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Abstract

High Frequency Trading (HFT) improves investors’ ability to seize trading opportunities,
which raises gains from trade. It also enables fast traders to process information before slow
traders, which generates adverse selection. We first analyze trading equilibria for a given
level of HFT and then endogenize investment in HFT. When some traders become fast, it
increases adverse selection costs for the others, thus HFT generates negative externalities.
Therefore equilibrium investment in HFT exceeds its utilitarian welfare–maximizing coun-
terpart. Furthermore, since it involves fixed costs, investment in HFT is more profitable
for large institutions than for small ones. Hence, in equilibrium, small institutions are less
informed than large ones and exit the market when HFT becomes prevalent.



1 Introduction

‘Well in our country’ said Alice, still panting a little, ‘you’d generally get to

somewhere else – if you ran very fast for a long time, as we have been doing.’

‘A slow sort of country!’ said the Queen. ‘Now, here, you see, it takes all

the running you can do, to keep in the same place. If you want to go somewhere

else, you must run at least twice as fast as that!’

Lewis Carroll, Through the Looking Glass

Traders must collect and process vast amounts of information about fundamentals,

quotes, transaction prices, etc... Computers can complete these tasks faster and some-

times better than humans. Algorithmic trading thus relies on computers to collect and

process information and submit and manage orders. It is widely used by proprietary trad-

ing desks, market makers, investment managers, brokers and hedge funds for a variety of

trading tasks. Algorithmic trading is not new. For instance, traders have automated port-

folio insurance strategies, that require simultaneous trades in a large number of securities,

since the 80s. The recent years however have seen the rapid emergence of a new form

of algorithmic trading, known as high frequency trading (hereafter HFT). HFT strategies

are quite diverse but they all share one common feature: they rely on obtaining market

data, processing these data, and trading accordingly at very high speed. As a result of

this evolution, the pace of trading has considerably accelerated in recent years, so that

multiple trades and orders within a second are now common. And this increase in the pace

of the market seems to compel all financial institutions to catch up with speed, as the Red

Queen in the quote above.

Now this trend is not anecdotal, it does not affect a small fringe of the market. Quite

to the contrary, it is very pervasive. As pointed out by the SEC, “HFT is a dominant

component of the current market structure and is likely to affect all aspects of its perfor-

mance.” (See SEC 2010, p.45). For example, Brogaard (2010) finds that 26 high frequency

traders participate in 68% of dollar volume for 120 Nasdaq stocks, while the pure play

high frequency firms in Kirilenko et al (2010) account for 34% of the trading volume in

the E.mini S&P 500 futures.

Not only is HFT very active, it is also quite profitable. Menkveld (2010) and Brogaard

(2010) estimate that high frequency traders earn significant risk-adjusted returns. Saraiya

and Mittal (2009) report that the annual aggregate profits of HFT are estimated to $21

billion. Furthermore, the bulk of these returns accrues to a small group of players. A

report of the TABB group states that 2% of the 20,000 proprietary trading firms in the
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U.S. account for more than 70% of the trading volume (see Iati, 2009). One possible

reason for this concentration is that HFT requires significant fixed investments.1 To be

among the fastest in the market, proprietary trading firms must acquire hardware, develop

and maintain codes, hire highly qualified personnel (e.g., Ph.Ds in mathematics, physics,

computer science etc...), subscribe to expensive real time data feed, and obtain ultra-fast

(“low latency”) connections to exchanges’ trading systems (e.g., by paying a fee to locate

their computers just next to exchanges’ servers, a practice known as co-location).

These market developments beg the following questions. Does the observed growth

in HFT improve or impair the workings of markets? Do the profits of HFT reflect the

value it creates or of the losses of lower frequency investors? What is the social value of

the significant amount of investment in HFT technology? Is this allocation of resources

efficient? Is policy intervention called for?

The goal of this paper is to offer a theoretical framework to shed light on these issues.

Our model features a continuum of financial institutions (proprietary trading firms, hedge

funds, banks’ prop trading desks), differing in sizes, and who can invest or not in HFT,

i.e., a technology giving them faster and better access to market information and trading

opportunities. The fraction of financial institutions investing in this technology determines

the overall level of HFT activity. We assume that fast access to markets gives an edge to

high frequency traders in two ways:

• High frequency traders’ “search capacity” for liquidity is higher. That is, they are

more likely than other institutions to locate beneficial trading opportunities. This

is because computers expand investors’ cognition capacity and fast connections to

trading platforms enable high frequency traders to react faster to fleeting trading

opportunities and cope with market fragmentation.2 For instance, a computer can

identify more quickly than a human the package of trades at the current quotes which

would results in a good hedge for an institution’s overall position. Being super fast

in achieving these trades is important as quotes can change very quickly as well.3

• Ultra–fast connections to trading platforms and data providers enable high–frequency

traders to react faster than others to new information relevant for the value of an
1See for instance ”Citigroup to expand electronic trading capabilities by buying Automated Trading

Desk,” International Herald Tribune, July 4, 2007. The author of this article notes that “Goldman spends
tens of millions of dollars on this stuff. They have more people working in their technology area than
people on the trading desk...The nature of the markets has changed dramatically.”

2On this point, see the theoretical analyses of Biais, Hombert and Weill (2007) and Foucault, Kadan
and Kandel (2010) and the empirical findngs of Hendershott, Jones and Menkveld (2010) and Hendershott
and Riordan (2010).

3For instance, consider a high frequency firm engaged in market-making in a call option. It can charge
a very competitive spread in this option if it can hedge its position at times in which the liquidity of the
underlying security is plentiful, thereby reducing the cost of its hedge.
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asset (be it macro news, corporate announcements, changes in prices of assets with

correlated payoffs, or changes in supply and demand expressed in the order book.)

Consequently, HFT orders are more informed than slower orders, as shown empiri-

cally by Hendershott and Riordan (2010), Brogaard (2010), Kirilenko et al (2010),

and Hendershott and Riordan (2011). As noted by Kirilenko et al (2010): “possi-

bly due to their speed advantage or superior ability to predict price changes, high

frequency traders are able to buy right as the prices are about to increase.” But

the flip–side of this superior ability is the adverse selection problem it creates for

other traders. This in line with concern expressed by James A. Brigagliano, Co-

Acting Director, Division of Trading and Markets, at the SEC: “The Commission

recognizes concerns have been raised that high frequency traders have the ability to

access markets more quickly through high-speed trading algorithms and co-location

arrangements. This ability may allow them to submit or cancel their orders faster

than long-term investors, which may result in less favorable trading conditions for

these investors. (Brigagliano, 2009, page 5)”

As a result, in our model, an increase in the level of HFT has two effects. On one hand,

it can increase the likelihood that assets are transferred to investors who value them the

most for non informational reasons (e.g., hedging needs or tax purposes). Such transfers

are mutually beneficial for buyers and sellers and therefore enhance aggregate welfare. On

the other hand, as high frequency traders also have access to advance information on asset

cash-flows, an increase in the level of HFT raises adverse selection costs.4 Hence, the

entry of a new high frequency trader exerts a negative externality on the other traders.

This adverse–selection negative externality can reduce market participation and gains from

trade. In particular it can crowd out slow investors from the market. This echoes the

concerns raised in the IOSCO consultation report on “Regulatory Issues Raised by the

Impact of Technological Changes on Market Integrity and Efficiency” (July 2011, page

10): “some market participants have also commented that the presence of high frequency

traders discourages them from participating as they feel at an inherent disadvantage to

these traders’ superior technology.”

Now, HFT is not a given. Its level results from the choice of market participants

whether to invest in hardware, code, personnel, connections and data–feed. This choice, in

4In Foucault, Röell, and Sandas (2003), liquidity suppliers monitor the market to alleviate adverse
selection. By facilitating such monitoring, algorithms can reduce adverse selection for these traders. But,
in electronic limit order markets, the distinction between liquidity suppliers and liquidity providers is
blurring. Indeed, high frequency traders use both limit and market orders (as documented by Brogaard,
2010). If these order placement strategies are based on superior information, they will generate adverse
selection costs for slow traders, irrespective of whether the latter use market or limit orders. Jovanovic
and Menkveld (2010) offer an insightful theoretical and empirical analysis of these issues.
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turn, reflects the above mentioned positive and negative consequences of HFT. Thus, we

study the equilibrium determination of the endogenous level of HFT. For a given level of

HFT, each institution trades more profitably when it is fast. However, financial institutions

with a larger size can trade a wider array of asset classes and can therefore better amortize

the fixed technological costs required for HFT.5 For this reason, there is a critical size

below which financial institutions choose to remain slow. Thus, in equilibrium there is a

non–level playing field: a few actively trading fast institutions coexist with smaller, slower

and less active institutions who bear the brunt of adverse selection costs.

While an increase in HFT reduces the trading profits of slow and fast traders, it may

affect them differently. We identify conditions under which the profits of slow institutions

decline faster with the level of HFT than the profits of fast institutions. Therefore, because

the decision to invest in the HFT technology depends on the comparison between the profits

of slow institutions and those of fast ones, the attractiveness of HFT can increase with its

prevalence. Consequently, for some parameter values, institutions’ investment decisions in

HFT reinforce each other, i.e., they are strategic complements. Thus, there is an element of

coordination in the institutions’ decisions to become an HFT. This can generate multiple

equilibria for the level of HFT. For instance, if it is expected that only a few institutions

will be fast, then the gain of becoming fast is relatively small. This leads most institutions

to remain slow, thus vindicating the initial expectation. Conversely, if it is expected that

many institutions will invest in HFT, the cost of remaining slow is high. Against this

backdrop, many institutions will choose to invest in HFT, again confirming the initial

expectations. Thus HFT can be contagious: financial institutions may suddenly decide to

invest massively in HFT simply because they expect others to be fast and therefore need

to be fast also, lest they should be side–lined, very much like the red queen in the epigraph

to this paper.6

Finally, we study whether the equilibrium level of HFT is socially optimal. We show

that this level is in general excessive relative to the social optimum. The reason is that,

in making their investment decisions in HFT, financial institutions do not internalize the

impact of their decision on other investors’ welfare. As this decision generates a negative

externality by raising adverse selection, the equilibrium level of HFT can be too high

relative to the level maximizing the aggregate welfare of slow and fast institutions. It

is worth stressing however that this result does not mean that HFT should be banned.

Indeed, by expanding institutions’ capacity to search for trading opportunities, HFT has

5The business lines relevant to measure size in our context include prop–trading and market–making,
but exclude such activities as commercial banking and corporate financing, which are unrelated to trading.

6This is in line with the analysis of financial expertise as an arms race by Glode, Green and Lowery
(2011).
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a positive effect on aggregate welfare. Thus, in many cases, the socially optimal level of

HFT is strictly positive, but smaller than that set by institutions’ equilibrium decisions.

Our analysis has several empirical implications about the consequences of HFT.

• First, it implies that the informational content of trades should increase with the

level of HFT.7

• Second, in our theoretical model an increase in HFT raises short–term volatility. In

a sense, this is the flip–side of the information content of HFT orders. By trading

on advance information, high–frequency traders move prices rapidly.

• Third, our analysis implies that an increase in the level of HFT can increase or

decrease trading volume (as found in Jovanovic and Menkveld (2010)). This reflects

the fact that HFT increases the likelihood that traders identify trading opportunities

(which tends to increase trading volume), as well as adverse selection costs (which

tend to reduce market participation.)

