Discussion: Paul Wooley Conference The Forced Safety Effect: How Higher Capital Requirements Can Increase Bank Lending (Bahaj and Malherbe)

Marcus Opp

SSE

Summer 2018

Motivation

Ongoing debate about bank capital regulation in the aftermath of the financial crisis

Motivation

- Ongoing debate about bank capital regulation in the aftermath of the financial crisis
- 2 Not much motivation needed

Forced Safety effect: More lending under higher capital requirements?

A new effect related to the following results in the literature

Forced Safety effect: More lending under higher capital requirements?

A new effect related to the following results in the literature

 Riskier lending under higher capital requirements (Besanko & Kanatas, 1996)

Forced Safety effect: More lending under higher capital requirements?

A **new** effect related to the following results in the literature

- Riskier lending under higher capital requirements (Besanko & Kanatas, 1996)
- More and cheaper borrowing for good firms under higher capital requirements (Harris Opp Opp, 2014)

Forced Safety effect: More lending under higher capital requirements?

A **new** effect related to the following results in the literature

- Riskier lending under higher capital requirements (Besanko & Kanatas, 1996)
- More and cheaper borrowing for good firms under higher capital requirements (Harris Opp Opp, 2014)

Roadmap for discussion: Explain "Forced Safety effect" in a simpler model that allows for various extensions (building on HOO)

• One period model, risk-neutrality, zero discounting

▲ 周 → - ▲ 三

- One period model, risk-neutrality, zero discounting
- Bank has legacy assets (equity) with book value of A_{0^-} $(E_{0^-} \ge 0)$

▶ ∢ ∃

- One period model, risk-neutrality, zero discounting
- Bank has legacy assets (equity) with book value of A_{0^-} $(E_{0^-} \ge 0)$
- Date 0: Bank may raise equity Δ_E = E₀ − E_{0⁻}, total deposits D₀ and may invest I ∈ {0, 1} in new asset requiring Δ_A

- One period model, risk-neutrality, zero discounting
- Bank has legacy assets (equity) with book value of A_{0^-} $(E_{0^-} \ge 0)$
- Date 0: Bank may raise equity Δ_E = E₀ − E_{0⁻}, total deposits D₀ and may invest I ∈ {0, 1} in new asset requiring Δ_A
- Date 1: Legacy and new asset pay off A^s & Δ^s_A in state s

- One period model, risk-neutrality, zero discounting
- Bank has legacy assets (equity) with book value of A_{0^-} $(E_{0^-} \ge 0)$
- Date 0: Bank may raise equity Δ_E = E₀ − E_{0⁻}, total deposits D₀ and may invest I ∈ {0, 1} in new asset requiring Δ_A
- Date 1: Legacy and new asset pay off A^s & Δ_A^s in state s
- Financing frictions:
 - Bank benefits from free and full deposit insurance (bailouts)

- One period model, risk-neutrality, zero discounting
- Bank has legacy assets (equity) with book value of A_{0^-} $(E_{0^-} \ge 0)$
- Date 0: Bank may raise equity Δ_E = E₀ − E_{0⁻}, total deposits D₀ and may invest I ∈ {0, 1} in new asset requiring Δ_A
- Date 1: Legacy and new asset pay off A^s & Δ_A^s in state s
- Financing frictions:
 - Bank benefits from free and full deposit insurance (bailouts)
 - Bank faces regulatory capital requirements \underline{e}_L and \underline{e}_N

$$E_0 + \Delta_E \ge \underline{e}_L A_{0^-} + \underline{e}_N I \Delta_A$$

・ 同 ト ・ ヨ ト ・ ヨ ト

- One period model, risk-neutrality, zero discounting
- Bank has legacy assets (equity) with book value of A_{0^-} $(E_{0^-} \ge 0)$
- Date 0: Bank may raise equity Δ_E = E₀ − E_{0⁻}, total deposits D₀ and may invest I ∈ {0, 1} in new asset requiring Δ_A
- Date 1: Legacy and new asset pay off A^s & Δ_A^s in state s
- Financing frictions:
 - Bank benefits from free and full deposit insurance (bailouts)
 - Bank faces regulatory capital requirements \underline{e}_L and \underline{e}_N

$$E_0 + \Delta_E \ge \underline{e}_L A_{0^-} + \underline{e}_N I \Delta_A$$

• Equityholders choose Δ_E , D_0 and I to maximize:

$$-\Delta_E + \mathbb{E}\left[\max\left\{A^s + I\Delta_A^s - D_0, 0\right\}\right]$$

(Important: promised repayment D₀ regardless of risk!)

