Model

Equilibriu

Fully worked out example

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Incentive constrained risk-sharing, segmentation and asset pricing

Bruno Biais (TSE & HEC), Johan Hombert (HEC) and Pierre Olivier Weill (UCLA)

June 2018

Risk sharing and collateral

Financial markets: agents invest in/hold risky assets + share risk

Relatively risk tolerant agents (eg hedge fund, investment bank) insure risk averse (eg pension fund)

If agent *i* sells CDS or put against state ω , must pay if ω occurs

If agent *i* has no resource in ω : counterparty default

To avoid this, i must hold assets generating resources in state ω

Resources back promise made by $i \rightarrow$ collateral

Imperfect collateral pledgeability \rightarrow risk sharing \rightarrow asset pricing

Imperfectly pledgeable collateral

 ${\sf Collateral} = {\sf assets} \ {\sf under} \ {\sf agent's} \ {\sf management}/{\sf custody}$

For collateral to be valuable for creditor:

- Agent must manage assets optimally, instead of shirking diverting - gambling
- Agent must not threaten to strategically default to obtain debt write-down

 $\label{eq:Pledgeable} \begin{array}{l} \mbox{Pledgeable} = \mbox{what can be promised s.t. incentive compatibility} \\ \mbox{constraint (IC) that agent does not misbehave} \end{array}$

Endogenous incompleteness

Promise lots of insurance in state $\omega \implies$ IC does not hold (//debt overhang Myers 1977)

 \rightarrow to avoid misbehaviour (IC): promise only limited insurance

In spite of full set of AD securities,

 $\mathsf{IC} \implies$ endogenous incompleteness

Endogenous segmentation

To share risk when insurance limited by IC, tilt asset allocation:

More risk averse hold safer assets

- \rightarrow lower need to buy insurance from risk tolerant
- \rightarrow by market clearing, more risk tolerant hold riskier assets

Different agents hold different portfolios of risky assets: \rightarrow segmentation

Price of underlying asset < Price of derivative (Derivative = replicating portfolio of AD securities)

Deviation from Law of One Price, cannot be arbitraged:

To arbitrage, sell expensive AD securities \rightarrow precluded by IC

Basis = shadow price of IC

Yet, derivative and underlying equally imperfectly pledgeable (and can equally be sold short)

Expected return on asset held by agent *i* reflects two premia

 \rightarrow Premium for covariance with consumption of *i* (not aggregate consumption, because endogenous incompleteness)

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

 \rightarrow Premium for covariance with shadow price of IC_i

SML flat at top, steep at bottom

- $IC \implies$ limited insurance
- \rightarrow high demand for low risk assets from more risk averse agents
- ightarrow relatively high price (low return) for low eta assets

Symmetrically relatively high price for high β assets

ightarrow Expected returns concave in eta

Supply effects

Holding aggregate risk (total output in each state) constant

If many very low β and very high β assets

 \rightarrow can allocate risk rather efficiently (risk averse buy low β , risk tolerant buy high β) without much need to trade derivatives

 \rightarrow low shadow cost of IC

 \rightarrow low basis

In contrast, low cross sectional dispersion of $\beta s \rightarrow$ large basis

Literature

Kehoe Levine 1993, Alvarez Jermann 2000, Rampini Vish 2017: limited pledgeability of labor income \implies limited insurance \neq we have imperfectly pledgeable but tradeable assets \rightarrow we study pricing of these assets (deviation from law of one price, concave SML, supply effects)

Financial constraints \implies deviation from law of one price: Hindy Huang (1995), Gromb Vayanos (2002), Garleanu Pedersen (2011) \neq we have full set of AD securities (pricing results don't reflect exogenous market incompleteness, only IC constraint)

Garleanu Pedersen: different exogenous margin constraints for underlying and derivative \rightarrow basis \neq we have same constraint for underlying and derivative, yet basis

Assets, markets and agents

Two dates: 0 and 1. State ω realized at date 1, with proba $\pi(\omega)$

Assets (trees): $j \in [0, 1]$ with payoff (fruits): $d_j(\omega)$

tree supply \bar{N}_j positive measure on $j \in [0, 1]$ can be discrete, continuous or both

I types, each in measure 1, endowed with fraction of market $ar{N}_{ij}$

Concave utility over date-1 consumption $U_i = \sum_{\omega} \pi(\omega) u_i(c_i(\omega))$

At date 0, can trade trees and complete set of state– ω contingent Arrow Debreu securities \rightarrow potential for risk–sharing