• Fourth, our analysis implies that the decision to invest in the HFT technology can

be contagious. Chaboud et al.(2010) track over time the number of trading desks

equipped for algorithmic trading on EBS (a foreign–exchange trading–platform) and

look at the effect of this change on volatility. Such data could also be useful to

study wether there is complementarity in financial institutions’ decisions to invest in

algorithmic trading. For instance, one could study whether there is evidence of an

acceleration in the number of new trading desks equipped for algorithmic trading as

this number increases.

The econometric challenge raised by these implications is that, as shown in the present

paper, the level of HFT as well as the informational impact of prices and the volume of

trade are jointly endogenous. Thus, it will be necessary to identify natural experiments or

instruments to identify the impact of HFT and disentangle it from that of other variations

in the environment.

The paper is organized as follows. The next section discusses the link between our

paper and related theoretical literature. Section 3 presents the model. In Section 4, we

analyze equilibrium trades and prices, holding the level of HFT constant. We endogenize

this level in Section 5 and show that the equilibrium level of HFT can be excessive in

Section 6. Section 7 discusses the policy implications of our analysis. Section 8 briefly

concludes. Proofs not given in the text are in the appendix.

7This is consistent with the empirical finding by Hendershott and Riordan (2010), Brogaard (2010),
Kirilenko et al (2010), and Hendershott and Riordan (2011) that high frequency traders’ orders are more
information than slow orders.
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2 Related literature

For tractability, we consider a simple one–period trading game. Yet, in practice, HFT

strategies are highly dynamic. Martinez and Rosu (2011) analyze a dynamic model in

which high–frequency traders are assumed to hold private information (as in the present

paper) and to prefer taking bets on changes in the asset value rather than its level. In this

context they show that HFT can generate a large fraction of volatility and trading activity.

Hoffman (2010) considers a dynamic order–driven market, where limit orders are exposed

to the risk of being picked off. High–frequency and human traders randomly access the

market. Human traders are picked off when the value of the asset has moved against them.

High–frequency traders are assumed to be picked off only if their successor also engages

in HFT. Thus, as in the present paper, when a trader engages in HFT it is profitable for

him, but it exerts a negative externality on the others.

While these papers take the fraction of high–frequency traders as given, we endogenize

it. Indeed, one the main theoretical contributions of the present paper is to shed new light

on equilibrium information acquisition in financial markets. As explained above, investing

in HFT technology is a way to obtain value–relevant information before slower traders.

Seminal analyses of the value of information in financial markets are offered by Grossman

and Stiglitz (1980), Admati and Pfleiderer (1984) and Admati and Pfleiderer (1986). In

particular, Admati and Pfleiderer (1984) observe that the value of information for one

trader depends on the amount and quality of information other agents possess. In these

models, the greater the number of traders that are privately informed, the more information

is impounded in the price, the less profitable it is to be informed. Thus, information

acquisition decisions are strategic substitutes. Because of such substitutability, there is a

unique equilibrium in the fraction of informed agents in Grossman and Stiglitz (1980), in

contrast with the multiplicity arising in our model.

In a dynamic context, strategic complementarities can arise between successive traders,

as shown by Dow and Gorton (1994) and Chamley (2007.) When traders have short–

horizons, they must unwind their holdings before all information has been made public.

Once they have established their position, based on their private information, they benefit

from the arrival of further informed agents. Indeed, the latter drive the price towards the

true value of the asset, at which the short–horizon traders can profitably unwind their

inventory. Our strategic complementarity result reflects different economic forces since

there is only one round of trade in our model.

Ganguli and Yang (2009) extend the Grossman and Stiglitz (1980) setup to the case

where traders can acquire information on the asset’s payoff and also on its (random) sup-

ply. They show that, the additional dimension of supply information can lead to strategic
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complementarities and equilibrium multiplicity. Again, our strategic complementarity re-

sult is different from theirs, since there is only one dimension of private information in our

model.

In our analysis, strategic complementarity in information acquisition is rooted in the

fact that all traders face potential gains from trade and their ability to realize these gains

varies according to whether they are informed or not. Complementarity arises when this

ability declines faster for uninformed traders than for informed ones, as the fraction of in-

formed agents increases.8 In addition, the bulk of the literature on information acquisition

in financial markets did not consider the welfare effects of this decision. In our paper all

trading decisions are made by rational agents considering gains from trade. In this context

we examine whether the equilibrium level of HFT is socially optimal.

3 Model

Consider a unit mass continuum of risk–neutral, profit maximizing financial institutions.

Until Section 5 we focus on trading in one asset only.

Values: The asset’s payoff at date τ = 2 is v, which can be equal to µ + ε or µ − ε
with equal probability. Institutions have no endowment in the asset, and can buy or sell

up to one share. They can trade at date τ = 1, just after learning their private value for

the asset. This private value adds to the payoff of the asset and can be equal to δ > 0

or −δ with equal probability. That is, each institution values the asset at v + δ or at

v − δ. Private values are i.i.d across institutions. They capture in a simple way that

other considerations than expected cash–flows affect the willingness of investors to hold

assets. For example, regulation can make it costly or attractive for certain investors, such

as insurance companies or pension funds or banks to hold certain asset classes.9 Differences

in tax regimes can also induce differences in private values. Differences in private values

generate trading without noise traders, hence welfare is well defined.

High Frequency Trading: At time τ = 0, institutions simultaneously decide whether

to invest in the infrastructures (computers, colocation, ...) and intellectual capital (skilled

traders, codes, ...) necessary to engage in HFT, at cost C.10 We refer to these players as

fast institutions and denote the fraction of institutions that are fast by α. The remaining

fraction is referred to as slow institutions. HFT technology helps fast institutions in two

ways.

8Subsection 4.1.4 in Chamley (2007) points to this effect, but does not model it.
9E.g., some institutional investors can only hold investment grades bonds, which they will value at a

premium relative to other investors (see, Chen, Lookman, Schürhoff, and Seppi, 2011).
10This decision is endogenized in Section 5.
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• First, fast institutions access and process information flows before slow institutions.

To capture this, we assume that, just before trading, at the same time as they learn

their private value, fast institutions observe whether v = µ + ε or µ − ε . This

assumption is consistent with empirical evidence. For example, Hendershott and

Riordan (2010) and Brogaard (2010) find that market orders placed by high frequency

traders have a greater permanent impact on prices than market orders placed by

humans. Similarly, Hendershott and Riordan (2011) find that HFT’s marketable

orders’ informational advantage is sufficient to overcome the bid–ask spread and

trading fees.

• Second, fast institutions are more likely to find trading opportunities. Regulations

such as the MiFID in Europe or RegNMS in the U.S. led to competition and, in

turn, fragmentation between trading platforms. This implies that quotes for the

same security are posted in various trading venues.11 Thus, investors have to search

for the best price among multiple trading venues and to compare trading opportu-

nities among several markets. HFT technologies improve search efficiency and help

investors locating attractive quotes before they have been hit or withdrawn.12 To

capture this, we assume that slow institutions are less likely to find a trading oppor-

tunity than fast institutions. Namely, slow institutions find a trading counterparty

with probability ρ < 1, while fast institutions find it with probability 1.

Trading: Our modeling of the trading process is intended to capture, in the simplest

possible way, the consequences of traders’ heterogeneity. When institutions find a trading

opportunity, they are matched with rational competitive liquidity suppliers. At this point

they decide whether to buy one share, sell one share or abstain from trading. The trans-

action price equals the expectation of the asset payoff, v, conditional on the institution’s

order, as in Glosten and Milgrom (1985). While it offers a tractable setup to model equi-

librium prices and gains from trade, this stylized market mechanism abstracts from the

richness of trading strategies available to high–frequency traders in limit order markets.13

Timing: Summing up the above discussion, timing in our model is as follows:

11For instance, in May 2011, the three most active competitors of the London Stock Exchange, namely
Chi-X, BATS Europe and Turquoise, reached a daily market share in FTSE 100 stocks of 27.5%, 7.4% and
5.2%, respectively while that of the London Stock Exchange was 51%. Source: http://www.ft.com/trading-
room.

12In line with this hypothesis, Garvey and Wu (2010) find that traders who get quicker access to the
NYSE because of their geographical proximity pay smaller average effective spreads.

13Biais, Hombert and Weill (2010) offer an analysis of such aspects, but their model does not incorporate
adverse selection (see also Parlour (1998), Foucault (1999) and Goettler et al (2005)).
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• At τ = 0, institutions decide whether to pay C, and become fast, or not.

• At τ = 1,

1. Each institution observes its private valuation δ or −δ, and, if it is fast, observes

the realization of v: µ+ ε or µ− ε.

2. Each institution finds a trading opportunity or not and, if it does, optimally

chooses whether to buy one unit, sell one unit or do nothing.

3. Liquidity providers execute order ω at price E(v|ω).

• At τ = 2, v is realized.

At τ = 1, there are six types of institutions: (i) fast institutions with good news and

high private valuations (which we denote by GH), (ii) fast institutions with good news

and low private valuations (GL), (iii) fast institutions with bad news and high private

valuations (BH), (iv) fast institutions with bad news and low private valuations (BL),

(v) slow institutions with high private valuation (H), and (vi) slow institutions with low

private valuation (L).

4 Price formation and trading with fast and slow in-

vestors

This section analyzes equilibrium transaction prices and trading volume, for a given level

of α. We focus on the case where the institution decides to buy the asset (or abstain

from trading). The corresponding price is denoted by a. The case of sales (at price b)

is symmetric, e.g., the markup at which institutions buy (a − µ) is equal to the discount

at which they sell (µ − b). Since there is a unit–mass continuum of institutions, trading

volume is the unconditional probability that an institution trades.

4.1 Equilibrium price formation and trading

As a benchmark, first consider the case in which all institutions are slow (α = 0). Their

orders do not convey any information and execute at µ. Institutions with a high private

valuation buy while those with a low valuation sell. Trading volume (denoted by Vol) is

equal to the fraction of institutions that find a counterparty, ρ.

When α > 0, the analysis is more complex. As will be clear below, equilibria can

involve pure or mixed strategies. To characterize these, denote by βFj the probability that
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a fast institution j ∈ {GH,GL,BH,BL} buys, and by βSj the probability that, conditional

on finding a counterparty, a slow institution j ∈ {H,L} buys.

Transaction prices cannot exceed the highest possible payoff for the security, (µ + ε),

and cannot be smaller than the smallest possible payoff for the security, (µ − ε). Hence,

fast institutions with good news on v and high private valuation always buy, i.e., βFGH = 1.

Symmetrically, fast institutions with bad news and low private valuation never buy, i.e.,

βFBL = 0. Applying Bayes law, one obtains the following lemma.

Lemma 1 Buy orders execute at price

a = E(v |buy) = µ+
α(1 + βFGL − βFBH)

2
(
(1− α)ρ(βSH + βSL) + α

2
(1 + βFGL + βFBH)

)ε. (1)

First suppose that δ > ε. In this case the reservation price of a fast institution with

good news but a low private valuation, µ+ε−δ is smaller than µ. Since a ≥ µ, institutions

with a low private valuation never buy, even if they are fast and receive a good signal, i.e.,

βFGL = βSL = 0. This yields our first proposition.

Proposition 1 When δ > ε there exists an equilibrium in which: (i) all institutions buy

if and only if they have a high private valuation, (ii) all trades take place at price µ, and

(iii) trading volume equals α + (1− α)ρ.

When δ > ε, news about v are small relative to private valuation shocks. Hence, prices

and allocations are identical to those that would prevail without private information on v.

