Discussion of

Incentive Constrained Risk Sharing, Segmentation, and Asset Pricing

by Bruno Biais, Johan Hombert, and Pierre-Olivier Weill

> Adriano Rampini Duke University

11th Paul Woolley Centre Conference at LSE

June 7, 2018

Question

What are asset pricing implications of collateral constraints?

Simple, clean model with endogenous constraints

Results

- Assets trade at discount due to limited collateralizability
- Segmentation of asset holdings by risk aversion
- **Expected returns concave in** β

Novel features

- All assets tradeable but limited collateralizability
- Heterogeneity in preferences

Outline

Model

What is friction?

Incentive compatibility, diversion, and borrowing constraint

Deriving collateral constraints from limited enforcement

Law of one price – does it hold or fail?

Basis vs. discount and collateral premium

How general are results?

- Expected returns concave in β
- Segmentation

Model

Simple and clean

- Static
 - \blacksquare Two dates 0 and 1
 - Consumption only at date 1
 - States $\omega \in \Omega$
- Pure exchange economy (no production)
- "Canonical GE model"

Motive for trade

- Heterogenous preferences
 - Mostly 2 types with CRRA $0 \leq \gamma_1 \leq \gamma_2 \leq 1$
- \blacksquare Initial endowments share of aggregate endowment at date 1

Assets

- Tradeable trees (or "assets") pay non-negative dividends $d_j(\omega) \geq 0$
- Limited collateralizability (or pledgeability) (see below)

What is Friction?

Incentive compatibility constraint – "imperfect recoverability"

- Agent "can make a take-it-or-leave-it offer to ... creditors"
- Creditors "can only seize fraction $1 \delta \in (0, 1]$ of ... assets"
- See Kiyotaki/Moore (1997)'s motivation for collateral constraint

Notation – collateralizability θ , where $\theta \equiv 1 - \delta$; Kiyotaki (1998)

- Alternative motivation: **Diversion** agents "can divert" 1θ
 - As in Bolton/Scharfstein (1990), Holmström/Tirole (1997), DeMarzo/Fishman (2007), DeMarzo/Sannikov (2006)

What is Friction? (Cont'd)

Strategic default

Agent who strategically defaults "obtains fraction $1-\theta$ of his long positions in trees and Arrow securities," so

$$\hat{c} = (1-\theta) \left[\int d_j dN_j + a^+ \right]$$

where dependence of agent's type i and state $\boldsymbol{\omega}$ is suppressed

Incentive compatibility constraint

 $c \geq \hat{c}$

State-contingent borrowing constraint

Using budget constraint and substituting into IC, we get

$$\theta \Big[\int d_j dN_j + a^+ \Big] \ge a^-$$

where a^- is short position with net position $a=a^+-a^-$

• Weakly optimal to choose either $a^+ = 0$ or $a^- = 0$ (Lemma 1), so

$$\theta \int d_j dN_j \ge -a$$

What is Friction? - Limited Enforcement

Risk sharing and asset pricing with limited enforcement

- Kehoe/Levine (1993), Kocherlakota (1996), Alvarez/Jermann (2000)
- Default with exclusion (autarky as outside option)

Limited enforcement without exclusion (1)

- Chien/Lustig (2010), Lustig/van Nieuwerburgh (2005)
- Trees/houses perfectly collateralizable but not labor income

Limited enforcement without exclusion (2)

- Rampini/Viswanathan (2010, 2013, forthcoming, 2018)
- Imperfect collateralizability of capital/houses but not cash flow

This paper: Only imperfectly collateralizable trees

Deriving Collateral Constraints from Limited Enforcement

Derivation à la Rampini/Viswanathan

• Limited enforcement (LE): Agents can default on promises and abscond with $1 - \theta$ of any trees they hold

$$u(c) \ge u(\hat{c}) \tag{LE}$$

where

$$\hat{c} \equiv (1-\theta) \int d_j dN_j$$

Agent's problem

 $\max_{c,a,N_j} E[u(c)]$

subject to (LE), $\forall \omega \in \Omega$, and

$$egin{array}{rcl} w&\geq&\sum_{\omega\in\Omega}q(\omega)a(\omega)+\int p_jdN_j\ a+\int d_jdN_j&\geq&c,~~orall\omega\in\Omega \end{array}$$

