Can Risk be Shared Across Investor Cohorts? Evidence from a Popular Savings Product

Johan Hombert HEC Paris Victor Lyonnet Ohio State University

Twelfth Paul Woolley Annual Conference 6th June 2019

Household demand savings products insured against market risk

- Household demand savings products insured against market risk
- Financial markets: cross-sectional risk sharing

- Household demand savings products insured against market risk
- Financial markets: cross-sectional risk sharing
 - cross-sectional risk sharing \rightarrow someone must bear market risk

- Household demand savings products insured against market risk
- Financial markets: cross-sectional risk sharing
 - cross-sectional risk sharing \rightarrow someone must bear market risk
- First best: risk sharing between investor cohorts (Gordon-Varian 88, Allen-Gale 97)
 - optimal mechanism: build reserves to buffer shocks to asset returns; reserves are passed on between successive cohorts

a) can be implemented by monopoly financial intermediary

b) unravels if competition, because investors time reserves

This paper

1. Macro evidence: Inter-cohort risk sharing in a popular type of savings products

inter-cohort redistribution = 0.8% GDP

competing financial intermediaries, yet no unravelling - why?

This paper

1. Macro evidence: Inter-cohort risk sharing in a popular type of savings products

inter-cohort redistribution = 0.8% GDP

competing financial intermediaries, yet no unravelling – why?

2. Theory: Imperfect competition between intermediaries

key parameter: elasticity of investor flows to predictable returns

inter-cohort risk sharing possible only if elasticity is low

This paper

1. Macro evidence: Inter-cohort risk sharing in a popular type of savings products

inter-cohort redistribution = 0.8% GDP

competing financial intermediaries, yet no unravelling – why?

2. Theory: Imperfect competition between intermediaries

key parameter: elasticity of investor flows to predictable returns

inter-cohort risk sharing possible only if elasticity is low

3. Micro evidence: Elasticity is low

related to lack of sophistication

• Popular retail savings product in France

sold by life insurers, but not life insurance in traditional/U.S. sense

similar products in other European countries: "participating contracts" \sim 80% agg. life insurers provisions

- AUM = \in 1.4 trillion = 1/3 agg. household financial wealth
- Reserves mechanism

Investors can deposit and withdraw money: account value V_{i,t}

- Investors can deposit and withdraw money: account value $V_{i,t}$
- Money invested by insurer through common fund: asset return x_t

 \sim 80% corp/sov bonds + 14% stocks

- Investors can deposit and withdraw money: account value V_{i,t}
- Money invested by insurer through common fund: asset return x_t

 \sim 80% corp/sov bonds + 14% stocks

• At end of calendar year, insurer chooses contract return y_t

s.t. to min guaranteed rate, usually 0%, non-binding for 99% of contracts

- Investors can deposit and withdraw money: account value V_{i,t}
- Money invested by insurer through common fund: asset return x_t

 \sim 80% corp/sov bonds + 14% stocks

- At end of calendar year, insurer chooses contract return y_t
 s.t. to min guaranteed rate, usually 0%, non-binding for 99% of contracts
- By law, insurer must pay at least 85% of asset returns to investors

either immediately or later

if immediately: credited to investors accounts $(y_t V_{t-1})$

if later: retained as fund reserves ΔR_t

the rest is insurer profit Π_t

• Asset returns split into three parts:

$$x_t A_{t-1} = y_t V_{t-1}$$

asset contract
returns returns

• Asset returns split into three parts:

$$x_t A_{t-1} = y_t V_{t-1} + \Pi_t$$

asset contract insurer
returns returns profits

• Asset returns split into three parts:

cross-sectional risk sharing

$$x_t A_{t-1} = y_t V_{t-1} + \Pi_t$$

asset contract insurer
returns returns profits

• Asset returns split into three parts:

cross-sectional risk sharing

Asset returns split into three parts:

cross-sectional risk sharing

 $x_t A_{t-1} = y_t V_{t-1} + \Pi_t +$ ΔR_{f} contract insurer asset reserves returns returns profits past & future investors

• Fund reserves = Asset value – Account value, are:

1. owned by (but not yet credited to) investors

2. passed on between successive cohorts of investors

• Asset returns split into three parts:

cross-sectional risk sharing

- Fund reserves = Asset value Account value, are:
 - owned by (but not yet credited to) investors
 passed on between successive cohorts of investors

Insurance against market risk

- Data: regulatory filings, 1999–2015
- Contract return vs. Asset return (value-weighted average)

Cross-sectional or inter-cohort risk sharing?