Thus, prices are as without HFT, but trading volume is higher since some institutions are

more likely to find a counterparty. Therefore, if C = 0, HFT (α > 0) Pareto dominates

the benchmark case (α = 0). There are other equilibria however, in which algorithms have

negative consequences. To see why, consider fast institutions with a high private valuation

but bad news. If they expect the ask price to be higher than their reservation price, µ−ε+δ,
then they do not trade (i.e., βFBH = 0). This expectation can be self-fulfilling since the

ask price is inversely related to the likelihood of a trade by this type of institution (see

equation (1)). This is in line with the analyses of Glosten and Milgrom (1985) and Dow

(2005), which underscore the possibility of virtuous circles (traders anticipate the market

will be liquid, hence they submit lots of orders, hence the market is liquid) or vicious circles

(where illiquidity is a self–fulfilling prophecy). It is also in line with the analysis of Admati

and Pfleiderer (1988), who emphasize that investors will choose to trade where and when

they expect liquidity, thus providing liquidity themselves, and participating in a virtuous

cycle. In the supplementary appendix, however, we show that that the equilibrium in
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Proposition 1 Pareto dominates those with low liquidity. And, hereafter, when multiple

equilibria arise, we will focus on the Pareto dominating one, if it exists.

In the rest of the paper, we assume δ < ε. In this case adverse selection problems

are more severe because private information on v is large relative to gains from trade. To

simplify the analysis and reduce the number of possible cases, we hereafter assume

ε

2
< δ < ε. (2)

That is, the volatility of the fundamental value is higher than the dispersion in private

valuations (δ < ε), but the latter is still significant ( ε
2
< δ).14 Equation (2) implies

µ < µ+ ε− δ < µ+ δ < µ+ ε < µ+ ε+ δ. (3)

The first term from the left is the unconditional expectation of v. The second one is the

valuation of the security for a fast investor with good news but negative private value.

The third term is the valuation of the security for a slow investor with positive private

value. The fourth term is the valuation of the security for the liquidity suppliers given

good news on the fundamental. The fifth and last term is the valuation of the security

for a fast investor with good news and positive private value. The ranking of institutions’

possible valuations for the asset in equation (3) implies there are 5 candidate equilibria,

spelled out below. They correspond to increasingly high ask prices. In all candidate

equilibria, βFGH = 1 and βFBL = βSL = 0, as mentioned above. Furthermore, βFBH = 0 since

a > µ > µ− ε+ δ.

• P1: If µ ≤ a < µ+ε−δ, fast institutions with good news buy, whatever their private

value, while slow institutions buy if and only if their private value is high. Hence,

βFGL = 1 and βSH = 1.

• M1: If a = µ+ε−δ, fast institutions with good news and high private value buy. So

do slow institutions with high private value, i.e., βSH = 1. Fast institutions with good

news but low private value are indifferent between buying and not trading. They

play mixed strategies, buying with probability 0 ≤ βFGL ≤ 1.

• P2: If µ+ ε− δ < a < µ+ δ, fast institutions buy if they have good news and high

private value, but they do not trade if their private value and their information on v

conflict, i.e., βFGL = 0. Slow institutions with high private value buy, i.e., βSH = 1.

14The case where ε
2 ≥ δ is analyzed in the supplementary appendix to this paper. The qualitative results

are similar to those presented here.
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• M2: If a = µ + δ, fast institutions with good news and high private value buy,

but they do not trade if their private value and their information on v conflict, i.e.,

βFGL = 0. Slow institutions with high private value are indifferent between buying or

not trading. They play a mixed strategy, buying with probability βSH ∈ [0, 1].

• P3: If a = µ+ ε, fast institutions with good news and high private value buy. Other

types choose not to trade. Hence, βFGL = 0, and βSH = 0.

P3 generates “crowding out” since slow institutions are sidelined and only fast institu-

tions trade. This implies that only a small fraction of the potential gains from trade can

be reaped. Unfortunately, such equilibrium can be pervasive. Suppose liquidity suppli-

ers anticipate that only fast institutions with good news buy. Correspondingly, they set

a = µ+ ε. As a result, slow institutions choose not to trade. So do fast institutions whose

private value and signal on v conflict. Hence, the expectations of the liquidity suppliers

are self-fulfilling. Under (2), this holds for all parameter values. Hence we can state our

next proposition.

Proposition 2 There always exists a crowding out equilibrium (P3).

To spell out the conditions under which other equilibria than P3 exist, denote:

αP1 =
ρ(ε− δ)

ρ(ε− δ) + δ
, αP2 =

ρ(ε− δ)
ρ(ε− δ) + δ

2

, αP3 =
2ρδ

2ρδ + ε− δ
.

Relying on these notations, and noting that αP1 < αP2 < αP3, we state our next proposi-

tion.

Proposition 3 1. If 0 < α ≤ αP3 there exists an equilibrium of type M2, in which

βSH = α
2(1−α)ρδ

(ε− δ).

2. If α < αP1, there exists an equilibrium of type P1, in which a = µ+ α
α+(1−α)ρ

ε.

3. If αP1 ≤ α ≤ αP2, there exists an equilibrium of type M1, in which βFGL = 2(1−α)ρ
αδ

(ε−
δ)− 1.

4. If αP2 < α < αP3, there exists an equilibrium of type P2, in which a = µ+ α
α+2(1−α)ρ

ε.

Figure 1 illustrates these results, highlighting that when 0 < α < αP3 there are three

equilibria. However, as claimed in the next lemma, those with low trading volume (P3 and

M2) are Pareto dominated by the others (P1, M1, or P2).
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Lemma 2 For each value of α, there is a unique Pareto dominant equilibrium: P1 when

0 ≤ α < αP1, M1 when αP1 ≤ α ≤ αP2, P2 when αP2 < α < αP3, M2 when α = αP3, and

P3 when α > αP3.

Hereafter, for each value of α, we focus on the Pareto dominant equilibrium. Figure

2 shows the evolution of the price impact of buy orders, a − µ, as a function of α. In

our framework, this is a measure of the informativeness of trades. It weakly increases in α

because: (i) the fraction of investors with news increases and (ii) trading strategies become

increasingly dependent on news (e.g., slow institutions stop trading when α > αP3).15 Let

ψ(α) and φ(α) be the expected gain for slow and fast institutions respectively. Using

Proposition 3, we obtain16

ψ(α) =


(δ − α

α+(1−α)ρ
ε)ρ for 0 ≤ α < αP1,

(2δ − ε)ρ for αP1 ≤ α ≤ αP2,

(δ − α/2
α/2+(1−α)ρ

ε)ρ for αP2 < α ≤ αP3,

0 for α > αP3.

(4)

and

φ(α) =


(1−α)ρ

α+(1−α)ρ
ε for 0 ≤ α < αP1,

δ for αP1 ≤ α ≤ αP2,
1
2
(δ + (1−α)ρ

α/2+(1−α)ρ
ε) for αP2 < α ≤ αP3,

δ/2 for α > αP3.

(5)

which yields the following corollary.

Corollary 1 The expected gains from trades of each fast or slow institution (weakly) de-

crease in the fraction of fast institutions.

Figure 3 illustrates that the expected gains of slow and fast institutions declines with

α. This arises for two reasons. First, as trades become more informative, institutions buy

at a higher markup (or sell at more discounted prices). Second, as price impact increases,

15At first glance, the empirical findings in Hendershott et al.(2011) do not support this implication of
our model. They find empirically that the informational impact of trades has declined on the NYSE
after a change in market structure that made algorithmic trading easier on the NYSE. However, it is
not clear whether Hendershott et al.(2011)’s proxy for algortithmic trading captures the effect of high
frequency traders or other forms of algorithmic trading. Moreover the market structure change considered
in Hendershott et al.(2011) may also have helped slow traders to better find trading opportunities (an
increase in ρ). Our model predicts that for a fixed value of α, the informational impact of trades declines
in ρ.

16A derivation of φ(α) and ψ(α) is given in the proof of Lemma 2. The case where α = αP3
and where

the Pareto-dominant equilibrium is M2 is actually a limit case of αP2 < α < αP3.
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institutions trade less. For instance, fast institutions with low private valuations but good

news trade less or stop trading when α > αP1 because their impact on prices is too high.

Similarly, slow institutions pull out from the market when α > αP3. For these reasons, the

entry of a new fast institution exerts a negative externality on all other institutions, fast or

slow. Fast institutions however always get greater expected gains than slow ones because

(i) they trade more and (ii) they profit from their private information. The latter source of

gain is obtained at the expense of slow institutions and does not increase aggregate welfare

(the weighted average of slow and fast institutions’ gains). It may even decrease aggregate

welfare if it leads to a situation in which institutions stop trading in some states. This

reflects the above mentioned negative externality.

To build further intuition on this externality and the welfare effects of HFT, it is useful

to contrast two polar cases: the benchmark case where all institutions are slow (α = 0)

and that in which all institutions are fast (α = 1). In the former, institutions’ expected

gains are: ψ(0) = ρδ whereas in the latter their expected gains are φ(1) = δ/2. Thus, if

ρ > 1/2, even if C = 0, all institutions are better off with α = 0 than with α = 1. Yet,

under our assumption that ε > δ, α = 0 is not individually optimal, since φ(0) = ε >

ψ(0) = ρδ. This is akin to the Prisoner’s dilemma and reflects the negative externality

generated by HFT. We come back to this point in Section 6.

Turning back to the general case, our next corollary states the effect of α on trading

volume.

Corollary 2 Equilibrium trading volume is:

V ol(α) =


α + (1− α)ρ for 0 ≤ α < αP1,
(1− α)ρε/δ for αP1 ≤ α ≤ αP2,

α/2 + (1− α)ρ for αP2 < α ≤ αP3,
α/2 for α > αP3.

(6)

Thus, trading volume is non monotonic in the level of high frequency trading, α (see Figure

4).

HFT increases the probability of finding a counterparty, but because it generates ad-

verse selection it can reduce trading for institutions finding a counterparty. Hence, trading

volume is not monotonic in α, as illustrated in Figure 4. When α is very low, adverse

selection is limited and the main effect of an increase in α is to increase the probability

that an institution finds a counterparty. Furthermore, when α is very large, most institu-

tions participating in trading are fast, and an increase in α increases total trading volume.

Therefore, when there is either little HFT or a lot of it, trading volume is increasing in α.

14



In contrast, for intermediate values of α, trading volume can decrease in the level of HFT.

Indeed, an increase in this level leads fast institutions to trade less intensively because

their price impact is higher (specifically, fast institutions do not trade when their signal

and private valuations conflict while they would trade for sufficiently low levels of HFTs).17

There is a discrete drop in trading when α increases beyond αP3, due to the fact that at

this point slow institutions stop trading. More precisely, a small increase in α at α = αP3

implies that trading volume drops from αP3

2
+(1−αP3)ρ to αP3

2
. Thus, an increase in HFT

can be associated with a drop in trading volume in some cases. This is in line with the

finding by Jovanovic and Menkveld (2010) that for Dutch stocks the entry of a fast trader

on Chi-X led to a drop in volume.18

5 Scope of High Frequency Trading

In the previous section, the “scope of High Frequency Trading”, α, was exogenous. We

now study its equilibrium determination.

5.1 Heterogeneity in institutions’ size

While C is the same for all market participants, institutions are heterogeneous in size.

Large institutions can take advantage of their investment in HFT facilities on a greater

scale than smaller ones. To model heterogeneity in the scale of institutions, while preserving

the tractability of the model presented in the previous section, we proceed as follows.

We assume that investors have potential access to a continuum of markets of size N .

Each market is as in the previous section, and, for simplicity, the random variables are i.i.d

across markets. The scale of an institution is defined by the number of markets to which

it can participate. Namely, an institution of type t can participate in n(t) ≤ N markets.

n(t) increases in t, i.e., a higher value of t corresponds to a bigger institution. Thus, we

refer to t as the size of an institution.

