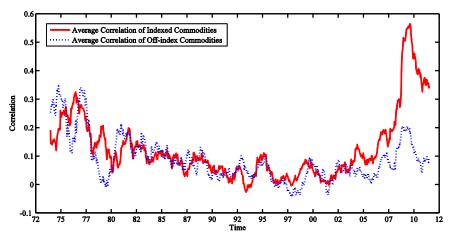
A Model of Financialization of Commodities


Suleyman Basak Anna Pavlova

London Business School and CEPR

New Trends in Commodity Futures Markets (post 2004)

- A sharp increase in the popularity of commodity investing; large inflows of money from pension funds, endowments, and other institutional investors
 - Institutional holdings went up from \$15 billion in 2003 to over \$200 billion in 2008
- Unprecedented booms and busts in commodity prices
- Sharp increase in correlations among commodities
- Increase in equity-commodity correlations
- ... and especially so for commodities included in commodity indices

Correlations Have Gone Up Significantly

Source: Tang and Xiong (2012)

Our Work

- Main question: How do institutional investors affect commodity futures prices, volatilities, and their comovement?
- A theoretical model of financialization of commodity futures markets
 - Disentangles how much of price rise can be attributed to financialization and how much to rising demand for commodities
- Features institutional investors alongside traditional market participants
 - institutions care about their performance relative to a commodity market index
 - otherwise, a conventional asset pricing model

Effects of Financialization: Our Main Results

- Commodity futures prices:
 - all go up, index futures rise by more
 - news about index commodity fundamentals spill over to all other commodities
- Volatilities of all futures go up, but those of index futures increase by more
- Correlations:
 - cross-commodity correlations rise
 - equity-commodity correlations rise
 - rise more for index commodities
- Financialization accounts for 11% to 17% of commodity futures prices and the rest is attributable to fundamentals

Related Literature

- Empirical evidence directly supporting our findings: Tang and Xiong (2012), Singleton (2013)
- Evidence from other markets (equity):
 - index effects: Harris and Gurel (1986), Shleifer (1986) and others
 - asset class effects: Barberis, Shleifer, and Wurgler (2005), Boyer (2011)
- An alternative view of financialization: Fattouh, Kilian, and Mahadeva (2013), Hamilton and Wu (2012)
- Modeling of institutional investors: Basak and Pavlova (2013)

The Model

• *K* commodities. Supply news of commodity *k*:

$$dD_{kt} = D_{kt}[\mu_k dt + \sigma_k d\omega_{kt}] \qquad GBM$$

Generic good 0, with supply news:

$$dD_t = D_t[\mu dt + \sigma d\omega_{0t}]$$
 GBM

- the numeraire
- supply news uncorrelated across commodities
- Prices of commodities are p_{kt}

The Model

- K futures contracts; one for each commodity k:
 - Maturity *T*, payoff at maturity p_{kT}
 - ► Futures price *f_{kt}*
- Commodity index includes L < K commodities</p>

$$I_t = \prod_{i=1}^L f_{it}^{1/L}$$

- geometrically-weighted, as S&P Commodity Index
- Stock market S_t : claim to time-*T* aggregate output: $D_T + \sum_{k=1}^{K} p_{kT} D_{kT}$
- Risk-free bond

Investors

"Normal" investor N

$$u_{\mathcal{N}}(W_{\mathcal{N}^{T}}) = \log(W_{\mathcal{N}^{T}})$$

"Institutional" investor I

$$u_{\mathcal{I}}(W_{\mathcal{I}\mathcal{T}}) = (a + bI_{\mathcal{T}})\log(W_{\mathcal{I}\mathcal{T}}), \qquad a, b > 0$$

- Dislikes to perform poorly when benchmark does well
- Less concerned about performance when ahead of the benchmark
- Formally, marginal utility is increasing in index level
- Cobb-Douglas consumption index (real wealth)

$$W_n = C_{n_0}^{\alpha_0} C_{n_1}^{\alpha_1} \cdot \ldots \cdot C_{n_K}^{\alpha_K}, \qquad n \in \{\mathcal{N}, \mathcal{I}\}$$

