Which Investors Matter for Global Equity Valuations and Expected Returns?

by Ralph S.J. Koijen, Robert J. Richmond, and Motohiro Yogo

Discussion by Oleg Rytchkov

Temple University

12th Paul Woolley Conference June 7, 2019

Outline

- Model
- Analysis of the cross-sectional variation in market-to-book ratios (international evidence)
- Estimation of the international asset demand model

Model: Summary

- Exchange economy, two periods t = 0, 1
- N risky assets with terminal payoffs $D_1(n) = B_0(n)\rho(n)$
 - B_0 : book equity at t = 0; ρ : ROE at t = 1, one-factor model
 - x(n): a set of asset characteristics (including a constant)
- I competitive investors i = 1, ..., I with the CARA preferences $E[-\exp(-\gamma_i A_{1i} + Z_{1i})]$ over wealth $A_{i1} = A_{0i} + Q'_i(D_1 P)$
 - heterogeneous beliefs about $\rho(n)$: $\rho_i(n) = g_i(n) + \beta_i(n)F + \eta(n), F \sim \mathcal{N}(0, 1), \eta \sim \mathcal{N}(0, \sigma^2 I)$
 - $g_i(n) = \lambda_i^{g'} x(n) + \nu_i^{g}(n), \ \beta_i(n) = \lambda_i^{\beta'} x(n) + \nu_i^{\beta}(n)$
 - outside risk factors Z_{1i} : $Z_{1i} \sim \mathcal{N}(\mu_{Zi}, \sigma_{Zi}^2)$
 - $2Cov(Z_{1i}, \rho_i(n)) = \lambda_i^{Z'} x(n) + \nu_i^{Z}(n)$
 - heterogeneous risk aversion: $\gamma_i = \gamma/A_{i0}$

Model: Implications

• Asset demand $q_i(n) = Q_i(n)B_0(n)$:

$$q_i(n) = -\frac{1}{\gamma_i \sigma^2} MB(n) + \frac{1}{\gamma_i \sigma^2} \lambda_i^{q'} x(n) + \frac{1}{\gamma_i \sigma^2} \nu_i^q(n)$$

• dispersion in q_i is determined by MB and characteristics x

Equilibrium market-to-book ratios:

$$MB(n) = \left(\frac{\sum_{i=1}^{l} A_i \lambda_i}{\sum_{i=1}^{l} A_i}\right)' x(n) + \frac{\sum_{i=1}^{l} A_i \nu_i(n)}{\sum_{i=1}^{l} A_i}$$

- dispersion in MB is determined by characteristics x
- The model is silent about
 - how to choose the characteristics x
 - whether x reflect expected profitability (g_i) or risk (β_i, Cov(Z_{1i}, ρ_i))

Model: Comments

• Standard optimization of the CARA preferences:

$$Q_i = rac{1}{\gamma_i} Var_i(D)^{-1}(E_i(D) - P + Cov_i(D,Z_i))$$

- Renormalization: $D = B_0 \rho$, $P = B_0 \times MB$, $q_i = B_0 Q_i$, $B_0 = diag(B_0(1), \dots, B_0(N)) \Rightarrow$ $q_i = \frac{1}{\gamma_i} Var_i(\rho)^{-1}(E_i(\rho) - MB + Cov_i(\rho, Z_i))$
 - it is unconventional to characterize holdings by book values
 - there is nothing special about book values

• For $q_i(n) \sim MB(n)$ and $q_i(n) \sim x(n)$ it is crucial that

- ρ has a factor structure: $\rho = g + \beta F + \eta$
- variances of all η(n) are identical; isn't it a restrictive assumption?

Global market-to-book ratios: Summary

Panel data model

$$mb_t(n) = a_t + \lambda'_{mb}x_t(n) + \epsilon_t(n)$$

- $mb_t(n)$: log market-to-book ratio
- x_t(n): log book equity, sales-to-book ratio, foreign sales share, dividend-to-book ratio, Lerner index (operating income after depreciation/sales), local market beta
- estimated separately for the U.S., GB, Euro area, and Japan
- Main results
 - the model explains from 37% (in Japan) to 68% (in GB) of the cross-sectional variation in mb_t(n)
 - coefficient estimates are comparable across the regions
 - and have reasonable signs

Global market-to-book ratios: Comments

- The choice of the characteristics looks a bit ad hoc
 - other candidates: leverage, R&D, stock volatility, ...
 - how high is the R-squared expected to be ex ante?
- Can the cross-region comparison be more rigorous?
 - test that the coefficients are equal
 - hypothesize about the variation in the coefficients across the regions
- It might be interesting to compare the proposed characteristic-based explanation of mb_t with those produced by backward-looking decompositions in Daniel and Titman (2006), Fama and French (2008), and Gerakos and Linnainmaa (2018)

Asset demand system: Summary

- The most interesting and important part of the paper
- Objectives
 - explain investors' portfolio weights by firm characteristics
 - assess the importance of particular investors by assuming that they switch to holding the market portfolio and comparing
 - the actual valuations with counterfactual ones
 - the abilities of characteristics to explain actual and counterfactual valuations
- Econometric framework: nested fractional model
 - generalizes the model of Koijen and Yogo (2019) for the case of multiple countries
 - resembles a nested logit model but differs from it

