Central Counterparty and the Design of Collateral Requirements

Jessie Jiaxu Wang Arizona State University Agostino Capponi Columbia Hongzhong Zhang Columbia

Non-bank Financial Sector and Financial Stability conference

4th October, 2019, LSE

- Counterparty failures in OTC derivatives market can cause contagion and systemic crisis, as seen in 2008.
- To manage counterparty risk, G20 leaders mandated the central clearing of standardized OTC derivatives-credit default swaps and interest rate swaps.
 - Dodd-Frank, European Market Infrastructure Regulation
 - Clearing rate is 45% for CDS and 62% for IRS (CFTC, 2018)
- CCPs act as the buyer to every seller and the seller to every buyer.
- CCPs guarantee terms of trades by pooling the counterparty risks.

Bilateral Trading Markets

Centrally Cleared Markets

Typical CCP Default Waterfall

Lack of Global Standards for Collateral Requirements

- While CCPs are systemically important, the regulation of collateral is still debatable: lack of global standards (Cunliffe, 2018; Duffie, 2019)
- Initial margin is usually set at some Value-at-Risk level.
- Default fund is subject to "Cover 2"—total default funds should cover the shortfalls of the two largest clearing members (CPSS-IOSCO)

- adopted by major CCPs: ICE Clear Credit, CME, and LCH

	Asia	Australia	Europe	North America	South America	
Number of CCPs	27	1	20	12	1	
Funded resources %						
Initial margin	69.2	92.8	74.0	85.2	99.6	
Default fund	18.7	4.5	25.3	13.5	0.2	
CCP capital	12.2	2.7	0.7	1.3	0.2	

Lack of Global Standards for Collateral Requirements

- While CCPs are systemically important, the regulation of collateral is still debatable: lack of global standards (Cunliffe, 2018; Duffie, 2019)
- Initial margin is usually set at some Value-at-Risk level.
- Default fund is subject to "Cover 2"—total default funds should cover the shortfalls of the two largest clearing members (CPSS-IOSCO)

- adopted by major CCPs: ICE Clear Credit, CME, and LCH

	Asia	Australia	Europe	North America	South America	
Number of CCPs	27	1	20	12	1	
Funded resources %						
Initial margin	69.2	92.8	74.0	85.2	99.6	
Default fund	18.7	4.5	25.3	13.5	0.2	
CCP capital	12.2	2.7	0.7	1.3	0.2	

Regulate collateral requirements for central clearing?

The first framework for determining optimal collateral requirements:

The first framework for determining optimal collateral requirements:

() Highlight distinct role of default funds compared to initial margin

- allows for loss-mutualization \Rightarrow valuable to CCP's resilience
- distorts members' risk-taking incentive ex-ante
- Initial margins are more cost-effective to align members' incentives.

The first framework for determining optimal collateral requirements:

1 Highlight distinct role of default funds compared to initial margin

- allows for loss-mutualization \Rightarrow valuable to CCP's resilience
- distorts members' risk-taking incentive ex-ante
- Initial margins are more cost-effective to align members' incentives.
- 2 Determine a default fund rule to alleviate the inefficiency
 - likely more stringent than "Cover 2"
 - cover a fraction of members' shortfalls

The first framework for determining optimal collateral requirements:

1 Highlight distinct role of default funds compared to initial margin

- allows for loss-mutualization \Rightarrow valuable to CCP's resilience
- distorts members' risk-taking incentive ex-ante
- Initial margins are more cost-effective to align members' incentives.
- 2 Determine a default fund rule to alleviate the inefficiency
 - likely more stringent than "Cover 2"
 - cover a fraction of members' shortfalls
- **3** Optimal regulation of initial margins and default fund
 - if funding collateral is more costly \Rightarrow more initial margin
 - if recapitalizing the CCP is more costly \Rightarrow more default funds