Our key assumption is that institutions’ sizes are distributed over [t, t̄] with density

17More precisely, when ρ > 1/2, a small increase in the fraction of fast institutions increases the trading
volume when α < αP1 or α > αP3 and it decreases trading volume when αP1 ≤ α ≤ αP3. When ρ ≤ 1/2,
a small increase in the fraction of fast institutions increases the trading volume when α < αP1 or α > αP2

and it decreases trading volume when αP1 ≤ α ≤ αP2.
18Anecdotal evidence also suggests that, as High Frequency Trading expands, trading volume can in-

crease or decrease. For example, an article entitled “Electronic trading slowdown alert” published in the
Financial Times on September 24, 2010 (page 14) describes a sharp drop in trading volume in 2010 from a
high of about $7,000 billions in April 2010 to a low of $4,000 billions in August 2010. The article explicitly
points to changes in market structures as a cause for this reversal in trading volume.

15



f(t) such that:

f(t) =
N

n(t)
. (7)

As n(t) increases with an institution size, the mass of institutions of a given size, f(t),

decreases with size. This assumption captures the notion that there are a few big institu-

tions with access to many markets and many small institutions with access to only a few

markets. (7) is in the spirit of Zipf’s law, as the density of type t is inversely proportional

to its rank, n(t).19

While larger institutions are active in a greater number of markets, smaller institutions

are more numerous. Equation (7) implies that the two effects offset one another, so that

the mere fact that an institution is present in a market does not convey any information

about its size. More formally, (7) implies that the total number of markets in which the

population of type–t institutions are active is n(t)f(t) = N , i.e., it is constant across types

t. Hence, within each market, investors’ types have a uniform distribution. This enables

us to keep the framework presented in Section 2, and in particular the updating rules

underlying equation (1), while allowing for heterogeneity among institutions.

To illustrate and clarify the intuition, consider the following discrete example, depicted

in Figure 5: There are four types of institutions and N = 6 markets. There is one

institution of type t6, which has access to 6 markets (n(t6) = 6), two institutions of type

t3 which have access to three markets (n(t3) = 3), three institutions of type t2 who have

access to two markets (n(t2) = 2), and six institutions of type t1 who have access to only

one market (n(t1) = 1).20 Thus, in line with (7), the number of institutions of a given type

multiplied by the number of markets to which it has access is constant across types t. And

there is exactly one trader of each type in each market. Consequently, as mentioned above,

that one trader is active in a market does not convey any information about its size.

5.2 Investing in the HFT technology

For a given level of HFT, α, the expected profit of a type t institution if it chooses to pay

the investment cost C is:

φ(α)n(t)− C,

while if it does not invest in HFT, its expected profit is:

ψ(α)n(t),

19For an application of Zipf’s law in finance and economics see Gabaix and Landier (2003).
20Also, in keeping with Zipf’s law, the most frequent type of trader (t1) “occurs” twice as often as the

second most frequent type (t2), three times as often as the third most frequent type (t3) and six times
most often as the less frequent type (t6).
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where φ and ψ are defined in (5) and (4) respectively. Thus, an institution with size t is

better off investing in algorithmic trading if and only if:

φ(α)n(t)− C ≥ ψ(α)n(t).

Since, φ(α) > ψ(α) ∀α, the above inequality is equivalent to

n(t) ≥ C

φ(α)− ψ(α)
,

or, as n(.) is increasing,

t ≥ n−1(
C

φ(α)− ψ(α)
).

Thus, defining the function t∗(.) as

t∗(α) = n−1(
C

φ(α)− ψ(α)
), (8)

we obtain the following result.

Lemma 3 For any given α ∈ [0, 1], an institution is better off investing in High Frequency

Trading if and only if its size t is greater than t∗(α).

Investment in the HFT technology is more profitable for large institutions, since they

have more trading opportunities and therefore can better amortize the fixed cost C. But an

institution’s decision to invest in the HFT technology does not only depend on its own size.

It also depends on the overall level of investment in this technology, α. As this level depends

on other institutions’ choices, institutions’ technological choices are interdependent. The

logic is the following: An increase in α raises the price impact of trades. This reduces

both the profits earned by fast investors (φ(α)) and those earned by slow investors (ψ(α)).

But, as can be seen in Lemma 3 and equation (8), what matters for the decision to invest

in HFT or not, is the difference between the profits of fast investors and those of slow

investors, φ(α) − ψ(α). If φ(α) − ψ(α) is decreasing in α, then fast investors loose more

than slow ones when α goes up. Hence t∗(α) increases in α, and the decisions to invest in

HFT are strategic substitutes: the greater the fraction of institutions which have decided

to invest in HFT, the higher the size threshold above which institutions decide to invest

in HFT. In contrast, if φ(α) − ψ(α) is increasing in α, that is, slow investors are hurt

more than fast investors by an increase in α. Consequently, t∗(α) is decreasing in α, and

investments in HFT are strategic complements: the greater the fraction of institutions

which have decided to invest in HFT, the lower the size threshold above which institutions
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decide to invest in HFT. Otherwise stated, the institutions’ decisions to invest in HFT are

mutually reinforcing.

The next proposition states the condition under which the decisions to invest in HFT

are strategic substitutes or complements.

Proposition 4 When 0 ≤ α < αP1, φ(α) − ψ(α) is decreasing in α and the decisions to

invest in HFT are strategic substitutes. If αP1 ≤ α ≤ αP2 or α > αP3, then φ(α)−ψ(α) is

constant with α. When αP2 < α < αP3, φ(α)− ψ(α) is increasing in α and the decisions

to invest in HFT are strategic substitutes if ρ ≤ 1
2

and strategic complements otherwise.

To see why this result obtains, it is useful to compare φ(α) and ψ(α) in equilibria P1

and P2. When 0 ≤ α < αP1 and P1 prevails, then slow institutions buy if and only if

they have located a trading opportunity and their private valuation is high so that their

expected profit is:

ψ(α) = Pr(+δ)ρ(µ+ δ − a(α)), (9)

where Pr(+δ) is the likelihood that a slow institution has a high valuation and a(α) is the

price at which buy orders execute when the level of HFT is α. In this equilibrium, fast

traders buy if and only if they have observed good news about v and their expected profit

is:

φ(α) = Pr(+ε)(µ+ ε− a(α)),

where Pr(+ε) is the likelihood that the asset value is large. Thus when 0 ≤ α < αP1,

∂

∂α
(φ− ψ)(α) = −1

2
(1− ρ)

∂

∂α
a(α).

This is negative because slow investors trade less often than fast ones, and are therefore

less affected by the increase in price impact. Thus, in this case, the decisions to invest in

HFT are strategic substitutes.

When αP2 < α < αP3, and equilibrium P2 prevails, slow traders still buy if and only

if they have located a trading opportunity and their private valuation is high so that their

profit is as in (9). But fast traders buy only if they have good news and high private

valuations, so their profits are

φ(α) = Pr(+ε) Pr(+δ)(µ+ δ + ε− a(α)).

Thus when αP2 < α < αP3,

∂

∂α
(φ− ψ)(α) = −1

2
(
1

2
− ρ)

∂

∂α
a(α).
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This is positive if and only if ρ > 1
2
. In that case, as ρ is relatively high, in P2 slow

investors trade more often than fast ones, and are therefore more affected by the increase

in price impact. Hence the decisions to invest in HFT are strategic complements.

Building on this analysis, we now study the equilibrium determination of α, and show

that when the decisions to invest in HFT are strategic complement equilibrium multiplicity

can arise.

5.3 Corner equilibria

Denote by α∗ the equilibrium fraction of investors who decide to invest in HFT. If t∗(0) > t̄

there exists an equilibrium in which no institution invests in HFT, i.e., α∗ = 0. Indeed,

t∗(0) > t̄ implies that, even for the largest institution, incurring cost C is non profitable,

when it is expected that no one will invest in algorithmic trading. From equation (8), the

condition t∗(0) > t̄ is equivalent to:

t∗(0) = n−1(
C

φ(0)− ψ(0)
) > t̄. (10)

Substituting α = 0 in (4) and (5), ψ(0) = δρ and φ(0) = ε. Thus (10) becomes:

t∗(0) = n−1(
C

ε− δρ
) > t̄. (11)

As n(.) is increasing and ε > δρ (under Condition (2)), equation (11) leads to the next

proposition.

Proposition 5 Denote Cmax = n(t̄)(ε − δρ). If C > Cmax, there exists an equilibrium in

which there is no investment in High Frequency Trading, i.e., α∗ = 0.

Conversely, if t∗(1) ≤ t, even the smallest institution finds it optimal to invest in HFT

when it expects all the others to do so. Thus, following a similar logic as for Proposition

5, we obtain our next result.

Proposition 6 Denote Cmin = n(t)δ/2 . If C < Cmin, there exists an equilibrium in which

all institutions invest in High Frequency Trading, i.e., α∗ = 1.

It is not always the case that Cmax is above Cmin. Indeed,

Cmax > Cmin ⇐⇒ n(t̄)(ε− δρ) > n(t)δ/2. (12)
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This is equivalent to ρ < ρ∗ where

ρ∗ =
ε

δ
− 1

2

n(t)

n(t̄)
>

1

2
. (13)

Thus, building on Propositions 5 and 6, we have the following result.

Proposition 7 If ρ > ρ∗, then Cmax < Cmin and if C ∈ (Cmax, Cmin) there are at least two

possible levels of High Frequency Trading in equilibrium: α∗ = 1 and α∗ = 0.

The multiplicity of equilibria reflects the strategic complementarity discussed above.

Indeed, as stated in Proposition 4, when ρ > 1
2
, investments in HFT are strategic comple-

ments, and, when ρ > ρ∗ > 1
2
, this complementarity is very strong. Thus, the prevalence

of HFT can be a self–fulfilling prophecy: if institutions expect the others to be fast, then

they have an incentive to be fast too. In this sense, there is a form of herding or contagion

in institutions’ decisions to be fast.

5.4 Interior equilibria

So far we derived conditions for corner equilibria, we now consider interior equilibria. From

Lemma 3, when market participants expect that a fraction α of institutions will invest in

algorithmic trading, institutions with size greater than t∗(α) invest themselves. Since

institutions’ types within each market are uniformly distributed, in each market the mass

of institutions with t > t∗(α) is
t̄− t∗(α)

t̄− t
.

Therefore, if there exists a fixed–point α∗ ∈ (0, 1) solving

α∗ =
t̄− t∗(α∗)
t̄− t

, (14)

there exists an interior equilibrium. To encompass the case in which one or two corner

equilibria exist, we can more generally state that α∗ is an equilibrium fraction of HFT if

it solves:

α∗ = Min{Max{t− t
∗(α)

t− t
, 0}, 1}. (15)

Condition (15) states that, when institutions expect a fraction α∗ to invest in HFT, then

α∗ is precisely the fraction of institutions which do so. This is similar to the endogenous

determination of the fraction of informed agents in Grossman and Stiglitz (1980). Beyond

the technical differences (two point distributions instead of normality, different price setting

mechanism) the substantive economic differences between the two analyses include the

following:
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• In the present model there is no noise trading, and the level of non–informational

trading endogenously adjusts to the level of adverse selection. Thus trading volume

is endogenous and the social cost of adverse selection can be analyzed.

• To capture the salient features of high frequency trading we assume that when insti-

tutions incur cost C this investment both increases their real gains from trade (they

are more likely to find a counterparty) and gives them an informational edge (ρ = 1

is the special case where there are only informational effects.)

• We consider financial institutions that are heterogeneous in size, which enables us to

contrast the information acquisition decisions of small and large players.

