Introduction
 Model
 Results
 Poli

 000
 0000
 000000000
 0

Policy implications o Conclusion O

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Precision of Ratings

Anastasia Kartasheva Bilge Yılmaz

The Wharton School, University of Pennsylvania

CRAs performance during the crisis and reform proposals

- Credit ratings are widely used in many sectors of the economy
 - CRAs rate securities in various asset classes: financial institutions, corporate debt, insurance, ABS, municipal and sovereign bonds
 - Asset classes may differ in terms of market conditions and information asymmetries
- Performance of CRAs differs across various asset classes
 - Ample evidence of low precision and inflation of ratings of asset back securities prior to crisis
 - Performance of ratings in corporate bond market, utilities and insurance was stable
- Reform proposals
 - standardization of ratings symbols, regulation of rating fees, expert liability, reduction of the regulatory reliance on ratings

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Research questions

- What determines the precision of ratings?
- How does CRA's rating precision depend on the market conditions?
 - aggregate value of liquidity, information asymmetries
- Does CRA have incentives to produce information when information asymmetries are more severe?
 - asset backed securities vs. sovereign bonds
- What is the effect of policy proposals on the precision of ratings?

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

• Dodd-Frank Act, SEC, IOSCO

- A model of information intermediation (Lizzeri 99)
 - Issuers are privately informed about the quality of an issue
 - Investors compete for the issue
 - A monopolistic CRA commits to a rating technology and charges a flat fee for ratings

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- Two key distinctions from Lizzeri's basic model
 - Issuers have a type dependent outside option
 - Presence of informed and uninformed investors

Model •000 Results 0000000000 Policy implications 0 Conclusion O

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Model: Basics

- Three groups of agents: Issuers, Investors, CRA
- Issuer owns an asset and has liquidity needs
 - The asset is worth v to investors and δv to an issuer
 - $\delta < 1$ measures the aggregate value of liquidity
- Issuers are privately informed about v
- Investors and CRA share the same prior on v

•
$$\Pr(v_j) = \lambda_j$$
, $0 = v_1 < v_2 < v_3$

ntroduction	Model	Results	Policy implications
000	0000	000000000	0

Model: Investors

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Uninformed investors
- Purely competitive
- The group is large enough to buy the entire issue

Model 0000 Results 0000000000 Policy implications 0 Conclusion O

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Model: CRA

- CRA chooses an information structure I
- Cost of every information structure to the CRA is zero
- CRA charges a flat fee ϕ and discloses the signal realization to investors
- (I,ϕ) defines the rating technology of the CRA
- CRA does not trade on the asset

Introduction	Model	Results	Policy implications	Conclusion
000	○○○●	000000000	O	O
		Timing		

• *t* = 0

- The nature chooses issuer's types $v \in V$ according to λ
- CRA chooses (I, ϕ) . Issuers and investors observe (I, ϕ)

• *t* = 1

- Issuers decide whether to solicit a rating
- CRA learns the signal s for each issuer who solicited a rating
- CRA announces the ratings of rated issuers to investors

• *t* = 2

• Issuers set the price of subscription b

• *t* = 3

• Knowing whether an issuer is rated and the rating from t = 1and the price from t = 2, investors decide whether to subscribe to an issue

Introduction	Model	Results	Policy implications	Conclusion
000	0000	•00000000	0	0

Result 1: Ratings are informative but noisy and inflated

- Profit of CRA is a product of market penetration and a fee
- The fee is determined by the willingness to pay of the lowest rated issuer
- CRA can increase this issuer's willingness to pay by assigning high ratings with a positive probability

• However, the CRA is limited by the high quality issuer's outside option

• Expected value of an asset is $E[v] = \frac{1}{3} \cdot 7 + \frac{1}{3} \cdot 5 + \frac{1}{3} \cdot 0 = 4$

Issuer types v₁ = 0, v₂ = 5, v₃ = 7, λ = (¹/₃, ¹/₃, ¹/₃)
Market conditions: Aggregate value of liquidity δ = ³/₄

