# Mitigating fire sales with contracts: Theory and evidence

Guillaume Vuillemey

HEC Paris & CEPR

Conference on non-bank financial institutions

LSE

September 2019

# Motivation

### Fire sales cause severe inefficiencies

- Deviations of prices from fundamentals (Coval & Stafford, 2007)
- Margins  $\rightarrow$  Inefficient liquidations (Brunnermeier & Pedersen, 2009)
- Predatory trading (Brunnermeier & Pedersen, 2005)
- Ex ante liquidity hoarding (Acharya, Shin & Yorulmazer, 2011)

## Fire sales often arise from coordination failures

- Collectively, investors are better off not selling
- But... individually rational for each of them to sell

# This paper

## Theory: Agents can mitigate fire sales via private contracting

- Model of inefficient fire sales based on Bernardo & Welch (2004)
- Contract: investors pre-commit to buy assets at above-market prices
- Penalty for free-riding investors
- $\blacksquare$   $\rightarrow$  Contract interpreted as a CCP

## Empirics: Fire sale mitigation by CCPs

- First historical example during the 1900 wool crisis
- Coordination occurred in conditions implied by the model
- Present-day CCPs run auctions with very similar effects

# Model - Setup

- **Timing**: t = 0, 1, 2
- **Asset**: Risky security, normally distributed payoff  $\tilde{R} \sim \mathcal{N}(\mu, \sigma^2)$ 
  - Endogenous prices  $p_0(s_0)$  and  $p_1(s_0, s_1)$  at dates 0 and 1
  - $s_0, s_1$ : Sales at dates 0 and 1

#### Mass 1 of end-investors

- Risk-neutral, hold the asset at t = 0
- $\blacksquare$  With prob.  $\lambda,$  a fraction  $\delta \in [0,1]$  fails at date 1  $\rightarrow$  Assets liquidated
- Date-1 capital constraint  $\kappa$ , given initial equity  $\bar{e}$

$$\kappa \bar{e} \leq p_1,$$

- Market-maker: initial wealth  $\bar{W}$ 
  - $\blacksquare$  Risk-averse, with exponential utility  $u(w)=-e^{-\gamma w}$
  - lacksquare  $\to$  Prices fall when market-maker inventory increases

# Model - Efficient allocation

## Efficient allocation

- Date 0: No asset sales
- **Date 1:** Sell  $\delta$  with prob.  $\lambda$
- Forced sales only if  $p_1(0,\delta)$  binds capital constraint
- **Proposition 1**: If  $\kappa \bar{e} \leq p_1(0, \delta)$ , then  $s_0 = 0$  and  $s_1 = \delta$ .

 $\blacksquare$  Do not expect constraint to bind  $\rightarrow$  Do not sell

Date-1 asset price solves (when defaults occur)

$$\mathbb{E}\left[-e^{-\gamma(\bar{W}+\delta(\tilde{R}-p_1(0,\delta)))}\right] = \mathbb{E}\left[-e^{-\gamma\bar{W}}\right].$$
$$\implies p_1(0,\delta) = \mu - \frac{\gamma\delta}{2}\sigma^2,$$

# Model - Fire sales

## • Investor conjectures a fraction $\alpha$ will sell

- With prob.  $(1 \lambda)$ : No defaults, receive  $\mu$  at t = 2
- With prob.  $\lambda\delta$ : He defaults at  $t = 1 \rightarrow$  utility is zero
- With prob.  $\lambda(1-\delta)$ : A mass  $\delta$  defaults  $\rightarrow$  Forced sales  $1-\alpha$

•  $F(\alpha)$ : Expected net benefit of selling at t = 0

$$F(\alpha) = \underbrace{p_0(\alpha)}_{\text{If sell at } t = 0} - \underbrace{\lambda(1-\delta)p_1(\alpha, 1-\alpha)}_{\text{If forced to liquidate at } t = 1} - \underbrace{(1-\lambda(1-\delta))\mu}_{\text{If no liquidation}}$$