The next proposition shows that in general the model has several possible equilibria

when ρ > 1/2 (the exact number depending on the value of C, the exogenous param-

eters and the specification of f(.)) whereas, if it exists, the equilibrium is unique when

ρ ≤ 1/2. The difference between the cases ρ > 1/2 and ρ ≤ 1
2

follows from the fact

that in the former case, investment decisions in HFT can be complements whereas they

are substitutes in the former case (Proposition 4). For the next proposition, we define

H(α,C) = Min{Max{ t−t
∗(α)

t−t , 0}, 1}.

Proposition 8 (Equilibrium high frequency trading)

1. If ρ ≤ 1/2, H(αP3, C) > αP3 and H(1, C) < αP3, there exists no equilibrium level

of high frequency trading. Otherwise, when ρ ≤ 1/2, the equilibrium level of high

frequency trading is unique and it decreases with C. It is equal to zero for C ≥ Cmax

and one for C ≤ Cmin.

2. If 1
2
< ρ ≤ ρ∗, Cmin < C < Cmax, H(αP1, C) > αP1 and H(1, C) < αP3 then

there exists no level of high frequency trading in equilibrium. Otherwise there can be

one, two or three possible levels of high frequency trading in equilibrium and these

equilibrium levels are all strictly positive. When C < Cmin, depending on parameter

values, there can be one, two or three levels of high frequency trading. In all cases,

this level is strictly positive. When C > Cmax, depending on parameter values, there

can be one, two or three equilibria, which include no investment in high frequency

trading.

3. If ρ > ρ∗ and Cmax < C < Cmin then there are three possible levels of high frequency

trading, α∗ = 0, α∗ = 1 and one interior level, α∗ ∈ (αP2, αP3]. When C < Cmax,

depending on parameter values, there can be one, two or three levels of high frequency

trading. In all cases, this level is strictly positive. When C > Cmin, depending
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on parameter values, there can be one, two or three equilibria, which include no

investment in high frequency trading.

When ρ < ρ∗ and Cmin < C < Cmax, there are cases in which equation 15 has no

solution, that is, there is no equilibrium level of high frequency trading. Indeed, when the

level of high frequency trading crosses the threshold αP3, slow institutions stop trading,

which generates a discontinuous drop in liquidity and fast institutions’ expected profits (see

Figure 3). As a result, the size of the institution which is just indifferent between being

fast or slow jumps upward at α = αP3, creating a discontinuous drop in the fraction of fast

institutions, i.e., H(α,C) at αP3. This discontinuity can preclude the existence of a solution

to (15). for instance, if ρ ≤ 1
2
, H(α,C) is weakly decreasing in α and, for α > αP3, it is

constant and therefore equal toH(1, C). Thus, ifH(αP3, C) > αP3 > H(1, C), the function

H(α,C) does not cut 45◦ line and there is no equilibrium fraction of fast institutions.

Inexistence is driven by the simultaneity of investment decisions. To see this, suppose

again that ρ ≤ 1
2

and that parameters are such that an equilibrium does not exist if

institutions make their investment decisions simultaneously, as assumed here. Now suppose

instead institutions reach decisions one after another, starting with the highest type (t̄)

and ending with the lowest one (t). When making that choice, each institution observes

previous decisions and rationally anticipates the decisions that will be taken afterwards. In

that case, the only subgame perfect equilibrium is such that all institutions with t ≥ t∗(αP3)

invest in HFT whereas smaller institutions don’t.21 Indeed, institutions larger than t∗(αP3)

are strictly better off investing in HFT when they anticipate that institutions smaller than

t∗(αP3) don’t invest since H(αP3, C) > αP3. Once all institutions larger than t∗(αP3)

have invested, an institution smaller than t∗(αP3) knows that if it invests, it will trigger a

discontinuous drop in the expected profit of fast institutions and will not be able to cover

its cost since t∗(α) > t∗(αP3) for α > αP3 (as αP3 > H(1, C)). Hence institutions smaller

than t∗(αP3) choose not to invest in HFT.

When ρ > 1/2, there can be up to three equilibria because for α ∈ (αP2, αP3], institu-

tions’ decisions are complements. Thus, for the same parameter values one can have an

equilibrium with little HFT, an equilibrium with a medium level of HFT and an equilib-

rium with lots of HFT. In the latter, HFT creates its “own space” by reducing the trading

gains of slow investors, so that paying the cost of being fast appears relatively more at-

tractive when many other institutions pay this cost. Depending on which of these two

equilibria one focuses, HFT can increase or decrease as C decreases.

21When the equilibrium exists and is unique, the unique subgame perfect equilibrium of this sequential
investment game is identical to that obtained when institutions make their investment decision simulta-
neously.
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As an example, suppose that the density of institutions’ size is given by

f(t) = 1 + b(t̄− t),with b =
2(1−∆t)

(∆t)2
and ∆t = t− t < 1. (16)

This specification, which is consistent with (7), guarantees that f(t) integrates to one

and implies that n(t̄) = N , i.e., the maximum number of markets to which the largest

institutions have access is N . Figure 6 shows plots function H(α,C) when ε = 1, δ = 0.9,

∆t = 0.9 and N = 10. In Panel A, we set ρ = 0.9 and consider two values of C: C = 2

and C = 2.5. In this case, for each value of C, there are three equilibria: α∗ = 0, α∗ = 1

and α∗ = 28.5% when C = 2 and α∗ = 0, α∗ = 1 and α∗ = 48.3% when C = 2.5. This

example shows that the effect of an increase in the cost of HFT, C, on the equilibrium

level of HFT is ambiguous when there are multiple equilibria. If α∗ = 28.5% when C = 2

then an increase in the cost of HFT from C = 2 to C = 2.5 can trigger an increase in the

level of HFT or a decrease, depending on which equilibrium obtains in the second case. In

Panel B, we set ρ = 0.6 and C = 4.145. In this case, there are only two equilibrium levels

of HFT: α∗ = 6.21% and α∗ = 86%.

6 High Frequency Trading and social welfare

We now study whether the fraction of institutions engaging in HFT in equilibrium is

socially optimal. Suppose all traders with types above t∗ choose to invest in the HFT

technology. As a result the fraction of fast investors in each market is

α =
t̄− t∗

t̄− t
. (17)

Utilitarian welfare is:

W (α) =

∫ t∗

t

ψ(α)n(t)f(t)dt+

∫ t̄

t∗
[φ(α)n(t)− C]f(t)dt.

Because we assume that n(t)f(t) = N , this simplifies to

W (α) = N [

∫ t∗

t

ψ(α)dt+

∫ t̄

t∗
φ(α)dt]− C(1− F (t∗)),

where F (·) is the cumulative probability distribution of financial institutions’ size. Hence:

W (α) = N [ψ(α)(t∗ − t) + φ(α)(t̄− t∗)]− C(1− F (t∗)). (18)

Since, by (17), t∗ = t̄− α(t̄− t), (18) rewrites as:

W (α) = N(t̄− t)[(1− α)ψ(α) + αφ(α)]− C(1− F (t̄− α(t̄− t))). (19)
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Maximizing W (α) and comparing the solution to the equilibrium fraction of fast investors,

α∗ given in Proposition 8, one obtains the following proposition.

Proposition 9 If there is an interior equilibrium fraction of high–frequency traders α∗ ∈
(0, 1), then, evaluated at α = α∗, utilitarian welfare is decreasing in the level of HFT, i.e.,
∂W
∂α
|α=α∗ ≤ 0, with a strict inequality for some parameter values.

Consider an interior equilibrium α∗ ∈ (0, 1).22 Starting from this point, a small reduc-

tion in the level of investment in HFT would increase utilitarian welfare. This discrepancy

between equilibrium and optimality arises because of the negative externality generated by

HFT, factored in the calculation of the social optimum, but ignored by institutions when

they make their investment decisions. While Proposition 9 offers a local result, the next

proposition offers a stronger global result.

Proposition 10 If ρ > 1/2, the level of investment in High Frequency Trading maximizing

utilitarian welfare is α = 0. If ρ ≤ 1/2, there exists a threshold C∗ such that

• If C ≥ Cmax, then the equilibrium level of investment in High Frequency Trading is

equal to its utilitarian–welfare maximizing counterpart, which is zero.

• If C∗ < C < Cmax, then the equilibrium level of investment in High Frequency Trading

is positive, it is strictly above its utilitarian–welfare maximizing counterpart.

• If C ≤ C∗, then if the equilibrium level of investment in High Frequency Trading is

positive, it is above or equal to its utilitarian–welfare maximizing counterpart.

The social benefit of HFT is that it improves investors’ ability to find counterparties.

When the probability that slow investors find a counterparty is relatively large (as ρ > 1/2),

these benefits are small. Hence the social benefits of HFT are lower than their social

cost, reflecting the negative externality due to adverse selection. Consequently, utilitarian

optimality rules out investment in HFT. And yet, in this case, as stated in Proposition

8, the equilibrium level of investment in HFT is bounded away from zero for C < Cmax.

Hence, for C < Cmax and ρ > 1/2, equilibrium HFT is always excessive.

22Proposition 9 does not cover the case α∗ = 1. When ρ < 1/2, α∗ = 1 if and only if C < Cmin. In
general, the socially optimal level of High Frequency Trading will be smaller than 1 unless C is sufficiently
small relative to Cmin.
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In contrast, when ρ ≤ 1/2, some investment in HFT can be socially optimal.23 Yet,

as stated in the proposition, unless C is low equilibrium will typically involve excessive

investment in HFT. Again, such excess–investment arises because of the adverse–selection

negative externality generated by HFT.

7 Policy implications

Short–term volatility: An issue that is often raised is whether HFT increases short–

term volatility, and whether this is harmful for slower traders. For example, on pages 36

and 37 of the SEC Concept Release on Market Structure (SEC, 2010) one can read:

“short–term price volatility may harm individual investors if they are per-

sistently unable to react to changing prices as fast as high frequency traders.”

Our theoretical analysis, takes a different perspective than the SEC, and thus sheds

new light on the relationship between HFT and short–term volatility. In our model, long

term volatility is the standard deviation of ṽ, which is equal to ε, and is unaffected by

HFT. Short term volatility can be measured as the standard deviation of prices, which

affected by HFT. More precisely,24

V ar(P̃ ) = V ar(P̃ − µ) = E[(P̃ − µ)2]

= Pr(P = a)(a− µ)2 + Pr(P = b)(b− µ)2

= (a− µ)2.

Hence, the volatility of prices is simply a−µ, the price impact of trades, which is increasing

in the fraction α of institutions that engage in HFT.

Thus, in our theoretical setup, HFT does increase short–term volatility. In a sense,

this is the flip–side of the information content of HFT orders. By trading on advance

information, high–frequency traders move prices rapidly. But it is not the increase short–

term price volatility in itself which directly hurts slower traders. Rather it is the adverse–

selection induced by HFT, of which short–term price volatility is just a consequence.

23For instance, suppose that f(t) is specified as in (16) and consider the following numerical example:
ε = 1, δ = 0.9, ∆t = 0.9, ρ = 0.3 and N = 10. In this case Cmin = 3.68. Thus, if C = 1.6, the
unique equilibrium level of HFT is α∗ = 1 (see Proposition 8) while the socially optimal level of HFT is
αmax = 0.562.

24This variance is computed conditional on a trade occurring, establishing transaction price P . This is
the theoretical counterpart of the statistical approach taken when one computes the variance of prices or
returns, based on the time–series of observed transactions prices.
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Level playing–field: Another issue that is often raised is whether some aspects

of HFT, such as co–location, prevent the market from being a level playing–field. For

example, on page 59 of the SEC Concept Release on Market Structure (SEC, 2010) one

can read:

“does co–location provide proprietary firms an unfair advantage because

they generally will have greater resources and sophistication to take advantage

of co–location services than other market participants, including long term

investors? ...

