Dealer Funding and Market Liquidity

Max Bruche

John Kuong

Humboldt University of Berlin INSEAD

Non-bank Financial Sector and Financial Stability Oct 3, 2019

Intro

Single a

t

Iultiple asset

Extension

Conclusion

Research questions

Dealer Funding and Market Liquidity

Research questions

Dealers use balance sheet to provide immediacy in OTC markets (\neq brokers)

Research questions

Dealers use balance sheet to provide immediacy in OTC markets (\neq brokers)

Questions:

How can funding frictions affect

- the behaviour of dealers/market makers,
- and hence, the market liquidity of assets?

Important because

- Recent regulations specifically targets dealer's funding
 - e.g. Basel III and Dodd-Frank Act

0

Important because

- Recent regulations specifically targets dealer's funding
 - e.g. Basel III and Dodd-Frank Act
- Empirical evidence suggests they affect cost of immediacy

Important because

- Recent regulations specifically targets dealer's funding
 - e.g. Basel III and Dodd-Frank Act
- Empirical evidence suggests they affect cost of immediacy

This paper endogenizes dealers' funding structure and costs

- to provide robust welfare analysis of regulations,
- to derive new implications on market structure and liquidity

Important because

- Recent regulations specifically targets dealer's funding
 - e.g. Basel III and Dodd-Frank Act
- Empirical evidence suggests they affect cost of immediacy

This paper endogenizes dealers' funding structure and costs

- to provide robust welfare analysis of regulations,
- to derive new implications on market structure and liquidity

This paper's approach: agency problem in market making.

1. Dealers' limited balance-sheet capacity endogenized \implies Higher cost of immediacy for larger trades and riskier assets

- 1. Dealers' limited balance-sheet capacity endogenized \implies Higher cost of immediacy for larger trades and riskier assets
- 2. Cross-market dealers out-compete specialized dealers

- 1. Dealers' limited balance-sheet capacity endogenized \implies Higher cost of immediacy for larger trades and riskier assets
- 2. Cross-market dealers out-compete specialized dealers
- 3. Corr. and non-monotonic spillovers in liquidity across markets

- 1. Dealers' limited balance-sheet capacity endogenized \implies Higher cost of immediacy for larger trades and riskier assets
- 2. Cross-market dealers out-compete specialized dealers
- 3. Corr. and non-monotonic spillovers in liquidity across markets
- 4. Debt (with risk-based margin) is optimal

- 1. Dealers' limited balance-sheet capacity endogenized \implies Higher cost of immediacy for larger trades and riskier assets
- 2. Cross-market dealers out-compete specialized dealers
- 3. Corr. and non-monotonic spillovers in liquidity across markets
- 4. Debt (with risk-based margin) is optimal
- 5. Leverage cap hurts liquidity

- 1. Dealers' limited balance-sheet capacity endogenized \implies Higher cost of immediacy for larger trades and riskier assets
- 2. Cross-market dealers out-compete specialized dealers
- 3. Corr. and non-monotonic spillovers in liquidity across markets
- 4. Debt (with risk-based margin) is optimal
- 5. Leverage cap hurts liquidity
- 6. Regulations favor brokered over dealer-intermediated trades.

Conclusion

Setup: the basics

Dealer Funding and Market Liquidity

Setup: the basics

• $t = \{1, 2\}$, no time-discounting, 1 good "cash"

Dealer Funding and Market Liquidity

Setup: the basics

- $t = \{1, 2\}$, no time-discounting, 1 good "cash"
- \bullet Assets: "The Asset" + risk-free asset w/ zero net return

Setup: the basics

- $t=\{1,2\},$ no time-discounting, 1 good "cash"
- \bullet Assets: "The Asset" + risk-free asset w/ zero net return
- Risk-neutral agents:

Setup: the basics

- $t = \{1, 2\}$, no time-discounting, 1 good "cash"
- \bullet Assets: "The Asset" + risk-free asset w/ zero net return
- Risk-neutral agents:
 - 1. Clients:

- "Earl": only present at t = 1, buy or sell \tilde{q} units of asset, where $\tilde{q} \sim U[0, 1]$ (cannot split trade)
- "Laëtitia": only present at t = 2, cash and asset rich.