Collateral Constraints Derived à la Rampini/Viswanathan

■ Limited enforcement (LE) ⇔ Collateral constraints (CC)

Budget constraint next period binds so write (LE) as

$$u\left(a + \int d_j dN_j\right) \ge u\left((1-\theta) \int d_j dN_j\right)$$

 \blacksquare Since u(c) is strictly increasing, write equivalently

$$a + \int d_j dN_j \ge (1 - \theta) \int d_j dN_j$$

and rearrange to get collateral constraint (CC)

$$\theta \int d_j dN_j \ge -a$$
 (CC)

• Directly determines net promise ($a = a^+ - a^-$)

Long positions in collateralized claims fully collateralizable so

$$\theta \int d_j dN_j + a^+ \ge a^-$$

• θ does not multiply a^+ – Lemma 1 not required

Timing: first, agents' default decisions; then payments implemented

Alternative Implementation with Short Sale Constraints

- Implementation: fully levered trees and short sale constraints
 - "Hedging implementation" in Rampini/Viswanathan
 - Suppose lever all trees fully $-\hat{a} \equiv \theta \int d_j dN_j$
 - \blacksquare Then buy back collateralized claims (if necessary) $h\equiv a-\hat{a}$
 - Rewrite collateral constraint as short sale constraint (SSC)

$$a + \theta \int d_j dN_j = a - \hat{a} = \frac{h}{2} \ge 0$$
 (SSC)

Agent's problem

$$\max_{c,h,N_j} E[u(c)]$$

subject to (SSC), $\forall \omega \in \Omega$, and

$$w \geq \sum_{\omega \in \Omega} q(\omega)h(\omega) + \int \wp_j dN_j$$
$$h + (1 - \theta) \int d_j dN_j \geq c, \quad \forall \omega \in \Omega$$

where down payment $\wp_j \equiv p_j - \theta \sum_{\omega \in \Omega} q(\omega) d_j(\omega)$

Law of One Price – Does it Hold or Fail?

Law of One Price does not hold due to basis

• Define
$$M(\omega) \equiv \frac{q(\omega)}{\pi(\omega)}$$
 and $A_i(\omega) \equiv \frac{\mu_i(\omega)}{\lambda_i \pi(\omega)}$ then
 $p_j \geq \mathbb{E}[Md_j] - (1 - \theta)\mathbb{E}[A_i d_j]$

so basis relative to replicating portfolio

Two pricing kernels! (One agent-specific)

- \blacksquare Pricing kernel for collateralized claims $M(\omega)$
- Pricing kernel for non-collateralizable part $M_i(\omega)$

$$M_i(\omega) \equiv \frac{u_i'(c(\omega))}{\lambda_i} = \frac{q(\omega)}{\pi(\omega)} - \frac{\mu_i(\omega)}{\lambda_i \pi(\omega)}$$

and therefore

$$p_j \ge \theta \mathbb{E}[Md_j] + (1-\theta)\mathbb{E}[M_id_j]$$

Collateralized claims premium (non-collateralizable part discount)

$$M(w) \ge M_i(\omega)$$

Here: non-collateralizable part still tradeable – clever

How General are Results?

Results for 2-by-2 case: 2 agent types and 2 states

Asset structure

 $d_j(\omega) = (1-j)\mathbf{1}(\omega_1) + j\mathbf{1}(\omega_2)$

where ω_2 is high aggregate endowment state

Segmentation – do not hold market portfolio!

- Less (more) risk averse hold high (low) consumption beta assets
- Intuition seems general can we say more?
- Would intermediate type hold intermediate assets or all assets?
- First best with heterogeneity in risk aversion similar (Dumas (1989))?

Concavity in consumption beta (Black (1972))

Less (more) risk averse discounts low (high) state more

 $M_1(\omega_1) < M(\omega_1)$ and $M_2(\omega_2) < M(\omega_2)$

Intermediate assets have higher returns – general?

Conclusion

Clever model

- Limited collateralizability of perfectly tradeable assets
- No idiosyncratic risk instead heterogeneity in risk aversion
- Interesting implications segmentation and concave expected returns

Suggestions

- Friction? Embrace limited enforcement
 - Derive collateral constraints à la Rampini/Viswanathan
 - Diversion is a diversion
- Generality?
- Dynamics?