Model

- $\bullet~N$ risk-neutral CDS dealers, a continuum of risk-averse CDS buyers
- t = 0: buyers and dealers trade CDS; buyers pay a unit price
 - dealers choose $a = \{ risky (r), safe (s) \}, a is unobservable$

$$1 \xrightarrow{-q_a} \qquad R_a - p_c D$$

investment

$$\overrightarrow{l_a}$$
 0 \Rightarrow default

- p_c is probability of credit event; $R_r > R_s > D$ but $q_r > q_s$
- Assume safe project has higher expected return.
- → Safe project is socially optimal
- t = 1: i.i.d. payoffs are realized, insurance payments D are made

- CCP guarantees insurance payment D to buyers with certainty.
- t = 0: CCP collects collateral from member: initial margin I ∈ [0, D], default fund F ∈ [0, D − I]. Members incur a funding cost β× (I + F).
- Cover 2: default fund pool covers shortfalls of at least two members:

$$NF \ge 2(D-I)$$

- CCP uses end-of-waterfall resources when $\mathcal{N}_d(D-I) > NF$ and incurs a linear cost α .
- A technical assumption: $\beta \geq \alpha p_c \mathbb{P}^r(\mathcal{N}_d > 2)$.

Centrally Cleared Market: default waterfall

Loss Mutualization Mechanism

Conditioning on the credit event occurs, we analyze member i's payoff:

- Investment fails with probability q_{a_i}
 - payoff is 0: i's collateral covers partially obligation to buyer
- Investment succeeds with probability $1 q_{a_i}$
 - receives investment return, pays fully to buyer, recovers initial margin
 - its default fund is used to absorb shortfall of \mathcal{N}_d defaulting members
- Member i chooses $a \in \{r,s\}$ to maximize expected payoff

$$\max_{a}(1-q_{a})\left[(1+f)R_{a_{i}}-D+I+\mathbb{E}\left(F-\frac{\mathcal{N}_{d}(D-I-F)}{N-\mathcal{N}_{d}}\right)^{+}\right]-(1+\beta)(I+F)$$
 remaining default fund

The equilibrium consists of members' risk choice and the collateral requirement:

- Given collateral and others' risk choice, each member chooses riskiness to maximize profit.
- Given members' risk choice, the regulator chooses collateral satisfying Cover 2 to maximize total value of all market participants.

Proposition: The equilibrium risk profiles depend on collateral I and F.

Proposition: The equilibrium risk profiles depend on collateral I and F.

1 Excessive risk-taking can happen.

Proposition: The equilibrium risk profiles depend on collateral I and F.

- 1 Excessive risk-taking can happen.
- **2** Given I, higher F increases the recovery value in default fund account,
- → makes survival more attractive and discourages risk-taking.

Proposition: The equilibrium risk profiles depend on collateral I and F.

- Excessive risk-taking can happen.
- **2** Given I, higher F increases the recovery value in default fund account,
- \rightarrow makes survival more attractive and discourages risk-taking.
- **3** $\hat{F}(I)$ is piecewise linear, strictly decreasing in I with $\partial \hat{F}/\partial I < -1$.
- \rightarrow when initial margin decreases by 1, default fund increases more than 1.
- \rightarrow initial margin is more cost-effective in aligning members' incentives.

Optimal Cover Rule for Default Fund

Proposition: Given initial margin, the optimal default fund subject to "Cover 2" is

$$F^{e}(I) = \begin{cases} \hat{F}(I) & W^{s}(\hat{F}(I)) \geq W^{r}(\frac{2(D-I)}{N}) \\ \frac{2(D-I)}{N} & \text{otherwise} \end{cases}$$

A Generalized Cover X Rule

- Cover X rule increases with N; Cover ratio X(I; N)/N has little variation with N.

A Generalized Cover X Rule

- Cover X rule increases with N; Cover ratio X(I;N)/N has little variation with N.
- Implications: cover a fixed fraction rather than a fixed number.
 - The rule should account for the number of clearing members.
 - ICE and LCH have more than 20 members, with entries and exits.