Setup: the basics

- $t = \{1, 2\}$, no time-discounting, 1 good "cash"
- \bullet Assets: "The Asset" + risk-free asset w/ zero net return
- Risk-neutral agents:
 - 1. Clients:

- "Earl": only present at t = 1, buy or sell \tilde{q} units of asset, where $\tilde{q} \sim U[0, 1]$ (cannot split trade)
- "Laëtitia": only present at t = 2, cash and asset rich.
- 2. Dealer(s): cash w, no position of asset

Setup: the basics

- $t = \{1, 2\}$, no time-discounting, 1 good "cash"
- \bullet Assets: "The Asset" + risk-free asset w/ zero net return
- Risk-neutral agents:
 - 1. Clients:

- "Earl": only present at t = 1, buy or sell \tilde{q} units of asset, where $\tilde{q} \sim U[0, 1]$ (cannot split trade)
- "Laëtitia": only present at t = 2, cash and asset rich.
- 2. Dealer(s): cash w, no position of asset
- 3. Financiers: cash rich (no asset)
- 4. Security Lenders: asset rich (no cash)

Conclusion

```
valuations of the asset <
Security Lender: V + k .....
    Buying Earl: V + \ell - - - - -
        Laëtitia: V ·····
    Selling Earl: V - \ell - - - -
      Financier: V - k .....
          Dealer: 0 ·····l
```

Interpretation:

- +k, $+\ell$: portfolio/hedging needs
- -k, $-\ell$: liquidity needs, opportunity costs of cash

Dealer Funding and Market Liquidity

Interpretation:

- +k, $+\ell$: portfolio/hedging needs
- -k, $-\ell$: liquidity needs, opportunity costs of cash

Dealer Funding and Market Liquidity

Interpretation:

- +k, $+\ell$: portfolio/hedging needs
- -k, $-\ell$: liquidity needs, opportunity costs of cash

Dealer Funding and Market Liquidity

Setup: agency problem in market making

• Dealer(s) need to find Laëtitia before trading with her.

Setup: agency problem in market making

- Dealer(s) need to find Laëtitia before trading with her.
- Unobservable effort *e*:
 - e=1 find Laëtitia w/ $\Pr=1$
 - e = 0 find Laëtitia w/ $Pr = 1 \delta$.

Effort cost (non-pecuniary): *c* per unit of asset

• Dealer(s) protected by limited liability.

Setup: agency problem in market making

- Dealer(s) need to find Laëtitia before trading with her.
- Unobservable effort *e*:
 - e = 1 find Laëtitia w/ Pr = 1
 - e = 0 find Laëtitia w/ $Pr = 1 \delta$.

Effort cost (non-pecuniary): *c* per unit of asset

• Dealer(s) protected by limited liability.

(Other possible effort in practice: risk management, execution, market monitoring, etc.)

Aultiple assets

Extension

Conclusion

Timing – Earl sells

Dealer Funding and Market Liquidity

Timing – Earl sells

t = 1

- Dealer(s) post bids $\{b(q)\}$
- Earl wants to sell q, valuation $q(V \ell)$, chooses dealer.

Timing – Earl sells

t = 1

- Dealer(s) post bids $\{b(q)\}$
- Earl wants to sell q, valuation $q(V \ell)$, chooses dealer.
- Chosen Dealer:

- raises cash $[qb(q)-w]^+$ from financier via contract
- buys asset
- chooses effort $e \in \{0, 1\}$, at cost cqe.
- Not chosen Dealer(s): consume w and leave the market.

Timing – Earl sells

t = 1

- Dealer(s) post bids $\{b(q)\}$
- Earl wants to sell q, valuation $q(V \ell)$, chooses dealer.
- Chosen Dealer:

Setup

- raises cash $[qb(q)-w]^+$ from financier via contract
- buys asset
- chooses effort $e \in \{0, 1\}$, at cost cqe.
- Not chosen Dealer(s): consume w and leave the market. t=2
 - Chosen Dealer finds Laëtitia with $\Pr = 1 (1-e)\delta$
 - Two observable outcomes: "H:" sells to Laëtitia, Cashflow: qV"L:" sells to Financiers, Cashflow: q(V - k)
 - Dealer makes payout according to contract

Dealer Funding and Market Liquidity

Intro

Setup

Single as

M

lultiple assets

Extension

Conclusion

Timing – Earl buys

Dealer Funding and Market Liquidity

Intro

Setup

Conclusion

Timing – Earl buys

Symmetric to the "Earl sells" case (shown in the paper)

