Discussion: A Model of Intermediation, Money, Interest, and Prices

by Saki Bigio and Yuliy Sannikov

Discussant: Walker Ray

June 6, 2019

Paul Woolley Centre Conference

Different Monetary Frameworks

- "Interest and prices"
 - Woodford/Neo-Wicksellian view: monetary policy without money

Different Monetary Frameworks

- "Interest and prices"
 - Woodford/Neo-Wicksellian view: monetary policy without money
- "Money and prices"
 - ► Transaction (cash in advance, search): link between inflation and quantity of money

Different Monetary Frameworks

- "Interest and prices"
 - Woodford/Neo-Wicksellian view: monetary policy without money
- · "Money and prices"
 - ► Transaction (cash in advance, search): link between inflation and quantity of money
- Financial crisis: how do credit markets react to monetary policy?

Monetary Policy as it is Actually Conducted

- A model of realistic modern monetary policy
 - Central bank: discount window, interest on reserves, and balance sheet
 - ► Intermediaries: loans and deposits, settle reserve surplus/deficits in interbank market

Monetary Policy as it is Actually Conducted

- A model of realistic modern monetary policy
 - Central bank: discount window, interest on reserves, and balance sheet
 - ► Intermediaries: loans and deposits, settle reserve surplus/deficits in interbank market
- Embedded within an incomplete-markets economy
 - Distribution of agents matter for consumption
 - ▶ **Production inefficiency:** Borrowing-constrained agents produce using inefficient process

Policy Takeaways

- Two tools: Corridor system and OMOs
- Implement two targets: credit spread and inflation targets
- Can be used independently...under "normal" conditions
 - Explicit characterization of ZLB and conditions under which the interbank market breaks down

Policy Takeaways

- Two tools: Corridor system and OMOs
- Implement two targets: credit spread and inflation targets
- Can be used independently...under "normal" conditions
 - Explicit characterization of ZLB and conditions under which the interbank market breaks down
- But normative implications are tied to production process
- Monetary policy interlinked with fiscal policy

Model Ingredients

- Heterogeneous households
 - ▶ Produce, consume, save/borrow
- Intermediaries
 - Supply loans and deposits for HHs
 - Must satisfy reserve requirement with CB
- Central bank
 - Sets policy rates and balance sheet
 - Also conducts fiscal policy (taxes/transfers)

Central Bank

- Nominal policy rates:
 - ► Interest on reserves *i*^m
 - ▶ Discount window rate i^{dw} (\implies spread $\iota = i^{dw} i^m$)
- Balance sheet items:
 - ► Monetary base *M*
 - ▶ Net assets E = L M
- Taxes/transfers to households T

Bank Problem

- Deposits a^b , loans ℓ^b , and reserves m^b in order to maximize expected per-period profits
- Reserve requirement $\varrho \in [0,1]$ fraction of deposits
- Subject to fraction deposit shocks $\pm \delta$ (Afonso and Lagos 2012, Bianchi and Bigio 2018)
- Expected profits

$$\begin{split} \pi^b &\propto i^\ell \ell^b + i^m m^b - i^a a^b \\ &+ \frac{1}{2} \chi (m^b - \varrho a^b + (1 - \varrho) \delta a^b) \\ &+ \frac{1}{2} \chi (m^b - \varrho a^b - (1 - \varrho) \delta a^b) \end{split}$$

where

$$\chi(x) = \begin{cases} \chi^- \cdot x & \text{if } x \le 0\\ \chi^+ \cdot x & \text{if } x > 0 \end{cases}$$

Market Tightness and the Liquidity Ratio

• χ^+, χ^- is a function of market tightness $\theta = B^-/B^+$

$$egin{aligned} B^- &= -\int_b \min(m^b - arrho a^b + z^b (1-arrho) \delta a^b, 0) \, \mathrm{d}b \ B^+ &= \int_b \max(m^b - arrho a^b + z^b (1-arrho) \delta a^b, 0) \, \mathrm{d}b \end{aligned}$$

Under some assumptions about distribution of m^b, a^b:

$$B^- = \sum_{z=-1,1} -rac{1}{2} \min(M^b - \varrho A^b + z(1-\varrho)\delta A^b, 0)$$
 $B^+ = \sum_{z=-1,1} rac{1}{2} \max(M^b - \varrho A^b + z(1-\varrho)\delta A^b, 0)$

 $\bullet \implies \theta$ is a function only of the aggregate bank liquidity ratio

$$\Lambda = \frac{M^b}{A^b}$$

Interbank Cost Function χ

Notes: function χ as a function of the liquidity ratio, for different values of interbank efficiency λ . Corridor spread $\iota=0.02$

Interbank Cost Function χ

Notes: function χ as a function of the liquidity ratio, for different values of interbank efficiency λ . Corridor spread $\iota=0.02$

Interbank Cost Function χ

Notes: function χ as a function of the liquidity ratio, for different values of interbank efficiency λ . Corridor spread $\iota=0.02$

Equilibrium Nominal Rates

· Linear profit function, perfect competition pins down rates

Notes: nominal rates, for different values of interbank efficiency λ .