Is it fair for some market participants to pay to obtain better access to the

markets than is available to those not in a position to pay for or otherwise

obtain co–location services? ...

Are co–location fees so high that they effectively create a barrier for smaller

firms?”

In line with this concern is the observation that a small group of HFT players amount

for a very large fraction of equity trading volume (as mentioned above a report of the

TABB group states that 2% of the 20,000 proprietary trading firms in the U.S. account for

more than 70% of the trading volume.) In response to these concerns, advocates of HFT

and co–location have answered that it is only necessary to ensure that access to co–location

be fair, i.e., open to all at the same price. Once this condition is met, market forces should

ensure optimal outcomes.

Our analysis offers a theoretical counter–argument to these claims. Even if co–location

services can be purchased by all at the same price, market forces will not yield an optimal

outcome. This is because, as shown above, i) only the most active traders will incur the

fixed cost of investment in the HFT technology, and ii) when doing so they will impose

a negative externality on the other traders. Hence there is excessive investment in HFT,

i.e., the market outcome is not optimal.

Our analysis does not imply that HFT or colocation should be banned, however. As

usual when there are negative externalities, Pigovian taxes can improve efficiency. To

implement such taxes, one would need to observe HFT or proxies for it. This could be

obtained by requesting that HFT market participants should register as such, or by using

such variables as co–location or the ratio of cancelled to executed orders as proxies for

HFT.

Separating the wheat from the chaff: Within the context of our model, if there

was a market venue barring access to HFT, slow traders would optimally choose to trade in

that market. Thus they would avoid adverse–selection and optimality would be restored.
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And, if the presence of HFT did bring benefits to slow traders, then they would still have

the option to trade on the open–market, from which HFT is not excluded.

The search for protection from HFT predation may indeed be part of the motivation

for the routing of orders to internalizers, brokers and dark–pools. Yet, such protection has

become less available. As noted by Saraiya and Mittal (2009, page 1):

“Pools that once excluded high–frequency trading participants have now

opened their gates... high–frequency trading firms ... are often the cause of

short–term adverse selection in dark pools.”

Saraiya and Mittal (2009, page 19) also suggest that investors with a strong bargaining

position should request dark pool operators to protect them from HFT predation:

“Depending on his influence with a dark pool operator ... a trader may be

able to keep his flow from interacting with high–frequency traders.”

But it’s not clear that investors with limited bargaining power would be able to yield

such influence on dark pool operators. What’s more, it might be damaging for the market if

a large fraction of low–frequency investors migrated away from lit markets. A more efficient

solution could be to offer protection from HFT within lit markets. Thus, we suggest the

possibility that exchanges (such as NYSE–Euronext, the LSE or the Deutsche Börse) offer

slow traders the option to exclude execution against HFT orders. This would remain

optional and could thus offer a market–based response to the potential adverse–selection

problems created by HFT.

8 Conclusion

This paper offers an analysis of equilibrium investment in HFT technology and the ensuing

trading and welfare. It underscores that, while HFT can help market participants locate

trading opportunities, it also generates, adverse–selection related, negative externalities.

Our analysis yields the following policy implications:

• HFT orders impound information into prices faster. This may increase short–term

price volatility. Such volatility in itself is not dysfunctional. Yet, since it reflects

the advance information of high–frequency traders, it is the symptom of an adverse–

selection problem.

• To the extent that such adverse–selection generates negative externality for low–

frequency traders, investment in HFT is excessive. This suggests that Pigovian

taxes, such as, for example, taxes on co–location, could improve utilitarian welfare.
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• Our analysis also suggests exchanges should offer low–frequency traders the option to

exclude execution of their orders against HFT orders. This could provide an efficient

market–based response to the adverse–selection problem generated by HFT.

While the present paper focuses on adverse–selection costs, HFT could generate other

costs, related to operational and systemic risk, which might be quite significant, as sug-

gested by the recent report of the SEC and CFTC on the flash–crash of May 6, 2010 and

the analysis of Kirilenko et al (2010). This underscores the need to further study HFT, to

examine the conditions under which this innovation can improve, rather than impair, the

workings of markets.
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Appendix: Proofs

Proof of Lemma 1.

In the market structure we consider, we have

a = E(v|buy) = µ+ Pr(+ε|buy)(ε) + Pr(−ε|buy)(−ε) = µ+ (2 Pr(+ε|buy)− 1)ε

Now

Pr(+ε|buy) =
Pr(+ε & buy)

Pr(buy)
=

Pr(buy|+ ε) Pr(+ε)

Pr(buy|+ ε) Pr(+ε) + Pr(buy| − ε) Pr(−ε)
.

Because we assume Pr(+ε) = Pr(−ε), and with our notation for β, this yields

Pr(+ε|buy) =
α(1

2
+

βFGL
2

) + (1− α)(
βSH
2

+
βSL
2

)

[α(1
2

+
βFGL

2
) + (1− α)

βSH+βSL
2

] + [α
βFBH

2
+ (1− α)

βSH+βSL
2

]
.

That is

Pr(+ε|buy) =
α(1 + βFGL − βSH − βSL) + βSH + βSL

α(1 + βFGL + βFBH) + 2(1− α)(βSH + βSL)
.

Consequently:

a = µ+
α(1 + βFGL − βFBH)

α(1 + βFGL + βFBH) + 2(1− α)(βSH + βSL)
ε.

�

Preliminary remarks for the proofs of Propositions 1, 2 and 3: For the proofs

of this propositions, it useful first to write the expected profit Π
F

j of a fast institution of

type j ∈ {GH,GL,BH,BL} when it buys one share of the security. We obtain:

Π
F

GH = (µ+ ε+ δ − a),

Π
F

BH = (µ− ε+ δ − a),

Π
F

GL = (µ+ ε− δ − a),

Π
F

BL = (µ− ε− δ − a).

Similarly, the expected profits Π
S

j of a slow institution of type j ∈ {H,L} when it buys

one share of the security is

Π
S

L = (µ− δ − a)

Π
S

H = (µ+ δ − a)

We have already observed that fast institutions with good (bad) news and a high (low)

private valuations always buy (sell) in any equilibrium. In all the cases considered in
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Propositions 1, 2 and 3, µ ≤ a. In a symmetric way the price at which the asset can be

sold is less than µ. Hence, when ε > δ, it is immediate that when fast institutions expect

to buy the asset at the price a ≥ µ, they never sell if they have a good signal and a low

private valuation and they never buy if they have a bad signal and a high private valuation.

Moreover, slow institutions with high private valuations never find optimal to sell and slow

institutions with low private valuations never find optimal to buy. This implies that in all

cases, βSL = 0, βFGH = 1 and βFBL = 0. Hence we just need to check that fast institutions

with good news and low private valuations on the one hand and slow institutions with high

private valuations on the other hand find optimal to behave as described in Propositions

1, 2 and 3.�

Proof of Proposition 1. Provided that µ ≤ a ≤ µ+ε, βFBL = 0 and βFGH = 1 as explained

in the text. Now suppose that institutions expect to be able to buy at a = µ. In this case

and when δ > ε, using the expressions for the expected profit of a slow institution and a fast

institution, it is immediate that it is optimal for institutions with a high private valuation

to buy the asset whereas it cannot be optimal for institutions with a low private valuation

to buy it (since this results in a negative expected profit). This yields βFBH = βSH = 1

and βFGL = βSL = 0. If institutions behave in this way, using equation (1), we deduce that

a = µ.�

Proof of Proposition 2. Suppose that institutions expect buy orders to execute at

a = µ + ε. In this case, it is immediate that only fast institutions with good news and a

high private valuation find optimal to buy. Now suppose that institutions behave in this

way. This implies βSL = 0, βSH = βFGL =F
BH= 0. Then using equation (1), we deduce that

a = µ+ ε.�

Proof of Proposition 3.

Part 1: Suppose that institutions expect buy orders to execute at a = µ+ δ. In this case,

fast institutions with good news and a high private valuation find optimal to buy. Slow

institutions with a high private private valuation are just indifferent between buying or

not. Hence, playing a mixed strategy is optimal for these institutions.

Now suppose that institutions behave as described in the text for a M2 equilibrium,

with slow institutions with a high private valuation buying with the following probability

when they find a counterparty: βSH = α
2(1−α)ρδ

(ε− δ). Hence βSL = 0, βFGL = βFBH = 0, and

βSH = α
2(1−α)ρδ

(ε − δ). Then using equation (1), we deduce that a = µ + δ. We define as

αP3 the threshold such that βSH ≤ 1 for α ≤ αP3 .

Part 2: α < αP1. Suppose that that institutions expect buy orders to execute at a =

µ+ α
α+(1−α)ρ

ε. We define as αP1 the threshold such that a ≥ µ+ ε− δ for α ≥ αP1 . Thus,
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as α < αP1, a < µ + ε − δ : the expected profit of a fast institution with good news is

strictly positive if it buys whatever its private valuation and we have observed that such an

institution never finds optimal to sell (see preliminary remarks). Hence, a fast institution

with good news always buys the asset. The expected profit of a slow institution with a

high private valuation is positive and we have observed that such an institution never finds

optimal to sell the asset. Hence, a slow institution with a high private valuation optimally

buys the asset.

Now suppose that institutions behave as described in the proposition. This implies

βSL = 0, βSH = 1, βFGL = 1, and βFBH = 0. We then deduce using equation (1) that

a = µ+ α
α+(1−α)ρ

ε.

Part 3: αP1 ≤ α ≤ αP2. Suppose that institutions expect buy orders to execute at

a = µ + ε − δ. The expected profit of a slow institution with a high private valuation is

positive and we have observed that such an institution never finds optimal to sell. Thus,

it optimally submits a buy market order. A fast institution with good news and a low

private valuation is just indifferent between buying and doing nothing since if it trades,

it gets an expected profit equal to zero. Hence purchasing the security with probability

βFGL = 2(1−α)ρ
αδ

(ε− δ)− 1 is optimal.

Now suppose that institutions behave as described in the proposition. βSL = 0, βSH = 1,

βFGL = 2(1−α)ρ
αδ

(ε−δ)−1,and βFBH = 0. We then deduce using equation (1) that a = µ+ε−δ.
We define as αP2 the threshold such that βGLF ≥ 0 for α ≤ αP2 , and we check that indeed

βGLF ≤ 1 for α ≥ αP1 .

Part 4: αP2 < α < αP3. Suppose that institutions expect buy orders to execute at price

a = α
α+2(1−α)ρ

ε. As αP3 < α, a < µ + δ. The expected profit of a slow institution with

a high private valuation is positive and we have observed that such an institution never

finds optimal to sell. Thus, it optimally submits a buy market order. But as α > αP2,

a > µ + ε − δ. A fast institution with good news and a low private valuation makes a

negative expected profit if it buys the asset and we have observed that such an institution

never finds optimal to sell. Thus, a fast institution with a low private valuation and good

news does not trade.

Now suppose that institutions behave as described in the proposition. This implies

βSL = 0, βSH = 1, βFGL = βFBH = 0. We deduce using equation (1) that a = µ+ α
α+2(1−α)ρ

ε.�

Proof of Lemma 2. When α > αP3, the unique equilibrium is a type P3 equilibrium.