- Dealer(s) post asks
- Financing needed: to pledge cash collateral to security lender
- Two outcomes: Laëtitia is found or not

Benchmarks

Unconstrained dealers: large \boldsymbol{w} or observable effort

- Effort is always induced
- All trades are intermediated

tro **Setup** Single asset Multiple assets Extensions

Unconstrained competition leads to zero-profit bid-ask

Constrained dealers and optimal contract

Suppose again Earl wants to sell. To bid b(q), a dealer

- has to raise qb(q) w from financier
- offers contract $\{R_L, R_H\}$
Constrained dealers and optimal contract

Suppose again Earl wants to sell. To bid b(q), a dealer

- has to raise qb(q) w from financier
- offers contract $\{R_L, R_H\}$

Dealer's problem: raise as much finance as possible while maintaining incentive

• maximizes "pledgeable income"

Intro	Setup	Single asset	Multiple assets	Extensions	Conclusion

The optimal contracting problem

$$\max_{\{R_L,R_H\}} \mathcal{P}(q) = R_H$$

subject to
$$(qV - R_H) - cq \qquad \geq (1 - \delta)(qV - R_H) + \delta(q(V - k) - R_L)$$
(IC)

and limited liability

Dealer Funding and Market Liquidity

L

cash flow

H

Contract with stronger incentives

ntro

Extensions

Conclusion

Contract with maximal pledgeable income

Pledgeable income determines market liquidity

Intro Setup Single asset Multiple assets Extensions Co	clusion
--	---------

Pledgeable income determines market liquidity

Maximum incentive-compatible bid for depth q is:

$$b_{IC}(w,q) = \frac{w + \mathcal{P}(q)}{q} = \frac{w}{q} + \left(V - \frac{c}{\delta}\right)$$

- $\left(V \frac{c}{\delta}\right)$: per unit pledgeable income < V
- $w + \mathcal{P}(q)$ is dealer's balance-sheet capacity

Agency problem reduces market liquidity and depth

Agency problem reduces market liquidity and depth (Proposition 1) if $\frac{c}{\delta} > \ell$ (A3: agency friction matters)

Agency problem reduces market liquidity and depth (Proposition 1) if $\frac{c}{\delta} > \ell$ (A3: agency friction matters)

Trading volume and gains from trade decrease

Dealer Funding and Market Liquidity

Multiple assets

Consider a model with multiple assets. Questions:

- cross-market vs specialized dealers, who win?
- more or less liquidity?
- correlated liquidity and spillovers?

Multiple assets

Consider a model with multiple assets. Questions:

- cross-market vs specialized dealers, who win?
- more or less liquidity?
- correlated liquidity and spillovers?

Model: suppose two Earl come to sell two assets A and B

- denote the order size as $q^A>0 \mbox{ and } q^B>0$
- $N \ge 3$ dealers compete
- a cross-market dealer makes two search effort, finding two Laëtitia *independently*
- a specialized dealer only intermediates one asset and searches for Laëtitia in that market

Economy of scope

(Prop. 2) Cross-market dealer has higher pledgeable income than the specialized dealers combined

 $\mathcal{P}(q^A,q^B) > \mathcal{P}(q^A) + \mathcal{P}(q^B)$

Economy of scope

(Prop. 2) Cross-market dealer has higher pledgeable income than the specialized dealers combined

$$\mathcal{P}(q^A, q^B) > \mathcal{P}(q^A) + \mathcal{P}(q^B)$$

Intuition: weaker incentives problem with 2 assets than 1 asset

• contract: dealer only 'gets paid' two successful searches

Intro

Economy of scope

(Prop. 2) Cross-market dealer has higher pledgeable income than the specialized dealers combined

$$\mathcal{P}(q^A, q^B) > \mathcal{P}(q^A) + \mathcal{P}(q^B)$$

Intuition: weaker incentives problem with 2 assets than 1 asset

- contract: dealer only 'gets paid' two successful searches
- NPV in one successful search is 'pledged as collateral' \implies enhanced incentives to search for another asset
- also known as "cross-pledging"

A closer look at the pledgeable income

Depending on the relative sizes of order,

$$\mathcal{P}(q^A, q^B) = \left\{ \right.$$

Intro	Setup	Single asset	Multiple assets	Extensions	Conclusion

A closer look at the pledgeable income

Depending on the relative sizes of order,

$$\mathcal{P}(q^A, q^B) = \begin{cases} (q^A + q^B) \left(V - \frac{c}{\delta(2-\delta)} \right) & \text{if } q^A \in (1-\delta, \frac{1}{1-\delta}) \end{cases}$$