Investor i's program

Choose tree holdings: N_{ij} positive measure over [0, 1], Arrow securities: $a_i(\omega)$, to max U_i s.t.

t = 1 BC: consumption = fruits of trees + payoff AD security

$$c_i(\omega) = \int_j d_j(\omega) d\mathsf{N}_{ij} + \mathsf{a}_i(\omega)$$

t = 0 BC: initial endowment \geq portfolio held (trees + AD)

$$\int_{j} p_{j} d\bar{N}_{ij} \geq \int_{j} p_{j} dN_{ij} + \sum_{\omega} q(\omega) a_{i}(\omega)$$

Incentive compatibility constraint (IC): slack if $a_i(\omega) \ge 0$, otherwise

$$-a_i(\omega) \leq (1-\delta) \int_j d_j(\omega) dN_{ij}$$

liability \leq pledgeable income

Portfolio margining, with state by state constraint a con

Equilibrium

Consumption plans $c_i(\omega)$ and tree holdings N_{ij} , prices for Arrow securities $q(\omega)$ and trees p_j , s.t.

Agents maximize expected utility of time 1 consumption given price and budget and IC constraint and markets clear

$$\sum_i \mathsf{a}_i(\omega) = \mathsf{0}, \sum_i \mathsf{N}_{ij} = ar{\mathsf{N}}_j$$

Equilibrium constrained Pareto optimal: complete markets + no price in constraint

Existence: because IC imposes only additional linear constraints

Uniqueness: with two CRRA types with $\gamma \leq 1$

First order condition w.r.t. consumption

$$\pi(\omega)u'_i(c_i(\omega)) + \mu_i(\omega) = \lambda_i q(\omega)$$
 if $c_i(\omega) > 0$

Increasing $c_i(\omega)$ increases Eu_i and relaxes IC, but tightens BC

If IC slack, MRS equal across agents // pricing kernel $\mathit{M}=q/\pi$

$$\frac{u_i'(c_i(\omega_1))}{u_i'(c_i(\omega_2))} = \left(\frac{q(\omega_1)}{\pi(\omega_1)}\right) / \left(\frac{q(\omega_2)}{\pi(\omega_2)}\right) = \frac{M(\omega_1)}{M(\omega_2)}$$

If IC binds ($\mu_i(\omega) > 0$): wedge between agents MRS/imperfect risk-sharing \rightarrow AD securities pricing kernel reflects agent's marginal utility $u'_i(c_i(\omega) \text{ and shadow cost of IC } A_i(\omega)$

$$M(\omega) = \frac{u_i'(c_i(\omega))}{\lambda_i} + \frac{\mu_i(\omega)}{\lambda_i \pi(\omega)} = \frac{u_i'(c_i(\omega))}{\lambda_i} + A_i(\omega)$$

・ロト・西ト・ヨト・ヨー もくの

First order condition w.r.t. tree holdings

$$p_j = E\left[M(\omega)d_j(\omega) - A_i(\omega)\delta d_j(\omega)
ight]$$
 if $n_{ij} > 0$

 1^{st} term: asset's cash flows, valued at pricing kernel $M(\omega)$ 2^{nd} term: shadow cost of IC for i when buying j

basis :
$$p_j < E[M(\omega)d_j(\omega)]$$

price of underlying < price of replicating AD portfolio

Not arb opportunity: Arb \rightarrow buy "underpriced"/sell "overpriced" \rightarrow hit IC constraint

Basis without exogenously different constraints for different assets (\neq Garleanu Pedersen)

Discount versus premium

Geanakoplos (2008), Geanakoplos Zame (2014): collateral premium \neq here: basis, i.e., discount

No contradiction, different benchmarks

Collateral premium: Asset price > value of cash flows for i

$$p_j > \frac{1}{\lambda_i} E[u'_i(c_i(\omega))d_j(\omega)]$$

also true in our model

Basis: Asset price < price of replicating derivatives

$$p_j < E\left[M(\omega)d_j(\omega)\right]$$

only in our model ($\delta > 0$)

Endogenous segmentation

FOC tree holdings

$$p_j = \max_i v_{ij}$$
, where $v_{ij} = E\left[M(\omega)d_j(\omega) - A_i(\omega)\delta d_j(\omega)
ight]$

 $E\left[M(\omega)d_{j}(\omega)
ight]=$ "common value" same for all

 $-E\left[A_{i}(\omega)\delta d_{j}(\omega)
ight]$ = "endogenous private value" shadow cost IC_i