• Deposit insurance \Rightarrow maximum leverage

$$D^{*}(I) = (1 - \underline{e}_{L}) A_{0^{-}} + (1 - \underline{e}_{N}) \Delta_{A} I$$

• Deposit insurance \Rightarrow maximum leverage

$$D^{*}(I) = (1 - \underline{e}_{L}) A_{0^{-}} + (1 - \underline{e}_{N}) \Delta_{A} I$$

 \Rightarrow payouts to all security holders increasing in leverage (vs. MM)

• Deposit insurance \Rightarrow maximum leverage

$$D^{*}(I) = (1 - \underline{e}_{L}) A_{0^{-}} + (1 - \underline{e}_{N}) \Delta_{A} I$$

 \Rightarrow payouts to all security holders increasing in leverage (vs. MM)

 \Rightarrow Competition among depositors $\ \Rightarrow$ subsidy to bank equity holders

• Deposit insurance \Rightarrow maximum leverage

$$D^{*}(I) = (1 - \underline{e}_{L}) A_{0^{-}} + (1 - \underline{e}_{N}) \Delta_{A} I$$

- \Rightarrow payouts to all security holders increasing in leverage (vs. MM)
- \Rightarrow Competition among depositors \Rightarrow subsidy to bank equity holders
- Objective function:

• Deposit insurance \Rightarrow maximum leverage

$$D^{*}(I) = (1 - \underline{e}_{L}) A_{0^{-}} + (1 - \underline{e}_{N}) \Delta_{A} I$$

 \Rightarrow payouts to all security holders increasing in leverage (vs. MM)

- \Rightarrow Competition among depositors $\ \Rightarrow$ subsidy to bank equity holders
- Objective function:

$$\max_{I \in \{0,1\}} \underbrace{\mathbb{E}\left[A^s + I\Delta_A^s\right] - I\Delta_A - A_0}_{\text{Social Value creation}} + P_I$$

where $P_{I} = \mathbb{E}\left[\max\left\{D^{*}\left(I\right) - A^{s} - I\Delta_{A}^{s}, 0\right\}\right]$ measures put value

• Deposit insurance \Rightarrow maximum leverage

$$D^{*}(I) = (1 - \underline{e}_{L}) A_{0^{-}} + (1 - \underline{e}_{N}) \Delta_{A} I$$

 \Rightarrow payouts to all security holders increasing in leverage (vs. MM)

- \Rightarrow Competition among depositors $\ \Rightarrow$ subsidy to bank equity holders
- Objective function:

$$\max_{I \in \{0,1\}} \underbrace{\mathbb{E}\left[A^s + I\Delta_A^s\right] - I\Delta_A - A_0}_{\text{Social Value creation}} + P_I$$

where $P_{I} = \mathbb{E}\left[\max\left\{D^{*}\left(I\right) - A^{s} - I\Delta_{A}^{s}, 0\right\}\right]$ measures put value

• Take on new project, I = 1, iff

$$NPV\Delta_A := \mathbb{E}\left[\Delta_A^s\right] - \Delta_A \ge P_0 - P_1$$

• Main result of paper: (Under some conditions) a bank <u>increases</u> its total investment when facing higher capital requirements

- Main result of paper: (Under some conditions) a bank <u>increases</u> its total investment when facing higher capital requirements
- To generate this (counter-intuitive) result, we require:

- Main result of paper: (Under some conditions) a bank <u>increases</u> its total investment when facing higher capital requirements
- To generate this (counter-intuitive) result, we require:
 - ▶ Bank invests for <u>e</u> high, i.e., $\mathbb{E} \left[\Delta_A^s\right] \Delta_A \ge P_0 P_1$

- Main result of paper: (Under some conditions) a bank <u>increases</u> its total investment when facing <u>higher</u> capital requirements
- To generate this (counter-intuitive) result, we require:
 - ▶ Bank invests for <u>e</u> high, i.e., $\mathbb{E} [\Delta_A^s] \Delta_A \ge P_0 P_1$ Example: <u>e</u>_L =100%: $P_1 \ge P_0 = 0 \Rightarrow$ takes on every good project!

- Main result of paper: (Under some conditions) a bank <u>increases</u> its total investment when facing higher capital requirements
- To generate this (counter-intuitive) result, we require:
 - Bank invests for <u>e</u> high, i.e., E [Δ^s_A] − Δ_A ≥ P₀ − P₁ Example: <u>e_L</u> =100%: P₁ ≥ P₀ = 0 ⇒ takes on every good project!
 - ▶ Bank does not invest for <u>e</u> low, i.e., $\mathbb{E} \left[\Delta_A^s\right] \Delta_A < P_0 P_1$

- Main result of paper: (Under some conditions) a bank <u>increases</u> its total investment when facing higher capital requirements
- To generate this (counter-intuitive) result, we require:
 - Bank invests for <u>e</u> high, i.e., E [Δ^s_A] − Δ_A ≥ P₀ − P₁ Example: <u>e_L</u> =100%: P₁ ≥ P₀ = 0 ⇒ takes on every good project!
 - Bank does not invest for <u>e</u> low, i.e., 𝔼 [Δ^s_A] − Δ_A < P₀ − P₁ Necessary condition is that put value strictly decreases!

• **Consider** $\underline{e}_L \ll 1$ such that bank defaults in state *L* with prob p_L (and investment in new assets does not affect default states)

$$P_1 - P_0 = p_L \left[\underbrace{\Delta_A - \Delta_A^L}_{\text{Downside risk of new asset in state } L}_{\text{Downside risk of new asset in state } L} - \bar{e}_N \Delta_A \right]$$

• **Consider** $\underline{e}_L \ll 1$ such that bank defaults in state *L* with prob p_L (and investment in new assets does not affect default states)

$$P_1 - P_0 = p_L \left[\underbrace{\Delta_A - \Delta_A^L}_{\text{Downside risk of new asset in state } L}_{-\bar{e}_N \Delta_A} - \bar{e}_N \Delta_A \right]$$

• Example: New asset is safe asset with $\Delta_A^L = \Delta_A^H = \Delta_A + NPV\Delta_A$

• **Consider** $\underline{e}_L \ll 1$ such that bank defaults in state *L* with prob p_L (and investment in new assets does not affect default states)

$$P_1 - P_0 = p_L \left[\underbrace{\Delta_A - \Delta_A^L}_{\text{Downside risk of new asset in state } L}_{\text{Downside risk of new asset in state } L} - \bar{e}_N \Delta_A \right]$$

- **Example:** New asset is safe asset with $\Delta_A^L = \Delta_A^H = \Delta_A + NPV\Delta_A$
 - NPV goes up by $NPV\Delta_A$

• **Consider** $\underline{e}_L \ll 1$ such that bank defaults in state *L* with prob p_L (and investment in new assets does not affect default states)

$$P_1 - P_0 = p_L \left[\underbrace{\Delta_A - \Delta_A^L}_{\text{Downside risk of new asset in state } L}_{-\bar{e}_N \Delta_A} - \bar{e}_N \Delta_A \right]$$

- **Example:** New asset is safe asset with $\Delta_A^L = \Delta_A^H = \Delta_A + NPV\Delta_A$
 - NPV goes up by $NPV\Delta_A$
 - Put value goes down by $p_L [NPV\Delta_A + \bar{e}_N\Delta_A]$