1. when q^A and q^B similar, each asset is more pledgeable than in the single asset case. $V-\frac{c}{\delta(2-\delta)}>V-\frac{c}{\delta}$

Intro	Setup	Single asset	Multiple assets	Extensions	Conclusion

A closer look at the pledgeable income

Depending on the relative sizes of order,

$$\mathcal{P}(q^{A}, q^{B}) = \begin{cases} (q^{A} + q^{B}) \left(V - \frac{c}{\delta(2-\delta)} \right) & \text{if} \quad \frac{q^{A}}{q^{B}} \in (1-\delta, \frac{1}{1-\delta}) \\ q^{A}V + q^{B} \left(V - \frac{c}{\delta} \right) & \text{if} \quad \frac{q^{A}}{q^{B}} \le 1 - \delta \end{cases}$$

1. when q^A and q^B similar, each asset is more pledgeable than in the single asset case. $V-\frac{c}{\delta(2-\delta)}>V-\frac{c}{\delta}$

2. when q^A is small, asset A's pledgeable income = V!

Dealer Funding and Market Liquidity

Dealer Funding and Market Liquidity

(red shaded: cross-market dealer; hatched: specialized dealers)

Dealer Funding and Market Liquidity

(red shaded: cross-market dealer; hatched: specialized dealers)

Dealer Funding and Market Liquidity

(red shaded: cross-market dealer; hatched: specialized dealers)

Dealer Funding and Market Liquidity

(red shaded: cross-market dealer; hatched: specialized dealers)

Dealer Funding and Market Liquidity

Cross-market dealer dominates

(Prop. 4) Cross-market dealer out-competes others

- More balance-sheet capacity to out-bid two specialized dealers
- micro-foundation of similar intermediary capital risk price for many assets (He-Kelly-Manela (2017))

Endogenous correlations: for small w, $\frac{\partial b^i}{\partial w}>0$ and $\frac{\partial q^i_{\max}}{\partial w}>0$

Endogenous correlations: for small w, $\frac{\partial b^i}{\partial w} > 0$ and $\frac{\partial q^i_{\max}}{\partial w} > 0$ Non-monotonic spillovers: for $q^A < q^B$,

Endogenous correlations: for small w, $\frac{\partial b^i}{\partial w} > 0$ and $\frac{\partial q^i_{\max}}{\partial w} > 0$

Non-monotonic spillovers: for $q^A < q^B$,

1. For small q^A ,

-	$w \in [0, w_1)$	$w \in [w_1, w_2)$	$w \ge w_2$
B to A $\left(\frac{\partial b^A}{\partial q^B}\right)$	—	0	0
A to B $\left(\frac{\partial b^B}{\partial q^A}\right)$	+	+	0

Endogenous correlations: for small w, $\frac{\partial b^i}{\partial w} > 0$ and $\frac{\partial q^i_{\max}}{\partial w} > 0$ Non-monotonic spillovers: for $q^A < q^B$,

1. For small q^A ,

-	$w \in [0, w_1)$	$w \in [w_1, w_2)$	$w \ge w_2$
B to A $\left(\frac{\partial b^A}{\partial q^B}\right)$	_	0	0
A to B $\left(\frac{\partial b^B}{\partial q^A}\right)$	+	+	0

2. For larger q^A , $\begin{array}{c|c} w \in [0, w'_1) & w \in [w'_1, w'_2) & w \ge w'_2 \\ \hline B \text{ to } A \left(\frac{\partial b^A}{\partial q^B} \right) & + & 0 & 0 \\ A \text{ to } B \left(\frac{\partial b^B}{\partial q^A} \right) & + & - & 0 \end{array}$

Endogenous correlations: for small w, $\frac{\partial b^i}{\partial w} > 0$ and $\frac{\partial q^i_{\max}}{\partial w} > 0$ Non-monotonic spillovers: for $q^A < q^B$,

1. For small q^A ,

2. For larger
$$q^A$$
,

$$\frac{w \in [0, w'_1) \quad w \in [w'_1, w'_2) \quad w \ge w'_2}{B \text{ to } A \left(\frac{\partial b^A}{\partial q^B}\right) \quad + \quad 0 \quad 0}$$
A to B $\left(\frac{\partial b^B}{\partial q^A}\right) \quad + \quad - \quad 0$

Non-monotonic price impact: for small q^A and small w, $\frac{\partial b^A}{\partial a^B} > 0$.

