Can Risk be Shared Across Investor Cohorts? Evidence from a Popular Savings Product

Johan Hombert and Victor Lyonnet

Discussion by Ishita Sen (LBS)

June 06, 2019

Inter-generational risk sharing

- Different generations of investors can have very different investment outcomes:
 - \$1 invested in 1949 for 20 years = \$10.8.
 - \$1 invested in 1901 for 20 years = \$1.2.

(diversified portfolio of US equities.)

Inter-generational risk sharing

- Different generations of investors can have very different investment outcomes:
 - \$1 invested in 1949 for 20 years = \$10.8.
 - \$1 invested in 1901 for 20 years = \$1.2.

(diversified portfolio of US equities.)

- A market mechanism for inter-generational trading does not exist.
 - Resources are inefficiently allocated.
 - Public intervention can be Pareto improving.

Inter-generational risk sharing

- Different generations of investors can have very different investment outcomes:
 - \$1 invested in 1949 for 20 years = \$10.8.
 - \$1 invested in 1901 for 20 years = \$1.2.

(diversified portfolio of US equities.)

- A market mechanism for inter-generational trading does not exist.
 - Resources are inefficiently allocated.
 - Public intervention can be Pareto improving.
- Long-lived intermediaries can help facilitate risk sharing.

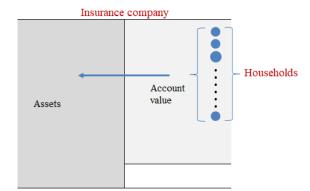
How do intermediaries facilitate risk sharing?

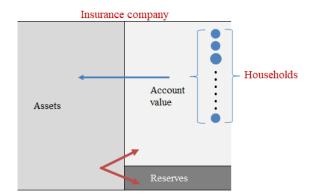
 Intermediaries can accumulate financial reserves over long periods of time and smooth financial shocks over time and across generations.

How do intermediaries facilitate risk sharing?

- Intermediaries can accumulate financial reserves over long periods of time and smooth financial shocks over time and across generations.
- Ex-ante welfare improving.
 - Risk sharing is better.
 - Riskier asset allocation (Gollier (2008)).

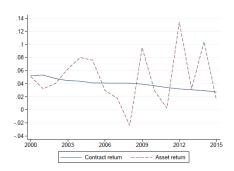
How do intermediaries facilitate risk sharing?


- Intermediaries can accumulate financial reserves over long periods of time and smooth financial shocks over time and across generations.
- Ex-ante welfare improving.
 - Risk sharing is better.
 - Riskier asset allocation (Gollier (2008)).
- Key ingredient for inter-generational risk sharing:
 - Commitment: all generations contribute to a collective defined contribution pension system (first best).
 - Unravels if contributions are liquid and savings market is competitive.

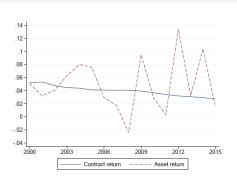

Main contribution

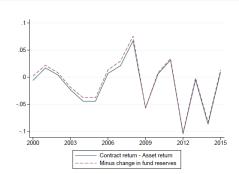
- The paper quantifies the inter-generational risk transfer in France using a popular savings contract and shows that it is economically large.
 - Transfers across cohorts = €17 billion or 0.8% of GDP.
 - Despite savings market competition.
- Shows that investor flows are inelastic and attribute it to lack of sophistication of investors.

Euro-denominated life insurance contracts

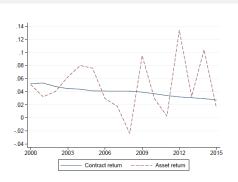


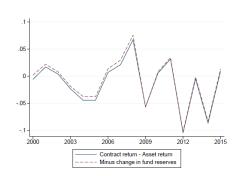
Euro-denominated life insurance contracts




The mechanism

• Contract returns are significantly smoother than funds' asset returns.


The mechanism



- Contract returns are significantly smoother than funds' asset returns.
- Fluctuations in asset returns are entirely absorbed by fund reserves.

The mechanism

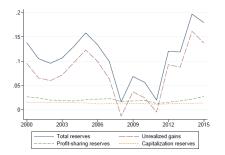
- Contract returns are significantly smoother than funds' asset returns.
- Fluctuations in asset returns are entirely absorbed by fund reserves.
- Reserves belong to current and future investors.

To what extent life insurers manage reserves?

- "Insurers must distribute 85% of asset income to investors"...but can "choose how much is credited immediately,..., and how much credited to or debited from reserves."
 - Asset income includes coupons, dividends, and realized changes.

To what extent life insurers manage reserves?

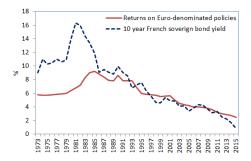
- "Insurers must distribute 85% of asset income to investors"...but can "choose how much is credited immediately,..., and how much credited to or debited from reserves."
 - Asset income includes coupons, dividends, and realized changes.
- "Unrealized changes are not booked as fund income." They are booked as reserves.


To what extent life insurers manage reserves?

- "Insurers must distribute 85% of asset income to investors"...but can "choose how much is credited immediately,..., and how much credited to or debited from reserves."
 - Asset income includes coupons, dividends, and realized changes.
- "Unrealized changes are not booked as fund income." They are booked as reserves.
- Why is that so?
 - >80% of the assets are bonds.
 - Unrealized changes (are just MTM changes) do not matter economically if investors hold to maturity and there is no default.
 - Primarily sovereigns and investment grade bonds.
 - Average holding period in the data is high = 12 years (liabilities).
 - Duration(Liabilities Assets) = 4.8 years (EIOPA).