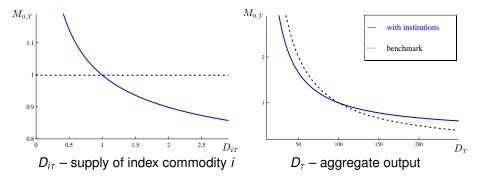
▶ Institution's endowment λS_0 , normal investor's $(1 - \lambda)S_0$

Time-T Commodity Prices: Effects of Fundamentals

Price of commodity k:

$$p_{k\tau} = \overline{p}_{k\tau} = \frac{\alpha_k}{\alpha_0} \frac{D_{\tau}}{D_{k\tau}}$$

 $-\overline{p}_{k\tau}$ price in benchmark economy with no institutions


Supply
$$D_k \nearrow$$
Aggregate
output $D \nearrow$ Demand $\alpha_k \nearrow$ Price $p_{k\tau}$ -++

• Commodity index I_{τ} inherits properties of $p_{1\tau}, \ldots, p_{L\tau}$

Discount Factor $M_{0,T}$ (from $f_{kt} = E_t[M_{t,T} p_{kT}]$)

• Benchmark with no institutions: $\overline{M}_{0,\tau} = \frac{e^{(\mu-\sigma^2)\tau}D_0}{D\tau}$

• With institutions:
$$M_{0,T} = \overline{M}_{0,T} \left(1 + \frac{b \lambda (I_T - E[I_T])}{a + b E[I_T]} \right)$$

 States with high payoffs of commodity index are priced higher than in benchmark economy

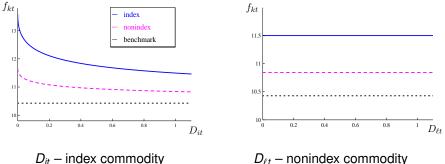
Commodity Futures Prices

Equilibrium futures prices in benchmark economy:

$$\bar{f}_{kt} = \frac{\alpha_k}{\alpha_0} e^{(\mu - \mu_k - \sigma^2 + \sigma_k^2)(T - t)} \frac{D_t}{D_{kt}}$$

In the economy with institutions:

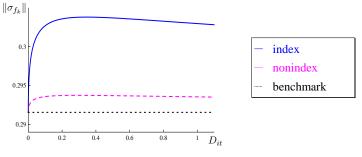
$$f_{kt} = \bar{f}_{kt} \underbrace{\frac{Const + b \,\lambda \,e^{1_{\{k \le L\}} \,\sigma_k^2 (T-t)/L} \,D_t \,\prod_{i=1}^L \,(g_i(t)/D_{it})^{1/L}}{Const + b \,\lambda \,e^{-\sigma^2 (T-t)} \,D_t \,\prod_{i=1}^L \,(g_i(t)/D_{it})^{1/L}}}_{>1}}$$


with $g_i(t) = \frac{\alpha_i}{\alpha_0} e^{(\mu - \mu_i + (1/L - 1)\sigma_i^2/2)(T - t)}$

- Futures prices are higher than in benchmark
- Index futures prices rise more than nonindex ones

- Institutions care about the index
- Their marginal utility is increasing in index level
- They value assets that pay off more in states when index does well
- Hence, they value index futures more than nonindex

Supply News and Commodity Futures Prices

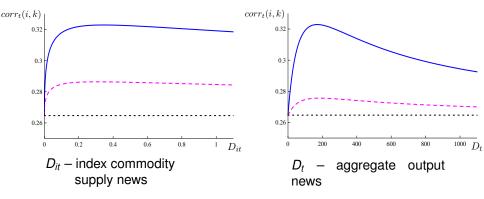


supply news

 $D_{\ell t}$ – nonindex commodity supply news

- If a commodity is included in the index, its supply news affect all other commodities
- If not, its supply news affect just that commodity alone

Commodity Futures Volatilities


 D_{it} – index commodity supply news

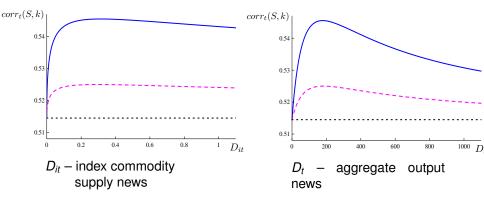
- Volatilities of all futures are higher than in benchmark
- Volatilities of index futures exceed those of nonindex
- Futures are positively correlated with the index. Institutions are willing to accept higher volatility.

