

Cov
(∫ t+T

t
ŵM
u dRu,

∫ t+T

t
wudRu

)
= ληCov

(∫ t+T

t
ηdRu,

∫ t+T

t
ŵM
u dRu

)

+ λV Cov
(∫ t+T

t
ŵV
u dRu,

∫ t+T

t
ŵM
u dRu

)
+ λMVar

(∫ t+T

t
ŵM
u dRu

)
, (E.55)

respectively. Since with symmetric assets Proposition E.9 implies

Cov
(∫ t+T

t
ηdRu,

∫ t+T

t
ŵV
u dRu

)
= Cov

(∫ t+T

t
ηdRu,

∫ t+T

t
ŵM
u dRu

)
= 0,

(E.54) and (E.55) imply (E.52) and (E.53).

To translate the weights λV and λM to weights ŷV and ŷM as in Proposition E.9, we multiply

them by the weight ŷ given to the optimal strategy wt. Proceeding as in Proposition E.9, we find

Cov
(∫ t+T

t
ηdRu,

∫ t+T

t
wudRu

)
= 0

because Covu(dRu, wu′Σp′f ) is collinear to Σp′f . Therefore, maximization of (C.7) yields

ŷ =
1

a

SRw,T√
Var

(∫ t+T
t wudRu

) .

The resulting weights ŷV and ŷM are

ŷV = ŷλV =
1

a

[
Corr

(∫ t+T

t
ŵV
u dRu,

∫ t+T

t
wudRu

)
− Corr

(∫ t+T

t
ŵM
u dRu,

∫ t+T

t
wudRu

)
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×Corr
(∫ t+T

t
ŵV
u dRu,

∫ t+T

t
ŵM
u dRu

)]
SRw,T

1− Corr
(∫ t+T

t ŵV
u dRu,

∫ t+T
t ŵM

u dRu

)2
√√√√ T

Var
(∫ t+T

t ŵV
u dRu

) ,
(E.56)

ŷM = ŷλM =
1

a

[
Corr

(∫ t+T

t
ŵM
u dRu,

∫ t+T

t
wudRu

)
− Corr

(∫ t+T

t
ŵV
u dRu,

∫ t+T

t
wudRu

)

×Corr
(∫ t+T

t
ŵV
u dRu,

∫ t+T

t
ŵM
u dRu

)]
SRw,T

1− Corr
(∫ t+T

t ŵV
u dRu,

∫ t+T
t ŵM

u dRu

)2
√√√√ T

Var
(∫ t+T

t ŵM
u dRu

) .
(E.57)

Equations (E.56) and (E.57) are analogous to (E.44) and (E.45) in Proposition E.9. We normalize

ŷV and ŷM by setting a

√
Var(

∫ t+T
t ŵV

u dRu)
T = a

√
Var(

∫ t+T
t ŵM

u dRu)
T = 1.

F Sensitivity Analysis

Table F.I reports moments derived in Sections 5 and 6 in the following cases: baseline, where

parameter values are as in Table I; lookback window for momentum equal to one year instead of

seven months; fraction of asset return variance generated by fund flows equal to 10% instead of 15%;

fund flows as fraction of fund holdings smaller by 50% than in the baseline (spread in quarterly

FIT between top and bottom stock deciles sorted based on FIT equal to 22.27%× 0.5); and active

share of residual supply portfolio equal to 20% instead of 10%. When deviating from the baseline

to meet a calibration target, we choose parameter values to meet all remaining targets in Table I.

Table F.I indicates that many of the patterns shown in Sections 5 and 6 are robust across

cases. In particular: (i) the Sharpe ratio of value, which is stable across cases when horizon is short

(infinitesimal), drops somewhat when horizon increases (to five years), and rises significantly when

horizon increases further (to twenty years); (ii) the Sharpe ratio of momentum, which is less stable

than value’s across cases when horizon is short, drops significantly when horizon increases, and

becomes essentially flat when horizon increases further; (iii) the Sharpe ratio of value is more volatile

than that of momentum, especially for long horizons; (iv) value and momentum are modestly

negatively correlated for short horizons and modestly positively for long horizons; (v) the value

spread is positively correlated with value’s Sharpe ratio for short horizons and strongly so for long

horizons; (vi) the value spread is slightly negatively correlated with momentum’s Sharpe ratio

for short horizons but strongly positively correlated for long horizons; (vii) the value-momentum

correlation is strongly positively correlated with value’s Sharpe ratio for short horizons but slightly
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Table F.I: Sensitivity analysis.