Intro

gle asset

/lultiple assets

Extensions

Conclusion

Extensions

- 1. Risky asset
- 2. Dealer's optimal leverage and effect of regulation on liquidity
- 3. Bank v.s. non-bank affiliated dealers
- 4. Broker or Dealer

l en de se			

Single as

Multiple a

Extensions

Conclusion

Intermediating risky asset

Intro

Single as

Multiple asse

Extensions

Conclusion

Intermediating risky asset

After effort choice:

Dealer Funding and Market Liquidity

Conclusion

Intermediating risky asset

After effort choice:

<u>Result</u>: under the optimal monotone contract, (Innes 90)

Dealer Funding and Market Liquidity

Single as

Multiple asset

Extensions

Conclusion

Intermediating risky asset

After effort choice:

<u>Result</u>: under the optimal monotone contract, (Innes 90)

• asset risk reduces reduces pledgeable income.

Dealer Funding and Market Liquidity

Riskier assets are more illiquid

Implications: dealers are *effectively* risk averse.

• Consistent with evidence, e.g. Comerton-Forde et al. (10, JF)

Riskier assets are more illiquid

Implications: dealers are *effectively* risk averse.

- Consistent with evidence, e.g. Comerton-Forde et al. (10,JF)
- Risk-based margin constraint endogenized:

$$\begin{aligned} \mathsf{Margin} &= \frac{\mathsf{Market value of asset}}{\mathsf{Loan amount}} - 1 = \frac{qb_c(q,w)}{\mathcal{P}(q)} - 1 = \frac{w}{\mathcal{P}(q)} \\ \end{aligned}$$
and $\mathcal{P}(q)$ decreases in asset risk

Regulation and market liquidity

Empirical evidence suggests that liquidity provision by bank-affiliated dealers is affected by post-crisis regulation:

Regulation and market liquidity

Empirical evidence suggests that liquidity provision by bank-affiliated dealers is affected by post-crisis regulation:

- Volcker rule. E.g. Bao, O'Hara, Zhou (17, JFE)
- Basel III:
 - net stable funding ratio, liquidity coverage ratio
 - capital adequacy ratio, leverage ratio

Regulation and market liquidity

Empirical evidence suggests that liquidity provision by bank-affiliated dealers is affected by post-crisis regulation:

- Volcker rule. E.g. Bao, O'Hara, Zhou (17, JFE)
- Basel III:
 - net stable funding ratio, liquidity coverage ratio
 - capital adequacy ratio, leverage ratio

We illustrate the effect of leverage ratio cap on market liquidity.

Single a

Multiple asse

Extensions

Conclusion

Leverage ratio

Leverage ratio

Debt Total Asset

Dealer Funding and Market Liquidity

Bruche, Kuong

Leverage ratio

Leverage ratio

Debt Total Asset

If Earl sells, $TA = qb_c(q, w)$. What is Debt in the model?

Leverage ratio

Leverage ratio

Debt Total Asset

If Earl sells, $TA = qb_c(q, w)$. What is Debt in the model?

Any $\{R_H, R_L\}$ can be implemented by debt and (outside) equity.

- Debt with promised repayment *D*.
- Outside equity: a fraction α of the remaining cash flow.

Dealer Funding and Market Liquidity

Bruche, Kuong

Dealer Funding and Market Liquidity

Dealer Funding and Market Liquidity

Bruche, Kuong

/lultiple asset

Extensions

Conclusion

Effect of leverage cap

Dealer Funding and Market Liquidity

Bruche, Kuong

Conclusion

Single

et

Multiple asset

Extensions

Conclusion

Single

Aultiple asset

Extensions

Conclusion

Jultiple assets

Extensions

Conclusion

Effect of leverage cap

Dealer Funding and Market Liquidity

Bruche, Kuong

Multiple assets

Extensions

Conclusion

Tightening leverage requirement reduces

• liquidity for large trades, intermediation volume hence welfare. Consistent with Bessembinder et al (18,JF)

Brokers or Dealers

Choi and Huh (2017, WP), corporate bonds.