• **Consider** $\underline{e}_L \ll 1$ such that bank defaults in state *L* with prob p_L (and investment in new assets does not affect default states)

$$P_1 - P_0 = p_L \left[\underbrace{\Delta_A - \Delta_A^L}_{\text{Downside risk of new asset in state } L}_{-\bar{e}_N \Delta_A} - \bar{e}_N \Delta_A \right]$$

• **Example:** New asset is safe asset with $\Delta_A^L = \Delta_A^H = \Delta_A + NPV\Delta_A$

- NPV goes up by $NPV\Delta_A$
- Put value goes down by $p_L [NPV\Delta_A + \bar{e}_N\Delta_A]$
- ▶ Does not invest if NPV sufficiently small: $NPV < \frac{p_L}{1-p_l}\bar{e}_N$

When is the forced-safety effect more likely to occur?

• New asset has small NPV

- New asset has small NPV
 - (It's not that bad if it does not get financed)

- New asset has small NPV (It's not that bad if it does not get financed)
- New asset pays off highly in bank default state Δ^L_A ↑, (shareholders don't care about state-L asset payoffs, tax payer does!)

- New asset has small NPV (It's not that bad if it does not get financed)
- New asset pays off highly in bank default state Δ^L_A ↑, (shareholders don't care about state-L asset payoffs, tax payer does!)
 Note: Since legacy assets pay off poorly in bad macro-scenarios, new asset must be a hedge asset (≈negative β)

- New asset has small NPV (It's not that bad if it does not get financed)
- New asset pays off highly in bank default state Δ^L_A ↑, (shareholders don't care about state-L asset payoffs, tax payer does!)
 Note: Since legacy assets pay off poorly in bad macro-scenarios, new asset must be a hedge asset (≈negative β)
- New asset should have a HIGH regulatory risk-weight

- New asset has small NPV (It's not that bad if it does not get financed)
- New asset pays off highly in bank default state Δ^L_A ↑, (shareholders don't care about state-L asset payoffs, tax payer does!)
 Note: Since legacy assets pay off poorly in bad macro-scenarios, new asset must be a hedge asset (≈negative β)
- New asset should have a HIGH regulatory risk-weight (despite being a hedge to existing assets!)

- New asset has small NPV (It's not that bad if it does not get financed)
- New asset pays off highly in bank default state Δ^L_A ↑, (shareholders don't care about state-L asset payoffs, tax payer does!)
 Note: Since legacy assets pay off poorly in bad macro-scenarios, new asset must be a hedge asset (≈negative β)
- New asset should have a HIGH regulatory risk-weight (despite being a hedge to existing assets!)
- requires frictionless equity raising

- New asset has small NPV (It's not that bad if it does not get financed)
- New asset pays off highly in bank default state Δ^L_A ↑, (shareholders don't care about state-L asset payoffs, tax payer does!)
 Note: Since legacy assets pay off poorly in bad macro-scenarios, new asset must be a hedge asset (≈negative β)
- New asset should have a HIGH regulatory risk-weight (despite being a hedge to existing assets!)
- requires frictionless equity raising (otherwise bank might not invest under high capital requirements)

When is the forced-safety effect more likely to occur?

- New asset has small NPV (It's not that bad if it does not get financed)
- New asset pays off highly in bank default state Δ^L_A ↑, (shareholders don't care about state-L asset payoffs, tax payer does!)
 Note: Since legacy assets pay off poorly in bad macro-scenarios, new asset must be a hedge asset (≈negative β)
- New asset should have a HIGH regulatory risk-weight (despite being a hedge to existing assets!)
- requires frictionless equity raising (otherwise bank might not invest under high capital requirements)
- Bank has high put value to start with, P_0 high

向下 イヨト イヨト

When is the forced-safety effect more likely to occur?