Moment (%) Base 1-yr Mom 10% Flows Vol × 0.5 20% AS

SRwV 27.05 27.05 26.17 26.76 27.77

SRwV ,5 23.00 23.00 25.16 23.26 27.25

SRwV ,20 38.43 38.43 39.11 38.77 45.87

Var
(
SRwV ,t

)
63.25 63.25 39.18 61.50 56.49

Var
(
SRwV ,t,5

)
40.88 40.88 33.74 40.43 39.42

SRwM 53.66 51.28 27.57 51.75 45.24

SRwM ,5 34.28 29.86 21.64 33.54 31.45

SRwM ,20 33.04 28.37 21.08 32.38 30.57

Var
(
SRwM ,t

)
46.58 45.72 30.58 45.49 43.19

Var
(
SRwM ,t,5

)
6.52 7.54 6.55 6.48 6.28

Corr
(
dRV

t , dR
M
t

)
-12.20 -16.81 -13.01 -12.51 -15.68

Corr
(
RV

t,t+5, R
M
t,t+5

)
11.68 12.43 8.61 11.15 8.85

Corr
(
V St, SRwV ,t

)
26.00 26.00 41.25 26.46 29.94

Corr
(
V St, SRwV ,t,5

)
97.81 97.81 98.68 97.66 97.24

Corr
(
V St, SRwM ,t

)
-8.13 -15.16 -11.77 -8.49 -11.79

Corr
(
V St, SRwM ,t,5

)
87.99 82.77 90.01 87.81 88.08

Corr
(
Corrt(dRV

t , dR
M
t ), SRwV ,t

)
86.02 85.32 82.63 85.71 83.56

Corr
(
Corrt(dRV

t , dR
M
t ), SRwV ,t,5

)
-3.56 -7.37 -0.77 -3.90 -7.52

Corr
(
Corrt(dRV

t , dR
M
t ), SRwM ,t

)
41.34 39.99 52.75 41.77 45.71

Corr
(
Corrt(dRV

t , dR
M
t ), SRwM ,t,5

)
18.47 25.50 20.08 18.09 15.94

negatively correlated for long horizons; and (viii) the value-momentum correlation is positively

correlated with momentum’s Sharpe ratio, especially for short horizons.

When the lookback window of momentum increases to one year, momentum’s short-horizon

correlations with value and the value spread become more negative. This is because momentum

with a long lookback window becomes more similar to the opposite of a value strategy: it buys

assets with a long history of good performance, which trade on average at a high price relative to

fundamental value.

When flows account for a smaller fraction of asset return variance, momentum’s Sharpe ra-
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tio decreases significantly. The intuition goes back to the momentum-generating mechanism in

the model. Long-horizon investors buy assets with poor recent and expected future performance

because they do not want to run the risk that by waiting and buying later the assets cease to

be underpriced. Since mispricing is caused by flows, it becomes less volatile when flows generate

smaller price variation. Therefore, long-horizon investors bear less risk by waiting, causing prices

of assets with poor recent performance to drop fast rather than more gradually, and momentum

to become less profitable. With momentum becoming less profitable at the beginning of the flow

cycle, value becomes less unprofitable at that stage of the cycle. Therefore, its Sharpe ratio be-

comes less volatile and more correlated with the value spread over short horizons. Changes in other

parameters have weaker effects on the moments in Table F.I.

G VAR Calculations

We compute Sharpe ratios and correlations for a general VAR in which the logarithmic returns RV t

of HML and RMt of UMD evolve jointly with N predictor variables (Y1t, .., YNt) according to

Xt+1 = A+BXt + ϵt+1, (G.1)

where Xt ≡ (RV t, RMt, Y1t, .., YNt)
′, A is a (N + 2)× 1 constant vector, B is a (N + 2)× (N + 2)

constant matrix, and ϵt+1 is a (N + 2)× 1 random vector with covariance matrix Σ.

We first compute the expectation EX of Xt. Taking expectations of both sides of (G.1), we find

EX = A+BEX ⇒ EX = (I −B)−1A. (G.2)

We next compute the covariance matrix ΣX ≡ Cov (Xt, X
′
t) of Xt. Iterating (G.1) from minus

infinity to t, we find

Xt = (I +B +B2 + ..)A+ ϵt +Bϵt−1 +B2ϵt−2 + .. (G.3)

Taking covariances of both sides in (G.3), we find

ΣX = Σ+BΣB′ +B2Σ
(
B2
)′
+ ..