**Proposition 2:**  $\alpha^* = 0$  never an equilibrium when  $\lambda(1 - \delta) > 0$ 

- Expectation of forced sales lead to preemptive sales at t = 0
- Inefficient since date-1 defaults occur only with prob.  $\lambda$

• 
$$\alpha^* = 1$$
 if  $\lambda(1 - \delta) > 1/2$ 

# Model - Contract

#### Contract between investors and market-maker

- $\blacksquare$  Market-maker commits to buy at  $p_1^C = \kappa \bar{e}$  in default states
- $\blacksquare$  In exchange, investors pay  $q^C$  in non-default states
- ${\scriptstyle \blacksquare} \rightarrow p_1^C$  exactly sufficient to avoid fire sales

## Participation constraint of investors

$$q^{C} \leq \frac{1-\lambda\delta}{1-\lambda} \underbrace{\alpha(\mu-p_{0}(\alpha))}_{\text{Date-0 inefficiency}} + \frac{\lambda-\lambda\delta}{1-\lambda} \underbrace{(1-\alpha)(\mu-p_{1}(\alpha,1-\alpha))}_{\text{Date-1 inefficiency}}$$

Participation constraint of market-maker (when binds)

$$q^{C} = \frac{\ln(1-\lambda) - \ln(1-\lambda e^{\gamma \delta \left[p_{1}^{C} - p_{1}(0,\delta)\right]})}{\gamma},$$

# Model - Contract

**Proposition 3**: Fire sales eliminated for a set of parameters

- If the capital shortfall is low enough
- But there is an upper bound to p<sub>1</sub><sup>C</sup>

## Potential for free-riding

- Assume all other investors have signed the contract
- A given investor (of mass 0) is better off not signing
- ${\scriptstyle \blacksquare}$   $\rightarrow$  Fire sales are avoided, but save  $q^C$

#### Eliminating fire sales

Penalty for free-riding investors must satisfy

$$f^C \ge (1 - \lambda)q^C$$

# Model - Contract as a CCP

## Contract implemented as a CCP

- CCPs run auctions to liquidate positions at above-market prices
- Penalty? Exclusion from market if refuse to participate
- $\blacksquare$   $\rightarrow$  Centralization helps coordination to avoid free-riding

#### Contract feasibility requires observability of shocks

- Among all liquidity shocks, defaults are the most observable
- $\blacksquare$   $\rightarrow$  Can explain why CCPs focus on default events
- $\blacksquare$  Variation margins  $\rightarrow$  Make liquidity shocks observable

## Other functions of CCPs?

- Multilateral netting + counterparty risk mitigation
- If other benefits, penalty for not abiding to CCP rules are larger
- $\blacksquare$   $\rightarrow$  Makes free-riding even more costly

# Evidence - Historical background

## Wool market of Roubaix-Tourcoing

- Major center of industrial revolution ("French Manchester")
- Wool trade gives risk to price risk for dealers
- Futures market with CCP (created in 1888) to hedge this risk
- CCP did not initially play any role to mitigate fire sales

## Wool crisis in 1900

- $\blacksquare$  Massive drop in prices  $\rightarrow$  46% in a few months
- August 1900: 18 trading houses suspend payments
- $\blacksquare$  Risk of "liquidity spiral"  $\rightarrow$  Forced sales leading to forced sales

## Data

- Multiple archive sources
- Daily Bulletin des laines published by the exchange

# Evidence - Decisions to mitigate fire sales

## Decisions to mitigate predatory short-selling

- Increase margins in several steps (from 1,000 FRF)
- Aug. 28th: Special margins of 10,000 FRF for short positions
- Penalty for positions settled without physical delivery

#### Settlement at above-market prices

- Did not liquidate positions in open market
- Organized sale with members
- Delcambre (1907): "Instead of throwing defaulted positions in the open market, the CLG sold them amicably. They were bought at a single price by houses which, having sold futures in the past, agreed to close their positions."

