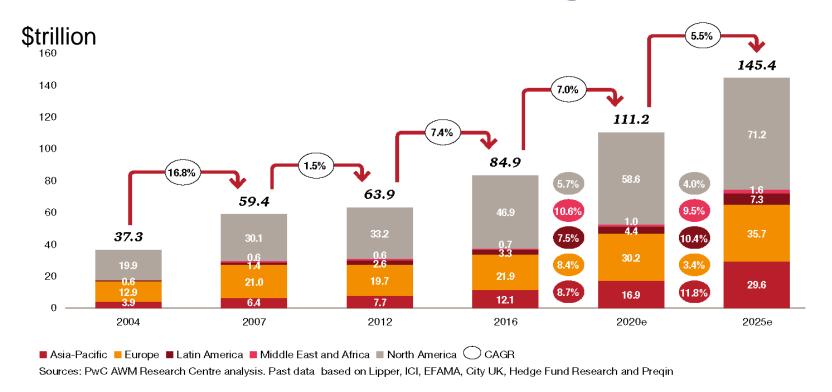
The Benchmark Inclusion Subsidy

Anil Kashyap	Natalia Kovrijnykh	Jian Li	Anna Pavlova
Chicago Booth and	Arizona State	University of	London Business
Bank of England	University	Chicago	School

*The views here are those of the authors only and not necessarily of the Bank of England

Global Assets Under Management



Source: PWC, Asset and Wealth Management Revolution, 2017

Benchmarking in Asset Management

Money managed against leading benchmarks

1.	S&P 500	≈\$10 trillion
2.	FTSE-Russell (multiple indices)	≈\$8.6 trillion
3.	MSCI All Country World Index	≈\$3.2 trillion
4.	MSCI EAFE	≈\$1.9 trillion
5.	CRSP	≈\$1.3 trillion

- Existing research: asset pricing implications of benchmarking
- No analysis of implications of benchmarking for corporate decisions

This Paper

- Asset managers are evaluated relative to benchmarks
- Such performance evaluation creates incentives for managers to hold the benchmark portfolio
 - Regardless of its variance
- Firms inside the benchmark end up effectively subsidized by asset managers
- The value of a project differs for firms inside and outside the benchmark
 - Higher for a firm inside the benchmark
 - The difference is the "benchmark inclusion subsidy"

This Paper (cont.)

 Firms inside and outside the benchmark have different decision rules for M&A, spinoffs & IPOs

- The "benchmark inclusion subsidy" also varies with firm characteristics
 - Gives novel cross-sectional predictions

All of this is in contrast to what we teach in Corporate Finance

Related Literature

- Index effect
 - Harris and Gurel (1986), Shleifer (1986). Chen, Noronha, and Singal (2004) document price increase of 6.2% post additions
 - Interpretations: Merton (1987), Scholes (1972)
- Asset pricing with benchmarking
 - Brennan (1993), Cuoco and Kaniel (2011), Basak and Pavlova (2013), Buffa, Vayanos, and Woolley (2014)
- Style investing
 - Barberis and Shleifer (2003)
- Stein (1996) non-CAPM based valuation

Simplified Model: Environment

- Two periods, t = 0, 1
- Three risky assets, 1, 2, and y, with uncorrelated cash flows D_i

$$D_i \sim N(\mu_i, \sigma_i^2), \qquad i = 1, 2, y$$

Asset prices denoted by S_i

- Supply of 1 share each
- Riskless asset, with interest rate r = 0

Simplified Model: Investors

- Two types of investors
 - \triangleright Conventional investors (fraction λ_C)
 - \triangleright Asset managers (fraction λ_{AM})
- All investors have CARA utility:

$$U(W) = -Ee^{-\gamma W}$$

W is terminal wealth (compensation for asset managers) γ is absolute risk aversion

Baseline Economy: No Asset Managers

• Conventional investors' optimal portfolio (number of shares):

$$x_i = \frac{\mu_i - S_i}{\gamma \sigma_i^2}$$
 (mean-variance portfolio)

- Asset prices: $S_i = \mu_i \gamma \sigma_i^2$
- Combine assets i & y to form a single entity
- New optimal portfolio demand: $x_i' = \frac{\mu_i + \mu_y S_i'}{\gamma(\sigma_i^2 + \sigma_y^2)}$
- Price of the combined asset:

$$S_i' = \mu_i + \mu_y - \gamma (\sigma_i^2 + \sigma_y^2) = S_i + S_y$$

Adding Asset Managers

b – fee for relative performance

• Asset managers' compensation: $w = a r_x + b(r_x - r_h) + c$

c – independent of performance (e.g., based on AUM)

```
r_{\!\scriptscriptstyle X} – performance of asset manager's portfolio r_{\!\scriptscriptstyle b} – performance of benchmark a – fee for absolute performance
```