Transfer from reserves

• Contract return – Asset return = Transfer to current investors

 $-\Delta R_t$ = Transfer from reserves, i.e., from past and future investors

 \Rightarrow Market risk almost entirely absorbed by fund reserves

• Year τ -transfer to current investors

=
$$(-\Delta R_{\tau})$$

• Year τ -transfer to investor cohort i

$$= (-\Delta R_{\tau}) \frac{V_{i,\tau-1}}{V_{\tau-1}}$$

• Net transfer to investor cohort i

$$= \frac{V_{i,t-1}}{\sum_{\tau} V_{i,\tau-1}} \sum_{\tau} \left(-\Delta R_{\tau} \right) \frac{V_{i,\tau-1}}{V_{\tau-1}}$$

investors hold contracts for several years (12 on avg) \rightarrow net across years

Net transfer to investor cohort i

$$= \frac{V_{i,t-1}}{\sum_{\tau} V_{i,\tau-1}} \sum_{\tau} \left(-\Delta R_{\tau} \right) \frac{V_{i,\tau-1}}{V_{\tau-1}}$$

• \sum_{i} |Net transfer_i| = 1.4% of account value/year on avg

Agg. account value = \in 1.4 trillion = 1/3 household financial wealth

 \rightarrow 0.8% of GDP redistributed across investor cohorts each year

Taking stock

Large amount of inter-cohort risk sharing

• Allen-Gale 97: (perfect) competition unravels risk sharing

• \Rightarrow Competition must not be perfect

• What is the economics of imperfect competition in this market?

Model

• $t = 1, \ldots, \infty$

• Mass of short-lived investors each period

• J long-lived intermediaries offering one-period contracts

Model: supply

- Intermediary *j* maximizes $\sum_{t} E[\Pi_{j,t}]/(1+r)^{t}$
- by choice of contract return policy y_{j,t} contingent on end-of-period t info
- subject to:

regulatory constraint $\Pi_{j,t} \leq \phi V_{j,t-1}$

budget constraint $x_{j,t}A_{j,t-1} = y_{j,t}V_{j,t-1} + \prod_{j,t} + (R_{j,t} - R_{j,t-1})$

transversality condition

• Exogenous asset return $x_{j,t} = r + \epsilon_{j,t}$

Model: demand

Investor i's expected utility from buying contract with j

- Key parameter: α = elasticity to expected returns
- Outside option j = 0: $y_{0,t} = r \phi + \epsilon_{0,t}$
- $\psi_{i,j,t}$ distributed extreme value \Rightarrow Logit demand function

$$V_{j,t-1} = \frac{\exp\{\alpha E_{t-1}[u(y_{j,t})] + \xi_j\}}{\sum_{k=0}^{J} \exp\{\alpha E_{t-1}[u(y_{k,t})] + \xi_k\}}$$

$$y_{j,t} \simeq r \frac{R_{j,t}}{V_{j,t}} + g(\alpha) x_{j,t} + cste_t$$

• Return of contract *j* in period *t*:

$$y_{j,t} \simeq r \frac{R_{j,t}}{V_{j,t}} + g(\alpha) x_{j,t} + cste_t$$

• Reserves are distributed at rate r

$$y_{j,t} \simeq r \frac{R_{j,t}}{V_{j,t}} + g(\alpha) x_{j,t} + cste_t$$

- Reserves are distributed at rate r
- Asset return pass-through depends on demand elasticity α

$$y_{j,t} \simeq r \frac{R_{j,t}}{V_{j,t}} + g(\alpha) x_{j,t} + cste_t$$

- Reserves are distributed at rate r
- Asset return pass-through depends on demand elasticity α
- $\label{eq:alpha} \alpha \simeq \mathbf{0}: \ \mathbf{g}(\alpha) = \mathbf{0} \to \text{asset risk shared between current and future investors}$
- $\alpha > 0$: $g(\alpha) \in (0, 1)$ because reserves predict contract returns, so investors time reserves
- $\alpha \simeq \infty$: $g(\alpha) = 1 \rightarrow$ unraveling as in Allen-Gale 97

$$y_{j,t} \simeq r \frac{R_{j,t}}{V_{j,t}} + g(\alpha) x_{j,t} + cste_t$$

- Reserves are distributed at rate r
- Asset return pass-through depends on demand elasticity α
- $\label{eq:alpha} \alpha \simeq \mathbf{0}: \ \mathbf{g}(\alpha) = \mathbf{0} \to \text{asset risk shared between current and future investors}$
- $\alpha > 0$: $g(\alpha) \in (0, 1)$ because reserves predict contract returns, so investors time reserves
- $\alpha \simeq \infty$: $g(\alpha) = 1 \rightarrow$ unraveling as in Allen-Gale 97
 - Can be estimated by OLS

