Monopoly without a Monopolist: An Economic Analysis of the Bitcoin Payment System

Discussion: Igor Makarov
LSE

June 7, 2018
Motivation: blockchain

- Consider a typical transaction where a household pays a merchant with a debit/credit card
 - Processing and settlement is straightforward: the merchant contacts the issuing bank, the bank checks the balance, verifies the identity, and then approves/declines the transaction and updates the balance
 - Need to trust the bank, (and central bank)

- What if any given intermediary cannot be trusted?
 1. There is a predetermined set of agents who collectively are trustworthy
 - If the share of trusted agents > 2/3 the trust can be achieved using efficient Byzantine fault tolerant protocols
 2. There is no such a set ⇒ blockchain (Satoshi Nakamoto (2008))
 - Cryptography + proof-of-work
Bitcoin Blockchain

- Transactions are assembled in blocks. Each block can have up to about 2K transactions.

- Blocks form a chain: each block (except for the very first one) has one and only one block to which it is attached.

- To have the right to attach the block one has to solve a difficult problem (a process called mining). The difficulty is adjusted over time so that on average it takes 10min to solve the puzzle.

- Transactions included in a chain are deemed verified. The trust increases with the age of the block.
The original design envisions many decentralized miners

As long as 50% of miners are honest the blockchain is trusted

With many miners, a successful attack requires a large amount of resources

Miners are compensated for the resources spent in two ways:
- Block reward
 - The block reward started at 50BTC
 - The block reward is halved every 210,000 blocks (currently 12.5BTC)
 - Theoretically this would lead to a maximum number of 21M BTC
- Transaction fees (market price – current paper)
Why compensation for mining is important?

- Free-entry condition:
 \[c_m \times N = \mathcal{R}, \]
 - \(c_m \) – cost of mining a block
 - \(N \) – number of miners
 - \(\mathcal{R} \) – Revenue per block = Block reward + transaction fees

- If reward is small then the blockchain is vulnerable to an attack
Model

- Main insight: If there is no congestion, fees are small

- Queuing parameters:
 - Transactions arrive at Poisson rate λ
 - Blocks arrive at Poisson rate μ
 - Block size is K
 - Congestion: $\rho = \lambda / \mu K$

- The paper assumes that the current queue state is unobservable

- User i solves

$$\min_b b + c_i W(b, b-_{-i}) \Rightarrow W'_b(b, b-_{-i}) = \frac{1}{c_i}$$

- c_i – cost of waiting (per unit of time), $c_i \sim F(\cdot)$
- b – transaction fee
- $W(b, b-_{-i})$ – expected waiting time given b and fees of other agents b_{-i}
Equilibrium

- \(b \) is increasing in \(c_i \)

- Waiting time \(W(b, b_{-i}) \) is a function \(\hat{W}() \) of \(\bar{F}(c_i) \equiv 1 - F(c_i) \)

\[
W'_b(b, b_{-i}) = \hat{W}'(\bar{F}(c_i)) \times f(c_i)/b'(c_i)
\]

- Hence,

\[
b(c_i) = \int_0^{c_i} c\hat{W}'(\bar{F}(c_i))f(c)dc
\]

\(\Rightarrow \) User \(i \) pays the additional delay cost imposed on lower priority transactions

- Total fees per unit of time:

\[
\lambda \int f(c)b(c)dc
\]
Takeaways

- The model provides tools to compute miners’ fees and the expected execution time as a function of Bitcoin payment system design.
- Higher fees require higher delay in execution.
- The results are useful for solving for the optimal design and thinking of viability of Bitcoin in the long run.
The positive relationship between fees and the queue is a robust feature of the Bitcoin blockchain consistent with the model.

In practice, the queue is observable and varies greatly over time. It would be interesting to know how it impacts the results.
• The variation in the queue seems to be linked to arbitrage opportunities in the Bitcoin market (Makarov and Schoar (2018)) ⇒ λ and waiting cost might be correlated

• It is likely that the future applications of Bitcoin, and hence the volume of transactions, will depend on the processing time of transactions and available alternatives
• Reality of Bitcoin mining has diverged from the idealized design: Mining is dominated by few large mining pools (insurance motif)

• Implications:
 • Pools make profit ⇒ have stake in the continuation of the system
 • Pools have market power and so can dictate which transactions include into blocks
• Having large mining pools means that the system depends on their objectives

• Their presence can contribute to the survival of the system (because they have a stake in it) but they can also co-opt the system for their own purposes

• Thus, the users de facto need to trust a predetermined set of agents

• These is at odds with the original design of Nakamoto

• Does not look very different from a traditional payment system with a few agents whom participants need to trust
Thank You!