To what extent life insurers manage reserves?

- Reserve composition:
 - 2/3 are unrealized gains and losses.
 - ullet 1/3 are asset income and realized changes.



- Bulk of variation in reserves are due to unrealized changes.
- But the part insurers actually manage is how much to contribute to the profit-sharing and capitalization reserves.

8 / 16

To what extent life insurers manage reserves?

• Do insurers offer the historical yields of the bonds purchased years ago?

Sources: Federation française des societes d'assurance and Datastream.

- Historical perspective: contract returns are close to (and track) current long-term bond yields.
- Quantifying transfers with total reserves may overstate findings.

Reasons for risk sharing

Two key empirical features of the Euro contracts and the French savings market:

- Fact 1: contract returns do not depend on current asset returns. In some specifications, the relationship is actually negative.
- Fact 2: investor flows are not sensitive to the level of reserves and this is attributed to lack of sophistication.

Both facts suggest investors **do not behave opportunistically**, sustaining inter-generational risk sharing.

Reasons for risk sharing: another perspective

Fact 1: contract returns do not depend on current asset returns.

(in some specifications, the relationship is actually negative.) $% \label{eq:control_eq} % \begin{subarray}{ll} \end{subarray} % \begin{subarray$

• If unrealized returns are not passed on to contract returns, the relationship between asset returns and contract returns is likely to be weak.

Reasons for risk sharing: another perspective

Fact 1: contract returns do not depend on current asset returns.

(in some specifications, the relationship is actually negative.)

- If unrealized returns are not passed on to contract returns, the relationship between asset returns and contract returns is likely to be weak.
- Suggestion: regress contract yield on asset yield.
 - Positive correlation (0.76) between contract and 10 year bond yield.

Reasons for risk sharing: another perspective

Fact 1: contract returns do not depend on current asset returns.

(in some specifications, the relationship is actually negative.)

- If unrealized returns are not passed on to contract returns, the relationship between asset returns and contract returns is likely to be weak.
- Suggestion: regress contract yield on asset yield.
 - Positive correlation (0.76) between contract and 10 year bond yield.
- Negative relationship highlights the role of declining interest rates.
 - ullet Fall in rates o asset returns increased and contract returns decreased.
 - Further substantiates how accounting framework works.

Reasons for risk sharing: another perspective

Fact 1: contract returns do not depend on current asset returns.

(in some specifications, the relationship is actually negative.)

- If unrealized returns are not passed on to contract returns, the relationship between asset returns and contract returns is likely to be weak.
- Suggestion: regress contract yield on asset yield.
 - Positive correlation (0.76) between contract and 10 year bond yield.
- Negative relationship highlights the role of declining interest rates.
 - \bullet Fall in rates \rightarrow asset returns increased and contract returns decreased.
 - Further substantiates how accounting framework works.

Question: Fact 1 has implications for the build up of reserves. To what extent is asset yield kept aside for future generations?

Reasons for risk sharing: another perspective

Fact 2: investor flows are not sensitive to the level of reserves and this is attributed to lack of sophistication.

- Are investors really sticky: positive relationship but insignificant (on average) and significant for large investors.
 - Flows respond to large shocks in reserves?
 - Flows have a large low frequency component?

Reasons for risk sharing: another perspective

Fact 2: investor flows are not sensitive to the level of reserves and this is attributed to lack of sophistication.

- Are investors really sticky: positive relationship but insignificant (on average) and significant for large investors.
 - Flows respond to large shocks in reserves?
 - Flows have a large low frequency component?
- Investors are sticky because:
 - They get most of the asset yield if they hold to maturity.
 - Question: How do flows respond to changes in profit sharing reserves?
 - Interest rates are low and outside good pays lower yields.
 - Question: How does the flow-reserve relation look like prior to 2009?
 - Taxes are very high in the initial years and there is entry fee!
 - Question: Implies barriers to entry which suggests that the market is not as competitive (Allen and Gale economy).

Broader questions

- If risk sharing is so high, why do insurers invest so much in safe and liquid assets and not in riskier assets?
- Long term savings are highly illiquid due to tax incentives in DC plans. Why does the French tax system allow liquidity only after 8 years?
- Would inter-generational risk sharing unravel when interest rates eventually start to rise?

Quantifying inter-cohort transfers

Ideal data:

- Actual transfer C_{it} and counter-factual transfer \tilde{C}_{it} in the absence of reserve management $\forall i$.
- Full investment history: entry and exit (t_1, t_2)
- Inflows and outflows.
- Total inter-cohort transfer: $ICT = \frac{1}{2} \sum_{i} |\sum_{t_i}^{t_2} (C_{it} \tilde{C}_{it})|$.

Quantifying inter-cohort transfers

Observe:

- Changes in **reserves** at the insurer level: proxies $(C_{it} \tilde{C}_{it})$.
 - Explanations: (1) reserves belong to all policyholders, (2) time variation in returns across products are similar, (3) insurer does not behave strategically.
 - Construct: hypothetical transfer matrix for all potential investment histories.
- But do not observe flows or investment histories at the cohort level.
 - How to aggregate the hypothetical transfer matrix?
 - Assumptions and impact on ICT unclear.
 - Example:
 - Construct average holding period from aggregate flows.
 - Assume: outflows are uniformly distributed across cohorts.
 - But, this biases holding period downwards and overestimates ICT.

Final comments

- Very important and interesting research topic.
- Extremely relevant and has big policy implications.
- Main suggestions
 - Take the accounting framework more seriously in order to quantify total transfers across time.
 - Important implications due to taxes and low interest rates.