#### Decisions not mandated by rulebook

- Criticized by some parties early on
- $\blacksquare$  But soon widely praised  $\rightarrow$  Mutually beneficial

# Evidence - Achieving coordination

### Close family ties helped achieve coordination

- Landes (1976): Family values, endogamy within textile industry
- Family relationships substitute for formal legal arrangements
- Deviating is more costly if family values are strong

## CCP took decisions to prevent side trades

- CCP refused to register trades of members doing side trades
- $\blacksquare$   $\rightarrow$  They would de facto be excluded from the market
- CCP suspended publication of prices

# Evidence - From prices



 $\blacksquare$  No evidence of price dislocation  $\rightarrow$  Confirmed by tests

## Evidence - From trade flows

#### Test for effects on real economic activity

- Focus on trade flows More volatile than production
- Data: 14 textiles, 24 customs, over 1896-1905

#### Difference-in-differences estimation

 $Trade_{ct} = \beta_1 \cdot Post_t \cdot TrCity_c + \beta_2 \cdot Post_t + \beta_3 \cdot TrCity_c + \epsilon_{ct},$ 

- $Trade_{ct}$ : Share of imports/exports of city c in year t
- *TrCity<sub>c</sub>*: Equals 1 for Roubaix and Tourcoing
- *Post<sub>t</sub>*: Equals 1 after 1900

#### Triple difference-in-differences estimation

- At the product-city-year level
- Additionally compare wool to other textiles

# Evidence - From trade flows

|                         | Share of imports  |                      |                    | Log volume of imports |                      |                      |
|-------------------------|-------------------|----------------------|--------------------|-----------------------|----------------------|----------------------|
| $TrCity_c \cdot Post_t$ | -0.002<br>(0.016) | 0.000<br>(0.021)     | 0.001<br>(0.014)   | -0.053<br>(0.479)     | 0.016<br>(0.626)     | -0.026<br>(0.448)    |
| $TrCity_c$              | -0.015<br>(0.011) | -0.040***<br>(0.015) | -0.017*<br>(0.010) | -1.442***<br>(0.339)  | -2.331***<br>(0.443) | -1.514***<br>(0.316) |
| $Post_t$                | 0.000<br>(0.006)  | -0.000<br>(0.006)    | -0.000<br>(0.006)  | 0.101<br>(0.195)      | 0.090<br>(0.180)     | 0.079<br>(0.182)     |
| Treated: Dunkerque      | Yes               | No                   | Yes                | Yes                   | No                   | Yes                  |
| Treated: Lille          | Yes               | No                   | Yes                | Yes                   | No                   | Yes                  |
| Trade type              | Gen.              | Gen.                 | Spe.               | Gen.                  | Gen.                 | Spe.                 |
| $R^2$                   | 0.006             | 0.044                | 0.009              | 0.127                 | 0.179                | 0.154                |
| N. Obs.                 | 240               | 240                  | 240                | 240                   | 240                  | 240                  |

#### No significant effect on total trade flows

- Robust to including post-treatment year dummies
- Robust to triple-difference estimation

# Implications for CCP design

### Similar mechanisms are now widespread in CCPs

- Auctions with incentivized participation
- Incentivization via default fund juniorization + Fines
- $\blacksquare$   $\rightarrow$  But often only seen as a protection for CCPs
- Anecdotal evidence from the Lehman auction by LCH in 2008

#### Implications of the model

- Auctions should be run even when CCP is away from distress
- Incentive mechanisms should bind whenever large defaults occur
- CCPs can limit ex ante potential for fire sales via position limits

# Conclusion

### Fire sales can be eliminated via private contracting

- Contract with pre-commitment to buy + penalties
- Contract resembles a CCP and explains several of its features
- Historical evidence consistent with theory

## For future work

- Can the contract be implemented by other institutions?
- Can CCPs mitigate fire sales that are not arising from defaults?
- Relative role of contracts and policy to mitigate fire sales?