Gains of trade under complete information is ν - δν
ex-ante market surplus is (1 - δ)E[ν] = 1

In the absence of CRA, gains of trade are not realized

• Signal space $S = \{s_1, s_2, s_3\}$

roduction	Model	Results	Policy implications	Со
0	0000	000000000	0	0

Perfectly informative ratings

• Ratings precision $p_{ij} = \Pr(s_i | v_j)$

	<i>V</i> 3	v ₂	<i>v</i> ₁
s 3	1	0	0
s 2	0	1	0
<i>s</i> 1	0	0	1

- Investors' assessment is $U_3=$ 7, $U_2=$ 5, $U_1=$ 0
- Issuers' value of a rating is $R_3 - \delta v_3 = 7 - \frac{3}{4} \cdot 7 = \frac{7}{4}$, $R_2 - \delta v_2 = \frac{5}{4}$ and $R_1 - \delta v_1 = 0$
- CRA rates v_2 and v_3 and charges $\phi = \frac{5}{4}$ and gains $(\frac{1}{3} + \frac{1}{3})\frac{5}{4} = \frac{5}{6}$
- Issuers type v_3 gain $\frac{1}{3}(\frac{7}{4}-\frac{5}{4})=\frac{1}{6}$, v_2 and v_1 gain zero

• Market surplus is maximized $\frac{5}{6} + \frac{1}{6} = 1$

Introduction	Model	Results	Policy implications
000	0000	000000000	0

Noisy ratings

	<i>V</i> 3	v ₂	<i>v</i> ₁
<i>s</i> ₃	1	$\frac{1}{7}$	0
<i>s</i> ₂	0	$\frac{6}{7}$	0
<i>s</i> ₁	0	0	1

Investors' assessment is

 $U_{3} = \Pr(v_{3}|s_{3}) \cdot 7 + \Pr(v_{2}|s_{3}) \cdot 5 = \frac{\frac{1}{3} \cdot 1}{\frac{1}{3} \cdot 1 + \frac{1}{3} \frac{1}{7}} \cdot 7 + \frac{\frac{1}{3} \cdot \frac{1}{7}}{\frac{1}{3} \cdot 1 + \frac{1}{3} \frac{1}{7}} \cdot 5 = \frac{27}{4}$ $U_{2} = \Pr(v_{3}|s_{2}) \cdot 7 + \Pr(v_{2}|s_{2}) \cdot 5 = 0 \cdot 7 + 1 \cdot 5 = 5, U_{1} = 0$

Issuers' v_j value of a rating is

 $\begin{aligned} R_j - \delta v_j &= \mathsf{Pr}(s_3 | v_j) U_3 + \mathsf{Pr}(s_2 | v_j) U_2 \\ R_3 - \delta v_3 &= 1 \cdot U_3 - \frac{3}{4}7 = \frac{3}{2} \text{ and } R_2 - \delta v_2 = \frac{1}{7}U_3 + \frac{6}{7}U_2 - \frac{3}{4}5 = \frac{3}{2} \end{aligned}$

• CRA rates v_2 and v_3 , charges $\phi = rac{3}{2}$ and gains $(rac{1}{3} + rac{1}{3})rac{3}{2} = 1$

Issuers gain zero

Introduction	Model	Results	Policy implications	Conclusion
000	0000	000000000	0	0

Result 2: Precision of ratings depends on the market conditions

- When the value of liquidity is high (δν is low), issuers are willing to accept a higher discount to sell the asset
- CRA is less constrained by the high quality issuers participation decision
- Higher value of liquidity leads to less precise ratings
- There exists δ̄ such that for all δ > δ̄ the optimal information structure has rating inflation: It assigns higher signals with a positive probability
 - assigning a low rating to v_3 may lead to no trade

Introduction	Model	Results	Policy implications	Conclusion
000	0000	000000000	0	0

Result 3: Differentially informed investors

- CRA's information structure affects the size of surplus
 - more informative ratings reduce the adverse selection problem, and increase the surplus
 - but more informative ratings also reduce the ability of the CRA to extract surplus