Now consider the case in which α ≤ αP3. First we write the expected profit of fast

institutions conditional on buying the asset. Let K(α) be this expected profit. A necessary

condition for fast institutions to buy the asset is that they receive good news. Hence given
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that βFGH = 1

K(α) =
1

2
(µ+ ε+ δ − a) +

1

2
(µ+ ε− δ − a)× βFGL.

The total gains from trade for fast institutions is just H(α) since the sell side is symmet-

ric and fast institutions receive good and bad news with equal probabilities. Using the

expression for the equilibrium value of a and βFGL in the various types of equilibria, we

obtain:

K(α) =



(1−α)ρ
α+(1−α)ρ

ε in a type P1 equilibrium,

δ in a type M1 equilibrium,
1
2
(δ + (1−α)ρ

α/2+(1−α)ρ
ε) in a type P2 equilibrium

δ/2 in a type P3 equilibrium
ε/2 in a type M2 equilibrium

As ε > δ, fast institutions are better off in a type M2 equilibrium than in a type P3

equilibrium. Besides, comparing expected profits yields:

• In the region where a type P1 equilibrium exists, that is, for 0 ≤ α < αP1 ,
(1−α)ρ

α+(1−α)ρ
ε >

ε/2.

• In the region where a type M1 equilibrium exists, that is, for αP1 ≤ α ≤ αP2 , δ > ε/2.

• In the region where a type P2 equilibrium exists, that is, for αP2 ≤ α < αP3 ,
1
2
(δ +

(1−α)ρ
α/2+(1−α)ρ

ε) > ε/2.

We deduce that fast institutions’ expected profit in types P1, M1 and P2 equilibria,

when they exist, is higher than in an equilibrium of type M2 (this than an equilibrium of

type P3). At α = αP3 , fast institutions’ expected profit in types M2 equilibrium is higher

than in an equilibrium of type P3.

Now let:

φ(α) =


(1−α)ρ

α+(1−α)ρ
ε for 0 ≤ α < αP1 ,

δ for αP1 ≤ α ≤ αP2 ,
1
2
(δ + (1−α)ρ

α/2+(1−α)ρ
ε) for αP2 < α ≤ αP3 ,

δ/2 for α > αP3 .

Observe that limη→0 φ(αP1 − η) = δ = φ(αP1), limη→0 φ(αP2 + η) = δ = φ(αP2),

and limη→0 φ(αP3 − η) = ε
2

= φ(αP3). Thus, φ(.) is continuous over [0, αP3]. It is then

immediate that φ(.) decreases over [0, αP3].

Now recall that a type P1 equilibrium is obtained and provides fast institutions with

higher profits than other equilibria iff 0 ≤ α < αP1 , similarly for a type M1 equilibrium

iff αP1 ≤ α ≤ αP2 , a type P2 equilibrium iff αP2 < α < αP3 , and a type M2 equilibrium

iff α = αP3 . Thus, in a type P1 equilibrium, K(α) = φ(α) for 0 ≤ α < αP1 ; in a type M1
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equilibrium, K(α) = φ(α) for αP1 ≤ α ≤ αP2 ; in a type P2 equilibrium, K(α) = φ(α) for

αP2 < α < αP3 ; and in a type M2 equilibrium, K(α) = φ(α) for α = αP3 .

Now we write the expected profit of slow institutions conditional on buying the asset.

Let S(α) be this expected profit. A necessary condition for slow institutions to buy the

asset is that they have a high private valuations. Hence

S(α) = (µ+ δ − a)× βSH .

The expected gains from trade for slow institutions is just ρS(α) since (i) a slow institution

finds a trading opportunity with probability ρ, (ii) has a high or a low private valuation

with equal probabilities, and (iii) the expected payoff of a slow institution with a high

valuation when it buys the asset is identical to the payoff of a slow institution with a low

private valuation when when it sells the asset. We focus on α < αP3, since for α ≥ αP3,

the unique equilibrium is a type P3 equilibrium. Using the expression for the equilibrium

value of a and βH in the various types of equilibria, we obtain:

ρS(α) =



(δ − α
α+(1−α)ρ

ε)ρ in a type P1 equilibrium

(2δ − ε)ρ in a type M1 equilibrium

(δ − α/2
α/2+(1−α)ρ

ε)ρ in a type P2 equilibrium

0 in a type P3 equilibrium
0 in a type M2 equilibrium

Clearly, the expected gains from trade of slow institutions is strictly higher in equilibria of

types P1, M1 or P2 than in equilibria of types P3 and M2.

We conclude that when α < αP3 , equilibria of types P1, M1 and P2 Pareto dominate

equilibria of types P3 and M2. Equilibria P1, M1 and P2 cannot be obtained simultane-

ously. When α = αP3 , equilibrium of type M2 Pareto dominates equilibrium of type P3 as

fast institutions get a higher profit, while for α > αP3 the type P3 equilibrium is unique.

Therefore, we deduce that there is a unique Pareto dominant equilibrium for each value of

α.

Last, using the expressions for K(α) and ρS(α) and the ranges of values for which the

various equilibria are obtained, we deduce that the expected profit of fast institutions in

the Pareto dominant equilibrium is φ(α) and the expected profit of the slow institutions

in the Pareto dominant equilibrium is

ψ(α) =


(δ − α

α+(1−α)ρ
ε)ρ for 0 ≤ α < αP1 ,

(2δ − ε)ρ for αP1 ≤ α ≤ αP2 ,

(δ − α/2
α/2+(1−α)ρ

ε)ρ for αP2 < α ≤ αP3,

0 for α > αP3 .

�
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Proof of Corollary 1. We have already proved in the proof of Lemma 2 that φ(α)

decreases in α and is discontinuous at α = αP3. Now consider the slow institutions.

Obviously, ψ(α) decreases in α over the following intervals α ∈ [0, αP1) and α ∈ (αP2, αP3).

Otherwise its is constant. Moreover calculations yield

ψ(αP1) = (2δ − ε) ρ.

lim
η→0

ψ(αP1 + η) = (2δ − ε) ρ

lim
η→0

ψ(αP3 − η) = 0

lim
η→0

ψ(αP3 + η) = 0

Hence ψ(·) is decreasing and continuous over [0, 1].�

Proof of Corollary 2. In a given equilibrium, the likelihood of trade by a given institution

is simply twice the likelihood that an institution buys the asset (since, by symmetry, buy

and sell orders are equally likelyb in equilibrium). Thus

V ol(α) = 2
(α

2
(1 + βFGL) + (1− α)ρβSH

)
.

We can then obtain the expressions for the trading volume in the Pareto dominant equi-

librium by replacing βFGL and βSH by their expression for each possible value of α. For

instance, if αP1 ≤ α ≤ αP2, βSH = 1 and βFGL = 2(1−α)ρ
αδ

(ε− δ)− 1. Hence:

V ol(α) =
(1− α)ρε

δ
.

�

Proof of Lemma 3. Immediate from the arguments in the text.�

Proof of Proposition 4. Using equations (4) and (5), we obtain that ψ′(α) = φ′(α) = 0

if α ∈ [αP1, αP2] or α > αP3. Thus, φ(α) − ψ(α) is constant when α ∈ [αP1, αP2] or α

> αP3. Moreover, for 0 ≤ α < αP1:

φ′(α) = − ρε

(α(1− ρ) + ρ)2
, (20)

ψ′(α) = − ρ2ε

(α(1− ρ) + ρ)2
. (21)

Thus, φ
′
(α) − ψ′(α) = φ′(α)(1 − ρ) < 0 for 0 ≤ α < αP1. Hence φ(α) − ψ(α) decreases

over this interval. Last, for α ∈ (αP2, αP3]:

φ′(α) = − ρε

(α(1− 2ρ) + 2ρ)2
, (22)

ψ′(α) = − 2ρ2ε

(α(1− 2ρ) + 2ρ)2
. (23)
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Thus, φ
′
(α)−ψ′(α) = φ′(α)(1−2ρ) for α ∈ (αP2, αP3]. Hence, over this interval, φ(α)−ψ(α)

decreases if ρ ≤ 1/2 and increases otherwise.�

Proof of Proposition 5. Immediate from the arguments in the text.�

Proof of Proposition 6. The condition t∗(1) < t is equivalent to C
φ(1)−ψ(0)

< n(t). The

result is then immediate using the fact that φ(1) = δ
2

and ψ(1) = 0.�

Proof of Proposition 7. Immediate from the arguments in the text.�

Proof of Proposition 8. As explained in the text, for a fixed C, the equilibrium levels

of high frequency trading solve:

H(α∗, C) = α∗,

where H(α,C) = Min{Max{ t−t
∗(α)

t−t , 0}, 1}. Thus, an equilibrium exists if this equation

has at least one solution and the number of equilibria is equal to the number of solutions

to this equations, i.e., the number of times H(·) crosses the 45◦ line. We first prove the

following lemma.

Lemma 4 The function H(·) has the following properties:

1. It weakly decreases in α for α ≤ αP1, is constant for α ∈ (αP1 , αP2 ], and is constant

for α > αP3. For α ∈ (αP2 , αP3 ], it increases in α if ρ > 1
2

and decreases in α if

ρ ≤ 1
2
.

2. It is continuous in α, except maybe at α = αP3 where it experiences a downward

jump iff limα→αP3
t∗(α) < t.

3. It weakly decreases in C and is continuous in C.

Proof: Remember that t∗(α) = n−1( C
φ(α)−ψ(α)

). Hence, as n−1(.) is decreasing, Propo-

sition 4 implies that t∗(α) increases in α for α ≤ αP1 , is constant for α ∈ (αP1 , αP2 ], and is

constant for α > αP3. Moreover it decreases in α for α ∈ (αP2 , αP3 ] if ρ > 1
2

and increases

in α for ρ ≤ 1
2
. Last, observe that φ(α)− ψ(α) is continuous, except at α = αP3 where it

experiences a jump downward (see Figure 3). Thus, t∗(α) is continuous, except at α = αP3

where it experiences a a positive jump. The lemma is then immediate using the definition

of H(α,C). Last, as as n−1(.) is decreasing, we immediately deduce that H(.) weakly

decreases in C and is continuous in C.

Using this result, we can now determine the number of equilibria for various configu-

rations of the investment required for HFT and parameter ρ.

Case 1: ρ > ρ∗. In this case Cmax < Cmin.
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Case 1.a. Suppose first that C < Cmax. This implies that t∗(0) < t and t∗(1) < t.

Thus, H(0, C) > 0 and H(1, C) = 1. Thus, α∗ = 1 is an equilibrium in this case. Moreover

if H(αP1) < αP1, we deduce from Lemma 4 that H(., C) cuts the 45◦ lines two times: one

for α < αP1 and one for α ∈ (αP2 , αP3 ]. Thus, there are 3 possible equilibria in this case.

If H(αP1, C) = αP1, we deduce from Lemma 4 that there are just two equilibria, α∗ = 1

and α∗ = αP1. Finally if H(αP1, C) > αP1, α∗ = 1 is the unique equilibrium. In all cases,

α∗ > 0.

Case 1.b. Now suppose that Cmax < C < Cmin. Then t∗(0) > t and t∗(1) < t. Thus,

we deduce H(0) = 0 and H(1, C) = 1. Hence, we deduce from Property 1 that H(α,C) = 0

for α ≤ αP2 and H(α,C) = 1 for α ≥ αP3. Thus, α∗ = 1 and α∗ = 0 are two possible

equilibria in this case. Moreover as H(α) increases in α for α ∈ (αP2 , αP3 ] and is such that

H(αP3, C) = 1 while H(αP2, C) = 0, we deduce that there is a third equilibrium for which

α∗ ∈ (αP2 , αP3 ].

