#### Monopoly without a Monopolist: Economics of the Bitcoin Payment System

Gur Huberman, Jacob D. Leshno, Ciamac Moallemi Columbia Business School

# Two Known Forms of Money

### Coins, paper bills

- Originate with a mint that makes them immune to forgery
- Possession is proof of ownership
- Payments are final
- Receipt is proof of payment; optional

### Ledger-based

- MONOLITIC ledger
- Trusted third party maintains the ledger
- Trusted third party guarantees veracity
- Trusted third party always involved in payments
- Monopoly/Market power

# Bitcoin: A Peer-to-Peer Electronic Cash System

- I0/2008: Satoshi Nakamoto floats the original 9 page white paper
- I/2009: Releases the first software
  - Mines the genesis block & earns 50btc for that

#### Electronic payment systems

- Bitcoin being the first
- ~25 systems have total balances of over \$1B; agg val ~\$380Bn
- New systems developed, offering new functionality

# Cryptocurrencies

### Decentralized, two-sided platform

- Users receive similar services to PayPal, Fedwire; Miners provide infrastructure
- Object viable only on platform
- Platform viable only if expected to remain viable in the future
- Market design enabled by blockchain protocol
- Miners maintain the system
- Users make payments
  - Recipients accord value

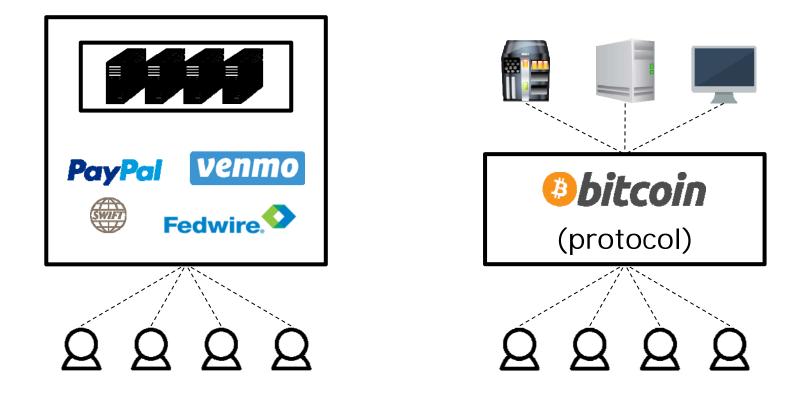
### Cryptocurrencies

#### Novel economic structure

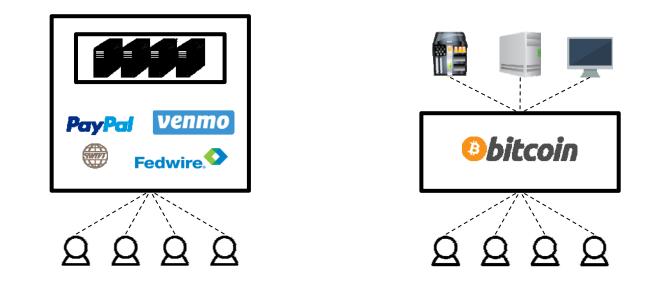
- Owned by no one
- Rules fixed by a computer protocol
- A single agent's action doesn't affect others (~price taking)

# Traditional Electronic Payment Systems

Allows users to hold balances and make transfers

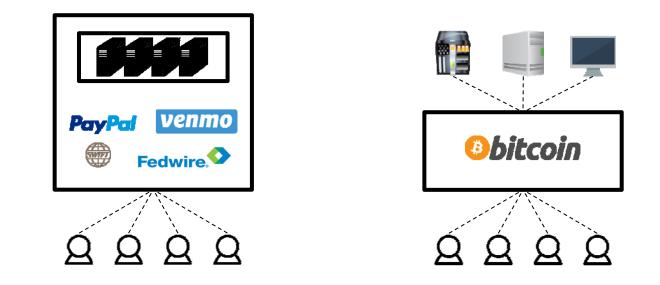

### Controlling authority

Provide trust, maintain infrastructure, sets usage fees, changes them when circumstances change.