Trees held by agents who value them most, because they have the lowest shadow cost

Different trees held by different agents, priced by different kernels

 \neq exogenous segmentation: segmentation varies with environment (supply, initial endowment, risk aversion), shocks to different institutions affect different assets differently

Equilibrium expected excess returns

FOC wrt holdings:
$$p_j = E \left[M(\omega) d_j(\omega) - A_i(\omega) \delta d_j(\omega) \right]$$
, if $n_{ij} > 0$

Define risky return:
$$R_j(\omega)=rac{d_j(\omega)}{p_j}$$
, risk-free return: $R_f=rac{1}{E[M(\omega)]}$

$$E[R_j(\omega)] - R_f = -R_f Cov(M(\omega), R_j(\omega)) + R_f E[A_i(\omega)\delta R_j(\omega)]$$

 1^{st} premium > 0 if $R_j(\omega)$ large when $M(\omega)$ low (\neq frictionless CCAPM, $M(\omega)$ does not mirror agg. consumption, not even individual consumption, bc IC prevents full risk-sharing)

 2^{nd} premium > 0 if nonpledgeable income $\delta R_j(\omega)$ large when IC binds (for agents holding the asset): varies across assets because \neq assets held by \neq agents

2 states - 2 types

- aggregate output in bad state $\omega_1 <$ in good state ω_2
- type 1 more risk tolerant, type 2 more risk averse: CRRA $\gamma_1 < \gamma_2$

Continuum of trees indexed by $j \in [0, 1]$

If payoff in good state $d_j(\omega_2)$ large relative to payoff in bad state $d_j(\omega_1) \rightarrow$ large consumption β

Simple specification: Large $j \rightarrow$ large consumption β

$$d_j(\omega) = (1-j)\mathbf{1}(\omega=\omega_1) + j\mathbf{1}(\omega=\omega_2)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Equilibrium segmentation

 $\exists k$, s.t., risk tolerant type 1 hold trees j > k (high β), risk averse type 2 hold trees j < k (low β)

 1^{st} best \rightarrow large share of aggregate consumption for risk averse in bad state $\omega_1 \rightarrow$ implement by holding low β assets and purchasings state ω_1 Arrow securities from risk tolerant type

 2^{nd} best: IC precludes large sale of bad state ω_1 Arrow securities by risk tolerant (otherwise tempted to default) \rightarrow engineer as much insurance as possible with trees \rightarrow risk averse holds asset with relatively high payoff in ω_1 : low β

 \neq types hold eq portfolios: risk tolerant tilts towards high β

Equilibrium asset prices

Asset j > k, held by risk-tolerant agent $1 \rightarrow$ basis reflects shadow price of agent 1's IC (binds in bad state ω_1)

$$p_j = E[M(\omega)d_j(\omega)] - A_1(\omega_1)\delta d_j(\omega_1)$$

Asset j < k, held by risk-averse agent $2 \rightarrow$ basis reflects shadow price of agent 2's IC (binds in good state ω_2)

$$p_j = E[M(\omega)d_j(\omega)] - A_2(\omega_2)\delta d_j(\omega_2)$$

Beta and basis

Consumption β increases as $d_j(\omega_2)$ increases & $d_j(\omega_1)$ decreases

Among assets held / risk-tolerant agent 1 (which tend to have high β)

Larger β (lower dividend when IC1 binds, $d_j(\omega_1)) \rightarrow$ lower basis $A_1(\omega_1)\delta d_j(\omega_1)$

Among assets held / agent 2 (which tend to have low β)

Lower β (low $d_j(\omega_2)$) \rightarrow lower basis $A_2(\omega_2)\delta d_j(\omega_2)$

 \to basis inverse U-shaped with $\beta:$ smallest for very low β and very high $\beta,$ largest for intermediary β

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

In terms of expected returns

Low basis for very high and very low β assets

- ightarrow Low expected returns for very high and very low eta assets
- \rightarrow SML steep at bottom and flat at top

Black (1972), Frazzini Pedersen (2010), Hong and Sraer (2016)

Supply effects

Holding aggregate risk constant, i.e., holding aggregate output in each state constant

Large cross sectional dispersion of $\beta \to$ some assets with very large or very low $\beta \to$ low basis

Low cross sectional dispersion of eta
ightarrow high basis on average

Simple one-period GE asset pricing model + standard corporate finance friction \implies

- Endogenous segmentation
- Basis: underlying < derivative
- SML steep at bottom flat at top
- Lower dispersion of $\beta
 ightarrow$ larger basis