- New asset has small NPV (It's not that bad if it does not get financed)
- New asset pays off highly in bank default state Δ^L_A ↑, (shareholders don't care about state-L asset payoffs, tax payer does!)
 Note: Since legacy assets pay off poorly in bad macro-scenarios, new asset must be a hedge asset (≈negative β)
- New asset should have a HIGH regulatory risk-weight (despite being a hedge to existing assets!)
- requires frictionless equity raising (otherwise bank might not invest under high capital requirements)
- Bank has high put value to start with, P_0 high

Comment 1: The effect is "possible" for an individual bank

• The paper is partial equilibrium (one bank facing many borrowers)

- The paper is partial equilibrium (one bank facing many borrowers)
- Suppose there are two types of banks

- The paper is partial equilibrium (one bank facing many borrowers)
- Suppose there are two types of banks
 - Bank with safe legacy assets \Rightarrow values payoffs in all states (no put)

- The paper is partial equilibrium (one bank facing many borrowers)
- Suppose there are two types of banks
 - Bank with safe legacy assets \Rightarrow values payoffs in all states (no put)
 - Bank with risky legacy assets \Rightarrow values only payoffs in state H

- The paper is partial equilibrium (one bank facing many borrowers)
- Suppose there are two types of banks
 - Bank with safe legacy assets \Rightarrow values payoffs in all states (no put)
 - Bank with risky legacy assets ⇒ values only payoffs in state H ⇒ comparative advantages in financing different borrowers

- The paper is partial equilibrium (one bank facing many borrowers)
- Suppose there are two types of banks
 - Bank with safe legacy assets \Rightarrow values payoffs in all states (no put)
 - ▶ Bank with risky legacy assets ⇒ values only payoffs in state H ⇒ comparative advantages in financing different borrowers
 - \Rightarrow in optimal portfolio a borrower contributes positively to put

- The paper is partial equilibrium (one bank facing many borrowers)
- Suppose there are two types of banks
 - Bank with safe legacy assets \Rightarrow values payoffs in all states (no put)
 - Bank with risky legacy assets ⇒ values only payoffs in state H
 ⇒ comparative advantages in financing different borrowers
 ⇒ in optimal portfolio a borrower contributes positively to put
 i.e., safe bank would always find it optimal to finance safe asset
- GE segmentation of banking sector maximizes aggregate put value

Comment 2: Regulators care about **aggregate** volume & composition of credit (Individual bank behavior and aggregate effects not the same)

• NPV of loan to bank shareholders consists of both NPV of project and the loan's contribution to bank put

- NPV of loan to bank shareholders consists of both NPV of project and the loan's contribution to bank put
- OOH shares this core idea and explores composition effects

- NPV of loan to bank shareholders consists of both NPV of project and the loan's contribution to bank put
- OOH shares this core idea and explores composition effects
 - different cash flow distributions (any number of types)
 - different regulatory risk-weights (optimal or suboptimal)
 - ▶ bank-dependence $\mathbb{1}_{BD}$ or access to competitive public market

- NPV of loan to bank shareholders consists of both NPV of project and the loan's contribution to bank put
- OOH shares this core idea and explores composition effects
 - different cash flow distributions (any number of types)
 - different regulatory risk-weights (optimal or suboptimal)
 - ▶ bank-dependence $\mathbb{1}_{BD}$ or access to competitive public market
- For borrower type compute its reservation price (scaled NPV of loan)

 $p_{R} = \frac{NPV\mathbb{1}_{BD} + PUT \text{ (down-side risk, risk-weight)}}{\text{min equity co-investment by bankers}}$

- NPV of loan to bank shareholders consists of both NPV of project and the loan's contribution to bank put
- OOH shares this core idea and explores composition effects
 - different cash flow distributions (any number of types)
 - different regulatory risk-weights (optimal or suboptimal)
 - ▶ bank-dependence $\mathbb{1}_{BD}$ or access to competitive public market
- For borrower type compute its reservation price (scaled NPV of loan)

 $p_{R} = \frac{NPV\mathbb{1}_{BD} + PUT \text{ (down-side risk, risk-weight)}}{\text{min equity co-investment by bankers}}$

Comment 3: The paper tries to highlight one specific, new effect

- NPV of loan to bank shareholders consists of both NPV of project and the loan's contribution to bank put
- OOH shares this core idea and explores composition effects
 - different cash flow distributions (any number of types)
 - different regulatory risk-weights (optimal or suboptimal)
 - ▶ bank-dependence $\mathbb{1}_{BD}$ or access to competitive public market
- For borrower type compute its reservation price (scaled NPV of loan)

 $p_{R} = \frac{NPV\mathbb{1}_{BD} + PUT \text{ (down-side risk, risk-weight)}}{\text{min equity co-investment by bankers}}$

Comment 3: The paper tries to highlight one specific, new effect What is the general take-away?