Asset demand system: Details

- Portfolio weights: $\omega_{i,t}(n,c) = \omega_{i,t}(n|c)\omega_{i,t}(c), c = \{US, GB\}$
- Determinants of country allocations: $\delta_{i,t}(US) = \exp(\psi_{0,i} + \epsilon_{i,t}^{\psi}), \ \delta_{i,t}(GB) = 1 \ (normalization)$
- Determinants of asset allocations:
 - $\delta_{i,t}(n|c) = \exp(b_{0,i,c,t} + \beta_{0,i,c}mb_t(n) + \beta'_{1,i,c}x_t(n) + \epsilon_{i,c,t}(n))$
 - outside asset: $\delta_{i,t}(0|c) = 1$ (normalization)
- Portfolio weights within country *c*:

$$\omega_{i,t}(n|c) = rac{\delta_{i,t}(n|c)}{\sum_{m \in \mathcal{N}_{i,c,t}} \delta_{i,t}(m|c)}$$

• Portfolio weight of country c:

$$\omega_{i,t}(c) = \frac{\left(\sum_{m \in \mathcal{N}_{i,c,t}} \delta_{i,t}(m|c)\right)^{\psi_{1,i}} \delta_{i,t}(c)}{\sum_{c \in \{US,GB\}} \left(\sum_{m \in \mathcal{N}_{i,c,t}} \delta_{i,t}(m|c)\right)^{\psi_{1,i}} \delta_{i,t}(c)}$$

Asset demand system: Estimation

- Separate estimation of within- and cross-country demands using holdings of institutional investors in the U.S and GB
 - investment advisors, mutual funds, long-term investors, hedge funds, private banking, brokers
 - household sector holdings are constructed as residuals
- Within-country demands:

$$\log\left(\frac{\omega_{i,t}(n)}{\omega_{i,t}(0)}\right) = b_{0,i,t} + \beta_{0,i}mb_t(n) + \beta'_{1,i}x_t(n) + \epsilon_{i,t}(n)$$

- estimated for individual investors
- Cross-country demands:

$$\log\left(\frac{\omega_{i,t}(US)}{\omega_{i,t}(GB)}\right) = \psi_{0,i} - \psi_{1,i}\log\left(\frac{\omega_{i,t}(0|US)}{\omega_{i,t}(0|GB)}\right) + \epsilon_{i,t}^{\psi}$$

estimated for investor types

Asset demand system: Estimation

- Two challenges:
 - latent demand is correlated with prices
 - many investors hold concentrated portfolios
- Solutions:
 - 2SLS estimation with the instruments

$$z_{i,t}(n) = \log \left(\sum_{j \neq i, HH} A_{j,t} \frac{1_j(n)}{1 + |\mathcal{N}_j|} \right)$$

- as in Koijen and Yogo (2019)
- variation in the instruments captures the exogenous variation in investment mandates
- ridge-type regression in the second stage of 2SLS
 - shrinkage toward the aggregate demand function
 - regularization parameters are obtained by cross-validation

Asset demand system: Empirical results

- Investors disagree on the importance of dividend-to-book ratio, log book equity, and foreign sales
- The elasticity of substitution across countries ψ₁ varies from 0.1 (for broker-dealers) to 0.32 (for investment advisors)
- Investment advisors have the largest impact on valuations
 - primarily because of their size
- Hedge funds have the largest impact per dollar
- Insurance companies and pension funds have the smallest impact per dollar
- The results hold unconditionally and conditionally on characteristics

Asset demand system: Comments

- What is achieved by estimating demands of individual investors?
 - main results are reported for institutional types
 - additional problems:
 - concentrated portfolios; small cross-section of weights
 - the variation in the instrument is more likely to reflect choices of individual investors rather than investment mandates
- Why not to consider separately the impacts of the U.S. and GB investors?
 - currently, the counterfactuals are computed assuming that particular investors in both the U.S. and GB switch to the market portfolio

Asset demand system: Comments

- The 2SLS shrinkage estimator is interesting and innovative
- What are its econometric properties?
 - ridge regression reduces the variance but increases the bias
 - 2SLS is biased itself
 - are the regularization parameters sensitive to splitting the sample into training and validation samples?
 - it might be useful to illustrate the properties of the 2SLS shrinkage estimator using simulations
- What are the standard errors of the coefficient estimates?
 - needed for conducting formal tests
 - is it possible to use bootstrap to get them?

• The counterfactual market equity of asset *n* is computed as $ME_t^{CF}(n) = \sum_i \omega_{it}^{CF}(n, ME_t^{CF}(n))A_{it}$

• wealth A_{it} , which depends on ME of all assets, stays the same

- However, by affecting *ME*, switching of a group of investors to the market portfolio also changes
 - the wealth of all investors
 - the demand functions of all investors

• in the theoretical part, $c_i = (\beta_i'\beta + \sigma^2)^{-1}\beta_i'(g_i - MB + z_i)$

• What are the consequences of ignoring those facts?

Conclusion

- Interesting and ambitious paper with numerous results
 - both methodological and empirical
- Suggestions
 - emphasize more the estimation of the asset demand system focusing on international results
 - better develop the 2SLS shrinkage estimator
 - try to address the indicated issues