Equilibrium Nominal Rates

· Linear profit function, perfect competition pins down rates

Notes: nominal rates, for different values of interbank efficiency λ .

Equilibrium Nominal Rates

· Linear profit function, perfect competition pins down rates

Notes: nominal rates, for different values of interbank efficiency $\lambda.$

Equilibrium (Real) Spread

Notes: real spread, for different values of interbank efficiency λ .

Equilibrium (Real) Spread

Notes: real spread, for different values of interbank efficiency λ .

Equilibrium (Real) Spread

Notes: real spread, for different values of interbank efficiency λ .

ZLB, Satiation, and Scarcity

Notes: Nominal rates under different liquidity regimes.

Household Problem

- (Mostly) standard Huggett setup
- Wealth evolves according to (subject to some conditions on precautionary savings motive)

$$ds = \begin{cases} (r^{a}s + y^{H} + T - c) dt + \sigma dZ & \text{if } s \ge 0\\ (r^{\ell}s + y^{H} + T - c) dt + \sigma dZ & \text{if } \tilde{s} < s < 0\\ (r^{\ell}s + y^{L} + T - c) dt & \text{if } s \le \tilde{s} \end{cases}$$

- standard HJB equation, KF equation
- Household problem determined by real rates r^a, r^ℓ (and T)

Distribution Given r^a , Δr , T

Notes: distribution of households, for different spread Δr .

Output as a Function of Δr

Notes: output, for different spread Δr (fixing r^a , T).

Goods Market Clearing

Notes: Market clearing condition for deposit rates r^a (fixing $\Delta r, T$).

Equilibrium and Monetary Policy

• Evolution of CB asset position given real wealth clearing $E/P = \mathcal{E} = -\int_{-\infty}^{\infty} sf(s) \, \mathrm{d}s$

$$d\mathcal{E} = -\left[r^{\ell} \int_{-\infty}^{0} sf(s) ds + r^{a} \int_{0}^{\infty} sf(s) ds + T\right] dt$$

- How does the CB implement an equilibrium?
 - ▶ Intermediaries determine nominal rates, real spread
 - ▶ HHs determine (set of) equilibrium real deposit rates
 - CB sets real spread using corridor spread and OMOs
 - ightharpoonup CB chooses equilibrium according to its net asset position \mathcal{E} , transfers T

Experiment: Credit Crunch

Effects of credit crunch (temporary and anticipated)

- Economy starts in steady state
- One year from now, borrowing limit \tilde{s} increases
- Returns to normal after two years

Deposit and Loan Response

Notes: credit response to credit crunch.

Rate Response

Notes: rate response to credit crunch.

Output Response

Notes: output response to credit crunch.

Intermediaries: More than Pass-Through Entities?

- Stylized bank problem
 - In equilibrium: banks indifferent between any choice of loans and deposits
 - ▶ Out of equilibrium: unbounded loans and deposits
- Extension: risk-bearing capacity, limited arbitrage
 - Allows for studying portfolio rebalancing channel of LSAPs
- Also: sensitivity to interbank efficiency?

ZLB Revisited

Notes: deposit and loan rates for negative interest on reserves.

Production Efficiency

- Production inefficiency ←⇒ borrowing-constrained HHs
 - ▶ No capital, borrowing is purely for consumption
 - Long-run production benefit from making borrowing painful (at a price of lower ex-ante insurance)
- Extension: Huggett to Aiyagari?
 - Efficiency gain from higher borrowing of most productive agents
 - Do policy implications change?

Combined Monetary/Fiscal Authority

- Pluses and minuses...
- Results depend on induced changes in taxes/transfers
- Monetary results (and some paradoxes) can depend on counter-factual fiscal responses (Caramp and Silva 2018)
- Idiosyncratic request: show the fiscal response more clearly

Concluding Remarks

- Advances our understanding of how realistic monetary policy works within an incomplete markets setup
- Bridges the gap between different monetary frameworks