Commodity Futures Comovement

- Covariances and correlations among all commodity futures rise
- Covariances and correlations among index commodities rise more than nonindex – an asset class effect

Commodity Futures Correlations

- All futures load on a new common factor: commodity index
- Factor loadings are all positive
- Hence, covariances go up


Transmission to Stock Market

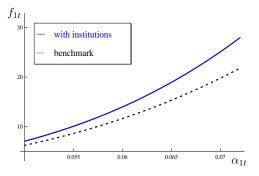
Stock market value

$$S_{t} = \overline{S}_{t} \underbrace{\frac{Const + b \lambda D_{t} \prod_{i=1}^{L} (g_{i}(t)/D_{it})^{1/L}}{Const + b \lambda e^{-\sigma^{2}(T-t)} D_{t} \prod_{i=1}^{L} (g_{i}(t)/D_{it})^{1/L}}_{>1}}_{>1}$$
with $\overline{S}_{t} = \frac{\sum_{k=0}^{K} \alpha_{k}}{\alpha_{0}} e^{(\mu - \sigma^{2})(T-t)} D_{t}$

- ► Stock is valued using the same discount factor M_{t,T} as other assets
- Same new factor as in futures prices: commodity index

Equity-Commodity Correlations

- The discount factor depends on the index
- Stocks and commodity futures load on the new (common) factor: the index


Quantitative Implications

- Numerical illustration based on the model with supply and demand shocks
- Commodity 1 represents energy
- Demand shocks = stochastic energy expenditure share α₁ in

$$W = C_0^{\alpha_0} C_1^{\alpha_1} \cdot \ldots \cdot C_K^{\alpha_K}$$

 $-\alpha_1$ is increasing with aggregate output

Demand Shocks and Energy Futures Prices

 α_{1t} – energy demand parameter

- Demand shocks additional source of risk affecting index
- As demand increases, financialization accounts for a bigger fraction of futures prices

Fraction of Futures Prices Explained by Financialization

Energy futures:

			Volatility of non-energy supply			
			news σ_k			
			0.19	0.24	0.29	
Volatility		0.24	14.39%	14.43%	14.46%	
of energy	σ_1	0.29	16.79%	16.83%	16.86%	
supply news		0.34	19.68%	19.72%	19.76%	

Non-energy futures:

		Volatility of non-energy supply			
		news σ_k			
		0.19	0.24	0.29	
Volatility	0.24	9.09%	11.00%	13.35%	
of energy σ	1 0.29	9.16%	11.04%	13.40%	
supply news	0.34	9.19%	11.08%	13.44%	

Summary: Effects of Financialization

- Prices of all commodity futures go up, but those of index futures rise by more
- If a commodity is in index, news about its fundamentals affect all other commodities
- Volatilities of both index and nonindex futures go up, but those of index futures increase by more
- Correlations among index commodities rise more than nonindex – an asset class effect
- Equity-commodity correlations go up, and especially so for index commodities
- Financialization accounts for 11% to 17% of commodity futures prices and the rest is attributable to fundamentals

Commodity Spot Prices

- The model pins down time-T commodity spot prices but not time t < T. Need a model with intermediate consumption.
- Let us extrapolate from our model. Assume that
 - commodities are storable
 - one can freely buy or sell commodities at any time $t \leq T$
 - convenience yield/storage costs are constant fraction δ_k of price

Then

$$f_{kt} = p_{kt} e^{\delta_k (T-t)}$$

A great question to explore in future research!