Proposition: The regulator's equilibrium choice of the collateral requirements (I^e, F^e) is

Proposition: The regulator's equilibrium choice of the collateral requirements $\left(I^e,F^e\right)$ is

1 collateral is more costly \Rightarrow More initial margin

Proposition: The regulator's equilibrium choice of the collateral requirements $\left(I^e,F^e\right)$ is

$$(I^e, F^e) = \begin{cases} \left(I^*, \hat{F}(I^*)\right) & \text{if } W^s(I^*; \hat{F}(I^*)) \ge W^r(0; \frac{2D}{N}) \\ \left(0, \frac{2D}{N}\right) & \text{otherwise} \end{cases}$$

2 end-of-waterfall is more costly \Rightarrow More default fund

Proposition: The regulator's equilibrium choice of the collateral requirements $\left(I^e,F^e\right)$ is

$$(I^e, F^e) = \begin{cases} \left(I^*, \hat{F}(I^*)\right) & \text{if } W^s(I^*; \hat{F}(I^*)) \ge W^r(0; \frac{2D}{N}) \\ \left(0, \frac{2D}{N}\right) & \text{otherwise} \end{cases}$$

Robustness 1: convex end-of-waterfall cost

In systemic events when multiple members default, the CCP faces increasing marginal costs to raise end-of-waterfall resources:

$$\alpha \left((\mathcal{N}_d(D-I) - NF)^+ \right)^2$$

- The trade-off between initial margin and default fund is robust.
- Nonlinearity allows to pin down interior levels of collateral.

CCPs' exposures tend to concentrate in a few large clearing members. Suppose i is K times (K > 1) the size of others: KD, K(1 + f)R

- The trade-off between initial margin and default fund is robust.
- Required collateral normalized by size is lower for a big member.
- Big member finds it easier to internalize externalities.

- Optimal collateral is the cost-effective combination of *I* and *F* that ensures CCP's resilience and aligns members' risk-taking incentives.
- Current low-interest-rate environment and the inverted yield curve \Rightarrow more default funds
- Opposite to the conventional view that initial margins increase with volatility and decrease with funding cost

Policy Implications: irreplaceable role of default fund

Can default fund be replaced entirely by initial margin?

Policy Implications: irreplaceable role of default fund

Can default fund be replaced entirely by initial margin?

Can default fund be replaced entirely by initial margin?

Proposition: No. Posting 100% collateral as margin gives a lower total value and a lower member profit than the optimal collateral $(I^*, \hat{F}(I^*))$.

- Loss-mutualization mechanism is cheaper.
- A fully collateralized position in a bilateral trading market also eliminates counterparty risk ⇒ members prefer CCP than OTC.
- Central clearing generates positive social surplus under optimal regulated collateral.

- Collateral tends to be depleted during market stress when recapitalization cost is high ⇒ CCP's recapitalization relates to systemic risk.
- Our proposed optimal collateral rule minimize the probability of CCP recapitalization, and thus systemic risk.

Proposition: In the limiting case of a large CCP network, the expected losses at the CCP under the optimal collateral requirements $(I^*, \hat{F}(I^*))$ converges to 0.

- This paper develops the first framework for collateral in central clearing.
 - Default fund allows for members' risk-sharing ex-post, but distorts risk-taking incentives ex-ante.
 - Initial margin is more cost-effective to align incentives, but less valuable for CCP resilience.
- We propose optimal collateral requirements.
 - Cover 2 is suboptimal, especially in low funding cost environments
 - Load more on default fund when CCP recapitalization is costly.
 - Load more on initial margin when collateral is costly.

Centrally Cleared Markets

Product	Centrally cle	Total	
	Amount (USD bn)	Percentage	(USD bn)
Interest rate derivatives			
Fixed-Float	84,610	69%	122,727
Forward Rate Agreement	34,884	87%	39,990
Overnight Indexed Swap	29,459	82%	36,139
Other	17,680	26%	69,222
Total	166,633	62%	268,078
Credit derivatives			
Index Tranche and Index	1,871	55%	3,424
Asia	13	13%	99
Europe	1,208	68%	1,782
North America	592	42%	1,395
Other regions	57	39%	148
Other	0.53	0%	765
Total	1,871	45%	4,189

Source: data reported to the CFTC in May 2018

Centrally cleared and uncleared notionals outstanding