• more "brokered" trades versus "dealer-immediacy-provision" trades after crisis

- more "brokered" trades versus "dealer-immediacy-provision" trades after crisis
- avg. transaction costs underestimates the cost of immediacy

- more "brokered" trades versus "dealer-immediacy-provision" trades after crisis
- avg. transaction costs underestimates the cost of immediacy
- stronger effect for larger trades and riskier bonds

- more "brokered" trades versus "dealer-immediacy-provision" trades after crisis
- avg. transaction costs underestimates the cost of immediacy
- stronger effect for larger trades and riskier bonds
- "immediacy" trades costs 35-50 percent more post crisis. See also Dick-Nielsen and Rossi (18, RFS)

- more "brokered" trades versus "dealer-immediacy-provision" trades after crisis
- avg. transaction costs underestimates the cost of immediacy
- stronger effect for larger trades and riskier bonds
- "immediacy" trades costs 35-50 percent more post crisis. See also Dick-Nielsen and Rossi (18, RFS)

Choi and Huh (2017, WP), corporate bonds.

- more "brokered" trades versus "dealer-immediacy-provision" trades after crisis
- avg. transaction costs underestimates the cost of immediacy
- stronger effect for larger trades and riskier bonds
- "immediacy" trades costs 35-50 percent more post crisis. See also Dick-Nielsen and Rossi (18, RFS)

Extension in the model:

- with some probability π Laëtitia arrives early \Rightarrow brokered trade
- If unconstrained, $\frac{\text{brokered trade}}{\text{intermediated trade}} = \frac{\pi}{1-\pi}$
- If constrained, this ratio goes up, more so for larger trades and riskier bonds.

Related literature (selected)

Internal funding of dealers/arbitrageurs on liquidity:

Gromb+Vayanos ('02), Brunnermeier+Pedersen ('09), Anderson+Duffie+Song ('18)

we endogenize margin constraint and capital structure, able to study impact of policy, new implications

Single

Multiple asse

Conclusion

Related literature (selected)

Internal funding of dealers/arbitrageurs on liquidity:

Gromb+Vayanos ('02), Brunnermeier+Pedersen ('09), Anderson+Duffie+Song ('18)

we endogenize margin constraint and capital structure, able to study impact of policy, new implications

On the sources of illiquidity:

- Ho+Stoll (83): inventory cost
- Kyle (85), Glosten Milgrom (85): adverse selection
- Duffie+Garleanu+Pedersen (05): search frictions

we show dealer's financing frictions as a source (a micro-foundation for inventory cost)

Static model of market making with optimal financing contracts

- Dealers use their balance sheet to provide immediacy
- External financing is limited due to moral hazard
- Key idea: pledgeable income \Rightarrow market liquidity of assets

Static model of market making with optimal financing contracts

- Dealers use their balance sheet to provide immediacy
- External financing is limited due to moral hazard
- Key idea: pledgeable income \Rightarrow market liquidity of assets

Implications: when dealer is not well capitalized

• Higher cost of immediacy for larger trades and riskier assets

Static model of market making with optimal financing contracts

- Dealers use their balance sheet to provide immediacy
- External financing is limited due to moral hazard
- Key idea: pledgeable income \Rightarrow market liquidity of assets

Implications: when dealer is not well capitalized

- Higher cost of immediacy for larger trades and riskier assets
- Cross-market dealer dominates, improves liquidity but leads to correlations and non-monotonic spillovers

Static model of market making with optimal financing contracts

- Dealers use their balance sheet to provide immediacy
- External financing is limited due to moral hazard
- Key idea: pledgeable income \Rightarrow market liquidity of assets

Implications: when dealer is not well capitalized

- Higher cost of immediacy for larger trades and riskier assets
- Cross-market dealer dominates, improves liquidity but leads to correlations and non-monotonic spillovers
- Leverage ratio cap could hurt market liquidity

Static model of market making with optimal financing contracts

- Dealers use their balance sheet to provide immediacy
- External financing is limited due to moral hazard
- Key idea: pledgeable income \Rightarrow market liquidity of assets

Implications: when dealer is not well capitalized

- Higher cost of immediacy for larger trades and riskier assets
- Cross-market dealer dominates, improves liquidity but leads to correlations and non-monotonic spillovers
- Leverage ratio cap could hurt market liquidity
- Predictions consistent with recent evolution of U.S. corporate bond market

Single

Multiple asset

Extension

Conclusion

THANK YOU!

Dealer Funding and Market Liquidity

Bruche, Kuong