- As the extend of winner's curse problem increases, the CRA reduces the precision of ratings
- When the winner's curse problem is substantial, the CRA reduces the market coverage and it leads to inefficiency

ction	Model	Results	Policy implications (
	0000	0000000000	0

Differentially informed investors: Basics

- Uninformed investors
- Informed investors
 - Prior to subscribing, informed investors observe v
 - Demand of informed investors is not sufficient to absorb the offer of the issuers
- Winner's curse problem (Rock 1986)
 - uninformed investors are more likely to obtain an issue when informed investors do not subscribe
 - Rationing rule for uninformed investors
 - demand for underpriced security is fulfilled with probability q
 - demand for *overpriced* security is fulfilled with probability 1
- q measures the severity of the winner's curse problem
 - When q = 1, all investors are uninformed
 - As q decreases, the share of informed investors increases

Introduction	Model	Results	Policy implications	Conclusion
000	0000	0000000●00	O	O
		Timing		

- *t* = 0
 - The nature chooses issuer's types $v \in V$ according to λ
 - CRA chooses (I, ϕ) . Issuers and investors observe (I, ϕ)
- *t* = 1
 - Issuers decide whether to solicit a rating
 - Informed investors learn the asset value for each issuer
 - CRA learns the signal s for each issuer who solicited a rating
 - CRA announces the ratings of rated issuers to investors
- *t* = 2
 - Issuers set the price of subscription b
- *t* = 3
 - Knowing whether an issuer is a rated and the rating from t = 1 and the price from t = 2, investors decide whether to subscribe to an issue
 - The demand of investors is fulfilled according to the rationing rule (q)

Optimal rating precision

- There exists \overline{q} such that if $q > \overline{q}$, the optimal rating system induces types v_2 and v_3 to solicit a rating; if $q < \overline{q}$, only v_3 is rated and v_2 does not trade
 - winner's curse problem reduces lower type willingness to pay for the rating
 - when only v_3 is rated, it is revealed
 - when types v_2 and v_3 are rated, the optimal rating precision is $p_{22} < 1$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

	<i>V</i> 3	<i>v</i> ₂	<i>v</i> ₁
s 3	1	$1 - p_{22}$	0
<i>s</i> ₂	0	p ₂₂	0
<i>s</i> ₁	0	0	1

Introduction	Model	Results	Policy implications	Conclusion
000	0000	000000000	0	0

Result 4: Winner's curse, market conditions and ratings precision

- As the share of uninformed investors increases, ratings become less informative, $\frac{dp_{22}}{da} < 0$
- As the aggregate value of liquidity increases, ratings become less informative, $\frac{dp_{22}}{d\delta} < 0$
- As high quality assets become more scarce, ratings become less informative, $\frac{dp_{22}}{d(\frac{\lambda_2}{\lambda_3})} < 0$
- There exists $\overline{\delta}(q)$ such that for $\delta > \overline{\delta}(q)$ rating inflation is necessary for the optimal rating system
 - As the winner's curse problem increases, rating inflation holds for a larger set of parameters, $\frac{d\bar{\delta}}{da} > 0$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Evaluation of policy proposals

- Positive effect on market efficiency
 - Regulating rating fees
 - Reducing reliance on ratings in regulation
- Negative effect on market efficiency
 - standardization of precision for different asset classes
 - standardization of precision for different ratings
 - introducing expert liability

Results 0000000000 Policy implications 0 Conclusion

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Concluding remarks

- CRA's optimal information structure is noisy and asymmetric
- Precision of ratings depends on the market conditions
 - as the value of aggregate liquidity increases, ratings become less precise
 - as the winner's curse problem increases, ratings become less precise
- Policy implications
 - standardization of rating symbols, expert liability may have adverse effects on ratings precision
 - reducing the reliance on ratings in regulation and regulating rating fees may have a positive effect