⇒ ΣX = Σ+BΣXB
′. (G.4)
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Equation (G.4) yields a linear system of scalar equations in the elements of ΣX .

Consider next the sum Xt+1+ ..+Xt+k, whose first two elements are the cumulative logarithmic

returns of HML and UMD. The expectation of Xt+1 + .. + Xt+k is kEX . We next compute the

covariance matrix ΣXk ≡ Cov
(
Xt+1 + ..+Xt+k, (Xt+1 + ..+Xt+k)

′) of Xt+1+ ..+Xt+k. Iterating

(G.1) from t+ 1 to t+ k for k ≥ 1, we find

Xt+k =
(
I +B + ..+Bk−2

)
A+Bk−1Xt+1 +Bk−2ϵt+2 +Bk−3ϵt+3 + ..+ ϵt+k. (G.5)

Summing (G.5) from t+ 1 to t+ k, we find

Xt+1 + ..+Xt+k =
[
I + (I +B) + ..+

(
I +B + ..+Bk−2

)]
A+

(
I +B + ..+Bk−1

)
Xt+1

+
(
I +B + ..+Bk−2

)
ϵt+2 +

(
I +B + ..+Bk−3

)
ϵt+3 + ..+ ϵt+k.

(G.6)

Taking covariances of both sides in (G.6) and noting

I +B + ..+Bm = (I −B)−1
(
I −Bm+1

)
,

we find

ΣXk = (I −B)−1
(
I −Bk

)
ΣX

[
(I −B)−1

(
I −Bk

)]′
+ (I −B)−1

(
I −Bk−1

)
Σ
[
(I −B)−1

(
I −Bk−1

)]′
+ (I −B)−1

(
I −Bk−2

)
Σ
[
(I −B)−1

(
I −Bk−2

)]′
+ ..+Σ. (G.7)

We finally compute the covariance matrix ΣXkℓ ≡ Cov
(
Xt−(ℓ−1) + ..+Xt, (Xt+1 + ..+Xt+k)

′).
Since (G.5) implies

Cov
(
Xt+1, X

′
t+k

)
= ΣX

(
Bk−1

)′
,

the covariance matrix ΣXkℓ is

ΣXkℓ = ΣX

[(
B +B2 + ..+Bk

)
+
(
B2 +B3 + ..+Bk+1

)
+ ..+

(
Bℓ +Bℓ+1 + ..+Bℓ+k−1

)]′
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= ΣX

[
B(I −B)−2

(
I −Bℓ

)(
I −Bk

)]′
. (G.8)

The annualized Sharpe ratio of value over horizon k is

k(EX)1√
(ΣXk)11 k

. (G.9)

The annualized Sharpe ratio of momentum over horizon k is

k(EX)2√
(ΣXk)22 k

. (G.10)

If periods in the VAR are months, then (G.9) and (G.10) must be multiplied by
√
12. The correlation

between value and momentum returns over horizon k is

(ΣXk)12√
(ΣXk)11 (ΣXk)22

. (G.11)

The correlation between the return of value over lookback window ℓ and over horizon k is

(ΣXkℓ)11√
(ΣXk)11 (ΣXℓ)11

. (G.12)

The correlation between the return of momentum over lookback window ℓ and over horizon k is

(ΣXkℓ)22√
(ΣXk)22 (ΣXℓ)22

. (G.13)

The correlation between the return of value over lookback window ℓ and the return of momentum

over horizon k is

(ΣXkℓ)12√
(ΣXk)22 (ΣXℓ)11

. (G.14)

The correlation between the return of momentum over lookback window ℓ and the return of value
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over horizon k is

(ΣXkℓ)21√
(ΣXk)11 (ΣXℓ)22

. (G.15)

125


	DP864
	momval - DV paper
	Introduction
	Model
	Equilibrium
	Trading Strategies and Performance Measures
	Value and Momentum
	Performance Measures
	Calibration

	Performance over an Infinitesimal Horizon
	Optimal Strategy
	Value
	Momentum
	Combining Value and Momentum

	Performance over a General Finite Horizon
	Optimal Strategy
	Value
	Momentum
	Combining Value and Momentum

	Empirical Analysis
	Data
	Results

	Conclusion
	Proofs of Results in Section 3
	Additional Background Notation and Results
	Proofs of Results in Section 4
	Proofs of Results in Section 5
	Proofs of Results in Section 6
	Sensitivity Analysis
	VAR Calculations