- NPV of loan to bank shareholders consists of both NPV of project and the loan's contribution to bank put
- OOH shares this core idea and explores composition effects
 - different cash flow distributions (any number of types)
 - different regulatory risk-weights (optimal or suboptimal)
 - ▶ bank-dependence $\mathbb{1}_{BD}$ or access to competitive public market
- For borrower type compute its reservation price (scaled NPV of loan)

 $p_R = \frac{\textit{NPV}\mathbbm{1}_{\textit{BD}} + \textit{PUT}~(\textit{down-side risk, risk-weight})}{\textit{min equity co-investment by bankers}}$

Comment 3: The paper tries to highlight one specific, new effect What is the general take-away?

• Generally, private ranking of bank not aligned with social ranking! Effects of regulation depend on *marginal* borrower type

3 Type Example:

Stylized example with 3 types, 2 states, I = 1, $e = 20\% \forall$ types

O Good, safe borrower bank dependent: C = (1.05, 1.05)

Q Good, risky borrower with public market access: C = (1.8, 0.6)

Bad, risky borrower:
$$C = (1.5, 0.4)$$

Marcus Opp (SSE) Discussion: Paul Wooley

Equilibrium rents

Figure:

Bank competition: Private surplus may be passed on to borrowers!

Marcus Opp (SSE)

Discussion: Paul Wooley Conference

Summer 2018 12 / 14

Aggregate lending opportunity is endogenous to regulation

Panel A →B: Good, safe issuer is marginal. <u>e</u> ↑⇒ Total NPV↓

• Panel B \rightarrow C: Good, safe issuer has higher p^r than good, risky issuer

Panel C →D: Good, safe issuer has highest p^r (GE effect: pays lowest yields under most stringent capital regulation)

Marcus Opp (SSE)

 Well-crafted partial equilibrium model highlights a new, counter-intuitive effect of increasing capital requirements

 Well-crafted partial equilibrium model highlights a new, counter-intuitive effect of increasing capital requirements (Anat will be happy!!)

- Well-crafted partial equilibrium model highlights a new, counter-intuitive effect of increasing capital requirements (Anat will be happy!!)
- Ø But, requires a quite a few things to come together

- Well-crafted partial equilibrium model highlights a new, counter-intuitive effect of increasing capital requirements (Anat will be happy!!)
- But, requires a quite a few things to come together Is this the first-order effect a regulator is concerned about?

- Well-crafted partial equilibrium model highlights a new, counter-intuitive effect of increasing capital requirements (Anat will be happy!!)
- But, requires a quite a few things to come together Is this the first-order effect a regulator is concerned about?
- Ultimately, it illustrates a general point: private ranking of bank investment not aligned with social ranking!

- Well-crafted partial equilibrium model highlights a new, counter-intuitive effect of increasing capital requirements (Anat will be happy!!)
- But, requires a quite a few things to come together Is this the first-order effect a regulator is concerned about?
- Ultimately, it illustrates a general point: private ranking of bank investment not aligned with social ranking!
 - **1** This paper: Focus on one, **new** counter-intuitive new case

- Well-crafted partial equilibrium model highlights a new, counter-intuitive effect of increasing capital requirements (Anat will be happy!!)
- But, requires a quite a few things to come together Is this the first-order effect a regulator is concerned about?
- Ultimately, it illustrates a general point: private ranking of bank investment not aligned with social ranking!
 - **1** This paper: Focus on one, **new** counter-intuitive new case
 - OOH highlight importance of marginal borrower type: many intuitive (& counter-intuitive) effects (and when they arise) can be characterized