### Natural monopoly

- Monolithic ledger
- Network externalities, fixed costs
- Often requires regulation
- Examples: Fedwire, Venmo, PayPal, SWIFT, M-Pesa

## Traditional Payment Systems vs. Bitcoin




# Traditional Payment Systems vs. Bitcoin



| Rules          | Set by firm/org      | Fixed by protocol |
|----------------|----------------------|-------------------|
| Infrastructure | Procured by firm/org |                   |
| Revenue        | Fees set by firm/org |                   |
|                |                      |                   |

# Traditional Payment Systems vs. Bitcoin



| Rules Set by firm/org |                      | Fixed by protocol                                    |  |
|-----------------------|----------------------|------------------------------------------------------|--|
| Infrastructure        | Procured by firm/org | Revenue, entry/exit                                  |  |
| Revenue               | Fees set by firm/org | Equilibrium congestion pricing,<br>all agents served |  |

# Sketch of Main Results

- Miners
- Users and congestion
- Stability, waste and (absence of) self-correction

# Analysis of Miners

- In equilibrium, active miners maximize reward by procession K transactions with highest fees
  - Cannot affect the behavior of users or set transaction fees
  - Can observe pending transactions and their fees
  - Create block with highest fee transactions, up to block capacity
- Total system revenue, payments to miners (per unit time) is equal to total transaction fees (per unit time)
- Miners system providers! make zero profit.

# Analysis of Users

- System congested; delays
- Users offer transaction fees to gain queuing priority

# Analysis of Users/Transactions

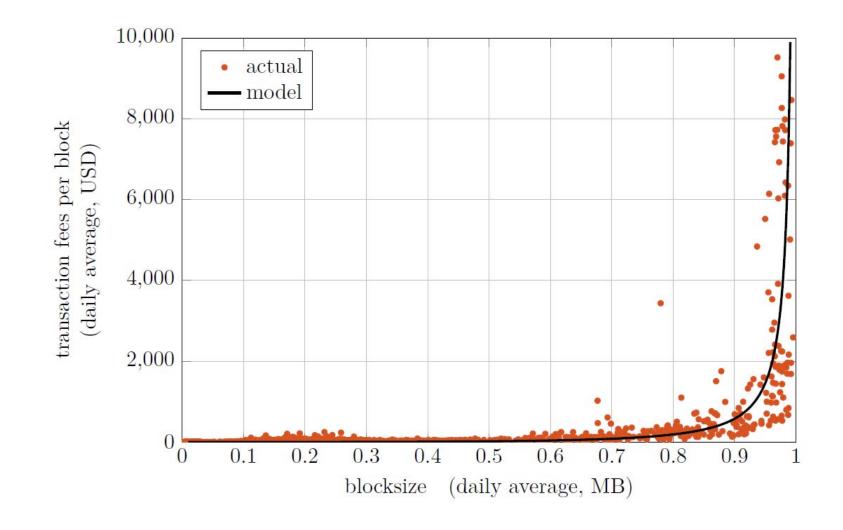
- Users play a congestion queueing game
  - Transaction fees  $b(c_i)$  are bids for priority
- Blocks mined/added at rate µ, each processes K highest fee transactions
  - Independently of number of miners
- Equilibrium transaction fees  $b_i = b(c_i)$  maximize

$$u(c_i) = \mathbf{R} - c_i \cdot W(b_i|G) - b_i$$

where  $W(b_i|G)$  is the expected delay for a user who bids  $b_i$  given distribution of others bids G

### An Auction w/o an Auctioneer

- Nobody imposes transaction fees
- Equilibrium transaction fees  $b_i = b(c_i)$  maximize


$$u(c_i) = \mathbf{R} - c_i \cdot W(b_i|G) - b_i$$

where  $W(b_i|G)$  is the expected delay for a user who bids  $b_i$  given distribution of others bids G

# In Equilibrium,

- Users with higher delay costs pay higher transaction fees, receive higher priority and lower delay
- Transaction fee paid by a user is equal to the externality imposed on other transactions

#### Data: Total Transaction Fees vs Congestion



Model curve parameters: K = 2,000, and delay costs  $c \sim U[0,0.1]$  for 10min.

# Revenue and infrastructure

- Infrastructure provided at cost
  - Free entry/exit, competition of miners
- Revenue determines infrastructure level
- Revenue varies with congestion
  - Infrastructure level can be too low or too high
  - Congestion and delay costs are necessary for positive revenue

## Potential Instability

#### **Corollary:** No Delays $\Rightarrow$ No Revenues

- Low utilization  $\rho$  implies low revenue, miners exit
- Miners exit does not generate congestion
  - System throughput is independent of number of miners
- System becomes unreliable with low number of miners (latency, vulnerability)
  - $\blacktriangleright$  Potentially reducing user demand and  $\rho$
  - Bad dynamics, leads to system collapse