See Ma, Tang, and Gómez (2019) for evidence

Economy with Asset Managers

Conventional investors' optimal portfolio:

$$x_i^C = \frac{\mu_i - S_i}{v \sigma_i^2}$$
 (standard mean-variance)

Asset managers' optimal portfolio

Firm 1 is **inside** the benchmark:
$$x_1^{AM} = \frac{1}{a+b} \frac{\mu_1 - S_1}{\gamma \sigma_1^2} + \frac{b}{a+b}$$

Firm 2 is **outside** the benchmark:
$$x_2^{AM} = \frac{1}{a+b} \frac{\mu_2 - S_2}{\gamma \sigma_2^2}$$

• Mechanical demand for $\frac{b}{a+b}$ shares of firm 1 (or any benchmark firm)

Economy with Asset Managers (cont.)

- Market clearing: $\lambda_{AM} x_i^{AM} + \lambda_C x_i^{C} = 1$
- Asset prices:

$$S_1 = \mu_1 - \gamma \Lambda \sigma_1^2 \left(1 - \lambda_{AM} \frac{b}{a+b} \right)$$
 (benchmark)

$$S_2 = \mu_2 - \gamma \Lambda \sigma_2^2$$
 (non-benchmark)

$$S_y = \mu_y - \gamma \Lambda \sigma_y^2$$
 (non-benchmark)

where $\Lambda = \left[\frac{\lambda_{AM}}{a+b} + \lambda_{C}\right]^{-1}$ modifies the market's effective risk aversion

Suppose y is Acquired by Firm 2

- This merger leaves y outside of the benchmark
- New optimal portfolios:

$$x_2^{C'} = \frac{\mu_2 + \mu_y - S_2'}{\gamma(\sigma_2^2 + \sigma_y^2)}$$
 (Conventional investors)

$$x_2^{AM'} = \frac{1}{a+b} \frac{\mu_2 + \mu_y - S_2'}{\gamma(\sigma_2^2 + \sigma_y^2)}$$
 (Asset managers)

New price of non-benchmark stock 2:

$$S_2' = \mu_2 + \mu_y - \gamma \Lambda (\sigma_2^2 + \sigma_y^2) = S_2 + S_y$$

Suppose y is Acquired by Firm 1

- This merger moves y **inside** the benchmark.

• New optimal portfolios:
$$x_1^{C'} = \frac{\mu_1 + \mu_y - S_1'}{\gamma (\sigma_1^2 + \sigma_y^2)}$$

(Conventional investors)

$$x_1^{AM'} = \frac{1}{a+b} \frac{\mu_1 + \mu_y - S_1'}{\gamma \left(\sigma_1^2 + \sigma_y^2\right)} + \frac{b}{a+b} \quad \text{(Asset managers)}$$

New price of stock 1

New price of stock is
$$S_1' = \mu_1 + \mu_y - \gamma \Lambda \left(\sigma_1^2 + \sigma_y^2\right) \left(1 - \lambda_{AM} \frac{b}{a+b}\right) = S_1 + S_y + \gamma \Lambda \frac{\sigma_y^2}{\gamma} \lambda_{AM} \frac{b}{a+b} > S_1 + S_y$$
benchmark inclusion subsidy (increasing in σ_y^2)

14

Conclusions from the Simplified Model

- 1. Cost of capital differs for benchmark and non-benchmark firms; investment decisions NOT determined only by asset characteristics.
- 2. Benchmark firms will undertake acquisitions that non-benchmark firms would not.
- 3. The riskier the acquisition, the higher the benchmark inclusion subsidy.
- 4. Spinoffs work the other way, more costly to sell assets if they move outside the benchmark.