Equilibrium: Flow-reserves relation

• Investor flows to contract *j* in period *t*:

$$\textit{Flow}_{j,t} \simeq \alpha \, r \, rac{\mathsf{R}_{j,t-1}}{\mathsf{V}_{j,t-1}} + \textit{cste}_j$$

Reserves predict contract returns \rightarrow flows react with sensitivity α

• Can be estimated by OLS

Test: contract return policy

• Return of contract *j* in period *t*:

$$y_{j,t} \simeq r \frac{R_{j,t}}{V_{j,t}} + g(\alpha) x_{j,t} + cste_t$$

where $g(\alpha)$ increases from 0 to 1 when α goes from 0 to ∞

Test: contract return policy

• Return of contract *j* in period *t*:

$$y_{j,t} \simeq r \frac{R_{j,t}}{V_{j,t}} + g(\alpha) x_{j,t} + cste_t$$

where $g(\alpha)$ increases from 0 to 1 when α goes from 0 to ∞

• OLS estimation

	Yj,t		
$R_{j,t-}$.026*** (.0078)	.035*** (.0081)	Consistent with $r\simeq 3\%$
x _{j,t} Year FE Insurer FE	017 (.011)	018** (.0079) √	
Adjusted-R2 Observations	.69 978	.81 978	

Test: contract return policy

• Return of contract *j* in period *t*:

$$y_{j,t} \simeq r \frac{R_{j,t}}{V_{j,t}} + g(\alpha) x_{j,t} + cste_t$$

where $g(\alpha)$ increases from 0 to 1 when α goes from 0 to ∞

• OLS estimation

	Yj,t		
R _{j,t}	.026*** (.0078)	.035*** (.0081)	Consistent with $r\simeq 3\%$
х _{j,t} Хаат ГГ	017 (.01ֻ1)	018** (.0079)	Consistent with $\alpha \simeq 0$
Insurer FE	V	\checkmark	
Adjusted-R2 Observations	.69 978	.81 978	

Test: Flow-reserves relation

• Do flows react to predictable returns?

NetFlow = Inflow - Redemption - Termination				
$R_{j,t-1}$.086	02	078*	025
	(.098)	(.091)	(.041)	(.02)
Year FE Insurer FE	\checkmark	\checkmark	\checkmark	\checkmark
Adjusted-R2	.66	.77	.75	.8
Observations	859	859	859	859

Test: Flow-reserves relation

• Do flows react to predictable returns?

	NetFlow =	= Inflow –	- Redemption –	- Termination
$R_{j,t-1}$.086	02	078*	025
	(.098)	(.091)	(.041)	(.02)
Year FE Insurer FE	\checkmark	\checkmark	\checkmark	\checkmark
Adjusted-R2	.66	.77	.75	.8
Observations	859	859	859	859

Precisely estimated zero

Test: Flow-reserves relation

• Do flows react to predictable returns?

	NetFlow =	= Inflow –	- Redemption –	- Termination
$R_{j,t-1}$.086	02	078*	025
	(.098)	(.091)	(.041)	(.02)
Year FE Insurer FE	\checkmark	\checkmark	\checkmark	\checkmark
Adjusted-R2	.66	.77	.75	.8
Observations	859	859	859	859

- Precisely estimated zero
- Again, consistent with $\alpha \simeq 0$

• Not explained by taxes or fee structure

tax rate decreases with holding period; entry fees \rightarrow switching cost

focusing on new investors, who don't face these costs, flow-reserves sensitivity is still zero

• Not explained by taxes or fee structure

tax rate decreases with holding period; entry fees \rightarrow switching cost

focusing on new investors, who don't face these costs, flow-reserves sensitivity is still zero

Not explained by fees adjusting to reserves

insurers don't increase fees for investors joining when reserves are high

• Hypothesis: investors don't understand that reserves predict returns

anecdotal evidence

• Hypothesis: investors don't understand that reserves predict returns

anecdotal evidence

• Proxy for investor sophistication = investment amount

variation across insurers

variation across contracts within insurer-year

Investor sophistication

	Contract-level net flows	
Reserves x (Avg investment 0-50 k€)	059 (17)	
Reserves x (Avg investment 50–250 k€)	.014 (.17)	.13 (.076)
Reserves x (Avg investment 250+ k€)	.36* (.13)	.41*** (.0031)
Avg investment FE Insurer FE Year FE Insurer x Year FE	$\checkmark \qquad \checkmark \qquad \checkmark \qquad \checkmark$	√ √
Adjusted-R2 Observations	.13 7,272	.16 7,272

• Higher elasticity in contracts with large invested amounts

Take-away

• Inter-cohort risk sharing in euro contracts

large from macro perspective $\simeq 0.8\%\,GDP$

• Sustained by low elasticity to predictable returns

related to lack of sophistication