# Costs, Potential Waste

### Costly design

- Redundancies
- Tournament for random selection of miners
- Delay costs are necessary to incentivize payment
- Infrastructure level (number of miners) may not be optimal
  - Determined by transaction fee payments due to congestion, not the need for more miners
- Potential instability
  - Entry/Exit does not help balance the system

# Summary

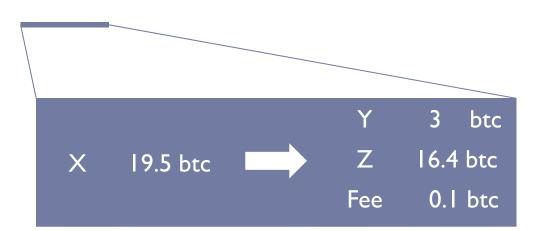
#### Economic innovation of Blockchain technology

- No owner
- Competitive pricing, even if the platform is a monopoly
- Fees determined in equilibrium
- Congestion as a revenue generating mechanism
  - System can raise revenue while serving all potential users
  - Requires congestion, delay costs

#### Design of revenue generating rules

- Control congestion to target revenue
- Benefit of smaller block size
- Future work what revenue generating rules are implementable?

## The Blockchain ledger


- A bitcoin transaction is a balance transfer between addresses
- Sent publicly (to the mempool)



| C c80b7fb8fdd08cee477936df1f023a05df8e79f680b9b047e722c2e36534 | 8baa 🕞 | mined No                           | ov 30, 2016 4:56:53 PM  |
|----------------------------------------------------------------|--------|------------------------------------|-------------------------|
| 15UAF2RS19XL6C7tJR8gsnys4z7PHTrLqd 19.4829 BTC                 | >      | 1NKGoZxNHupcfP7d1rzCyjaxDroiT4gdyw | 3 BTC <mark>(S</mark> ) |
|                                                                |        | 1CkQwgCduA6YUhmG9ZhXaNjeERDoNdCSkk | 16.4779 BTC (U)         |
| FEE: 0.005 BTC                                                 |        | 3 CONFIRMATIONS                    | 19.4779 BTC             |

## The Blockchain ledger

 A bitcoin transaction is a balance transfer between addresses



The Blockchain ledger is a list of all past transactions, organized into blocks



| Miner I |  |
|---------|--|
| Miner 2 |  |
| Miner 7 |  |

- Many Miners, free entry
- All hold identical copies of the blockchain

| Miner   |         |
|---------|---------|
| Miner 2 |         |
| Miner 7 | mempool |

New transactions transmitted to all miners

| Miner   |         |
|---------|---------|
| Miner 2 |         |
| diner 7 | mempool |

- Every 10 min (on avg), one randomly selected miner creates/mines a new block
- Maximal block size is IMB (approx. 2000 transactions)
  - Unprocessed transactions remain, wait for next block

| Miner   |         |
|---------|---------|
| Miner 2 |         |
| Miner 7 | mempool |

- New mined block transmitted to all miners
- Vetted by others, becomes part of the blockchain

### Miners rewarded when mine a block:

- I. Fixed amount of newly minted coins
  - Majority of current reward
  - Only short term, halved every 4 years
- 2. Transactions fees from transactions within the mined blockLong term
- Decentralized random selection by a tournament
  - Avoids the need for a trusted randomization device
  - Requires costly effort from each miner
  - Arrival of new blocks follows a Poisson process

- Equilibrium for (small) miners to follow the consensus blockchain (Nakamoto 2008, Eyal & Sirer 2013)
  - Only valid transactions verification using cryptography
  - Accept others' blocks follow the longest chain
  - With sufficiently many miners the system is secure

# Blockchain – Properties

Users choose transaction fees

### (Small) Miners are price takers

- Provide computational infrastructure, rewarded by transaction fees and newly minted coins
- Cannot block transactions, affect user behavior or transaction fees
- Free entry and exit of miners
- System's throughput independent of number of miners
  Set by protocol parameters (1MB, 10min)

# A Simplified Economic Model

- ► N (small) miners
  - Equal computing power, equal cost of mining  $c_m$
  - Many potential miners, free entry/exit
- Blocks mined at Poisson rate  $\mu$ 
  - Up to *K* transactions processed per block
- ▶ Users/transactions arrive at Poisson rate  $\lambda < K \cdot \mu$ 
  - $\blacktriangleright$  Each user has a single transaction, selects fee  $b\geq 0$
  - Heterogeneous delay cost  $c \sim F[0, \overline{c}]$

# Simplified Economic Model

#### Assumptions:

- Unobservable queue
- Sufficiently high value for service R, all users served
- No new coins minted
- Sufficiently many miners for the system to operate securely