More General Model

- Assume *N* assets, with *K* inside the benchmark
- Allow y to be an investment (or existing firm)
- Allow <u>correlation</u> among all assets

- Compare investments in y by firms in and out. Assume $\sigma_{in}=\sigma_{out}=\sigma$ and $\rho_{in,y}=\rho_{out,y}=\rho_y$
- Then the benchmark inclusion subsidy is

$$\Delta S_{in} - \Delta S_{out} = \gamma \Lambda (\sigma_y^2 + \rho_y \sigma \sigma_y) \lambda_{AM} \frac{b}{a+b}$$

Additional Implications

- Benchmark inclusion subsidy: $\gamma \Lambda (\sigma_y^2 + \rho_y \sigma \sigma_y) \lambda_{AM} \frac{b}{a+b}$
- Subsidy is positive iff $\sigma_y^2 + \rho_y \sigma \sigma_y > 0$
- No subsidy for riskless projects
- Subsidy larger if project is
 - > more correlated with cash flows from existing assets (high ρ_y)
 - \rightarrow if risk aversion is big (high γ)
- Subsidy larger with more AUM (λ_{AM}) or for large "b" (= passive management)

More on Correlations

- For any firm i, a project's NPV increases in its correlation with cash flows of firms inside the benchmark
- Projects that are substitutes for similar projects undertaken within benchmark firms are valued higher

Incentives to Join the Benchmark

- IPOs more attractive if firm joins the benchmark
- Similar logic applies to firms outside the benchmark
 - Have incentives to accept a seemingly negative NPV project or merger to qualify for benchmark inclusion
- Firms on the margin would more likely alter their behaviour to try to get into or stay in the benchmark

Adding Passive Managers

- Fraction λ_{AM}^A active and λ_{AM}^P passive
- For passive managers, b=∞
- The benchmark inclusion subsidy:

$$\Delta S_{in} - \Delta S_{out} = \gamma \Lambda (\sigma_y^2 + \rho_y \sigma \sigma_y) \left(\lambda_{AM}^A \frac{b}{a+b} + \lambda_{AM}^P \right)$$

 Totally inelastic demand by the passive managers raises the benchmark inclusion subsidy

Related empirical evidence

- Consistent with the index effect though also brings many additional cross-sectional predictions.
- Benchmark ≠ Index, benchmark matters
 - Sin stocks, Hong and Kacperczyk (2009)
- Benchmark firms invest more, employ more people, and accept riskier projects
 - Bena, Ferreira, Matos, and Pires (2017)
- Bigger subsidy, when λ_{AM} is larger
 - Chang, Hong, and Liskovich (2015)

Conclusions

- Benchmark inclusion subsidy matters for a host of corporate actions
 - Investment, M&A, spinoffs, IPOs
- Some untested predictions $(\gamma \Lambda (\sigma_y^2 + \rho_y \sigma \sigma_y) \lambda_{AM} \frac{b}{a+b})$
 - IPOs propensities vary with ease of benchmark inclusion
 - Acquisition targets priced differently for firms inside and outside the benchmark
 - Incentives to invest in assets with cash flows that are correlated with those of the benchmark
- Benchmark construction determines which firms get a subsidy

Magnitudes

- A back-of-the envelope calculation
- Gordon growth model: $S = \frac{D_1}{r-a}$
- Suppose average S gets included in the benchmark (S&P 500)

$$\left(\frac{D_1}{Safter}\right) \frac{S^{after} - S^{before}}{S^{before}} = r_E^{before} - r_E^{after} - (g^{before} - g^{after})$$

- Index effect literature: $\frac{S^{after} S^{before}}{S^{before}} \approx 6\%$
- Assume dividend growth g is the same before and after inclusion
- Dividend yield (D_0/S) and dividend growth g match those of S&P 500
- Compute $r^{before} r^{after}$

Magnitudes

a	5.92%	Decrease in the cost of equity										
9	0.0270	Benchmark addition return										
		4%	6%	8%	10%	12%	14%	16%	18%	20%		
	1%	0.04%	0.06%	0.08%	0.11%	0.13%	0.15%	0.17%	0.19%	0.21%		
Р	2%	0.08%	0.13%	0.17%	0.21%	0.25%	0.30%	0.34%	0.38%	0.42%		
	3%	0.13%	0.19%	0.25%	0.32%	0.38%	0.44%	0.51%	0.57%	0.64%		
yie	4%	0.17%	0.25%	0.34%	0.42%	0.51%	0.59%	0.68%	0.76%	0.85%		
dividend yield	5%	0.21%	0.32%	0.42%	0.53%	0.64%	0.74%	0.85%	0.95%	1.06%		
<u>biyi</u>	6%	0.25%	0.38%	0.51%	0.64%	0.76%	0.89%	1.02%	1.14%	1.27%		
Ъ	7%	0.30%	0.44%	0.59%	0.74%	0.89%	1.04%	1.19%	1.33%	1.48%		
	8%	0.34%	0.51%	0.68%	0.85%	1.02%	1.19%	1.36%	1.53%	1.69%		
	9%	0.38%	0.57%	0.76%	0.95%	1.14%	1.33%	1.53%	1.72%	1.91%		

Consistent with Calomiris et al. (2018)