Case 1.c. Finally, suppose that C > Cmin. Then t∗(0) > t and t∗(1) > t. Thus, we

deduce H(0, C) = 0 and H(1, C) < 1. Thus α∗ = 0 is always a possible equilibrium in

this case. In addition, if H(αP3, C) > αP3, proceeding as in the previous case, we deduce

that there is another equilibrium for which α∗ ∈ (αP2 , αP3 ]. Finally if H(1, C) > αP3 then

α∗ = H(1, C) is a third equilibrium. In contrast, if H(αP3, C) < αP3, α∗ = 0 is the unique

equilibrium.

Case 2: 1
2
< ρ < ρ∗. In this case Cmax > Cmin.

Case 2.a: C < Cmin. This case is identical to Case 1.a.

Case 2.b: Cmin < C < Cmax. Then t∗(0) < t and t∗(1) > t. Thus, H(0, C) > 0 and

H(1, C) < 1.

Case 2.b.i: Suppose first that H(1, C) > αP3. If H(αP1, C) < αP1, we deduce from

Lemma 4 that H(.) cuts the 45◦ lines two times: one for α < αP1 and one for α ∈ (αP2 , αP3 ].

Moreover, we have H(1, C) = H(H(1, C), C) since H(1, C) > αP3. Thus, there are 3

equilibrium levels of high frequency trading in this case, including α∗ = H(1, C). If

H(αP1, C) = αP1 then α∗ = H(1, C) and αP1 are the only two possible equilibria.If

H(αP1, C) > αP1, then α∗ = H(1, C) is the unique equilibrium.

Case 2.b.ii:Suppose now that H(1, C) > αP3. If H(αP1, C) < αP1, we deduce from

Lemma 4 that H(., C) cuts the 45◦ lines two times: one for α < αP1 and one for α ∈
(αP2 , αP3 ]. Moreover, we have H(1, C) > H(H(1), C) since H(1, C) < αP3. Thus, in this

case, there are only two possible equilibria, one for which α∗ ∈ (αP2 , αP3 ] and one for

which α∗ ∈ (0, αP1 ]. If H(αP1, C) = αP1 and H(1, C) < αP3 then α = αP1 is the unique

equilibrium and if H(αP1) > αP1, there is no equilibrium.

Case 2.c: C > Cmax. Then t∗(0) > t and t∗(1) > t. This case is identical to case 1.c.
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Case 3: ρ < 1
2
. In this case Cmax > Cmin and H(.) decreases in α. When C > Cmax,

then t∗(0) > t. Hence, H(0, C) = 0. As H(., C) declines in α, we deduce that α∗ = 0 is

the unique equilibrium. When C < Cmin then t∗(1) > t and H(1, C) = 1. As H(α,C) ≥ 1

for α < 1 then α∗ = 1 is the unique equilibrium. Now suppose that Cmin < C < Cmax.

In this case, t∗(0) < t and t∗(1) < t. Thus, H(0, C) > 0 but H(1, C) < 1. Now suppose

that H(αP3, C) < αP3. Then, the function H(., C) crosses the 45
◦

only once at α∗ <

αP3 since since H(., C) decreases and is continuous over [0, αP3). If H(αP3, C) > αP3

and H(1, C) < αP3 then the equilibrium does not exist since H(., C) is constant over

(αP3, 1]. This possibility arises because H(., C) is discontinuous at α = αP3. Finally, if If

H(αP3, C) > αP3 and H(1, C) > αP3. Then α∗ = H(1, C) is the unique equilibrium.

In this case, as H(α,C) decreases in C and α, it is immediate that α∗ decreases in C.�

Proof of Proposition 9. Using equation (19), we obtain

dW (α)

dα
= N(t̄− t)[(1− α)ψ′(α)− ψ(α) + αφ′(α) + φ(α)]− (t̄− t)Cf(t̄− α(t̄− t)).

Simplifying this yields

dW (α)

dα
= N × (t̄− t)× [(1− α)ψ′(α) + αφ′(α)− C

N
G(α,C)], (24)

where

G(α,C) = φ(α)− ψ(α)− C

N
f(t̄− α(t̄− t))

The equilibrium level of HFT, α∗, is such that G(α∗, C) = 0 when 0 < α∗ < 1. To see this,

observe that equation (8) implies that:

n(t∗(α)) =
C

φ(α)− ψ(α)

Moreover equation (7) implies N = f(t̄− α(t̄− t))n(t̄− α(t̄− t)). Thus,

G(α,C) =
C

n(t∗(α))
− C

n(t̄− α(t̄− t))

Now if α = α∗ and 0 < α∗ < 1, t̄−α∗(t̄− t) = t∗(α). Thus, G(α∗, C) = 0 when 0 < α∗ < 1.

If α∗ ∈ [αP1, αP2] or α∗ > αP3 then ψ′(α∗) = φ′(α∗) = 0. Hence in this case, using

equation (24), we have:

W ′(α∗) = 0,

and the equilibrium locally maximizes W (α). Otherwise, if 0 < α∗ < αP1 or α∗ ∈
(αP2, αP3], then ψ′(α) < 0 and φ′(α) < 0 (see equations (20), (21), (22), and (23)) Conse-

quently, as G(α∗) = 0, equation (24) implies that W ′(α∗) < 0 for α∗ ∈ (αP2 , αP3 ] or 0 < α∗

< αP1. In this case a reduction in α∗ raises social welfare.�
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Proof of Proposition 10

We show that if ρ > 1/2, W (α) (defined in equation (25) below reaches its maximum

in α = 0. Using Equation (19) and the expressions for φ(α) and ψ(α), we obtain that:

W (α) =


N∆t(1− α)δρ− Γ(α) if α ∈ [0, αP1)

N∆t((1− α)(2δ − ε)ρ+ αδ)− Γ(α) if α ∈ [αP1 , αP2 ]
N∆t((1− α)δρ+ α δ

2
)− Γ(α) if α ∈ (αP2 , αP3 ]

N∆t(α δ
2
)− Γ(α) if α ∈ (αP3 , 1]

(25)

with Γ(α) = C(1−F (t̄−α(t̄− t))) > 0. Observe that Γ(α) increases with α and Γ(0) = 0.

First, observe that W (α) decreases in α for α ∈ [0, αP1). Thus:

W (0) ≥ W (α) for α ∈ [0, αP1).

Second, since Γ(1) > Γ(0) = 0 and ρ ≥ 1
2
, it is immediate that:

W (0) ≥ W (α) for α ∈ (αP3 , 1].

Moreover:

W (0)−W (α) = N∆tαδ(ρ− 1

2
) + Γ(α) > 0 for α ∈ (αP2 , αP3 ].

Last

W (0)−W (α) = N∆t ((1− α)ερ− δ(ρ+ (1− 2ρ)α)) + Γ(α) for α ∈ [αP1 , αP2 ].

As ρ > 1
2

and ε > δ, the first term decreases in α and Γ(.) is always positive. Thus, a

sufficient condition for W (0)−W (α) to be positive for α ∈ [αP1 , αP2 ] is:

(1− αP2)ερ− δ(ρ+ (1− 2ρ)αP2) > 0

which is always true.

Now, if ρ ≤ 1
2
, given system of equations (25), we have:

W ′(α) =


W ′

0(α) = −N∆tδρ− Γ′(α) if α ∈ [0, αP1)
W ′

1(α) = N∆t(ερ+ (1− 2ρ)δ − Γ′(α) if α ∈ [αP1 , αP2 ]
W ′

2(α) = N∆t(1
2
− ρ)δ − Γ′(α) if α ∈ (αP2 , αP3 ]

W ′
3(α) = N∆t δ

2
− Γ′(α) if α ∈ (αP3 , 1]

with Γ′(α) = C∆tf(t̄− α(t̄− t)) = CN∆t
n(t̄−α(t̄−t)) > 0.

Besides, W (.) is continuous in αP1, in αP2, and not in αP3 but:

W2(αP3) < lim
α→αP3

W3(α)
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Part a On the one hand, for ρ ≤ 1
2
, we have:

∀C ≥ 0,W ′
0(α) < W ′

2(α) < W ′
3(α) < W ′

1(α)

Let C1 be such that G(αP1, C1) = 0.

C1 ≡ (ερ+ (1− 2ρ)δ)n(t̄− αP1∆t)

By definition of C1, we have W ′
1(α) < 0 for C > C1. Therefore, if C > C1 then W (.) is

strictly decreasing in α, and αOPT = 0.

On the other hand, we know that α∗ = 0 if C ≥ Cmax, but that α∗ ∈ (0, αP1) if

C ∈ (C1, Cmax). Consequently, if C ∈ (C1, Cmax) then α∗ > αOPT .

Part b Let us define:

C2 s.t G(αP2, C2) = 0

C s.t G(αP3, C) = 0

C s.t lim
α→αP3

G(α,C) = 0

For ρ ≤ 1
2
, notice that:

Cmin < C < C < C2 < C1 < Cmax

Below we compare the equilibrium level to the optimal level of investment in HFT.

However, it is non possible to determine αOPT without assumptions on the distribution of

institutions’ size, n(.). Consequently, instead of focusing on the optimal level αOPT , we

consider the set of possible optima, namely AOPT , such that αOPT ∈ AOPT , and we prove

that ∀α ∈ AOPT , α ≤ α∗.

• If C2 ≤ C ≤ C1 then W (.) is decreasing on [0, αP1), increasing up to α1 defined

below then decreasing on [αP1, αP2], then is monotonically decreasing on (αP2, 1].

Consequently, AOPT = {0, α1}, where:

α1 =
t̄− n−1( C

ερ+(1−2ρ)δ
)

∆t

Besides, by definition of C1 and C2, if C2 ≤ C ≤ C1 then αP1 ≤ α∗ ≤ αP2. Notice

first that α∗ ≥ αP1 > 0. Second, we have shown (proof of Proposition 9) that if α∗ ∈
[αP1, αP2] then W ′(α∗) = 0. Therefore, α∗ = α1. Consequently, ∀α ∈ AOPT , α ≤ α∗.
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• If C ≤ C < C2 then W (.) is decreasing on [0, αP1), increasing on [αP1, αP3] either up

to αP2, or up to α2 defined below then decreasing, then is monotonically decreasing

on (αP3, 1]. Consequently, AOPT = {0, αP2, α2}, where:

α2 =
t̄− n−1( C

( 1
2
−ρ)δ

)

∆t

Besides, by definition of C2 and C, if C ≤ C < C2 then αP2 < α∗ ≤ αP3. Notice first

that α∗ > αP2 and α∗ > 0. Second, if α∗ ∈ (αP2, αP3], then given φ(α) and ψ(α)

(given in the proof of Proposition 9), the equilibrium is such that:

α∗ =

t̄− n−1

(
C

( 1
2
−ρ)δ+ ρε

(1−2ρ)α∗+ρ

)
∆t

It is straightforward to see that α2 < α∗ since n(.) is decreasing in t. Consequently,

∀α ∈ AOPT , α ≤ α∗.

• If C ≤ C < C then there is no equilibrium.

• If Cmin < C < C then W (.) is decreasing on [0, αP1), increasing either up to α2

defined above, or up to αP3 then decreasing on [αP1, αP3], then is increasing up to α3

defined below then decreasing on (αP3, 1]. Consequently, AOPT = {0, α2, αP3, α3}.

α3 =
t̄− n−1(Cδ

2

)

∆t

Besides, by definition of C and Cmin, if Cmin < C < C then αP3 < α∗ < 1. Notice

first that α∗ > αP3 and α∗ > 0. Second, the existence condition for α2 ensures

that α2 < αP3 so α∗ > α2. Third, we have shown (proof of Proposition 9) that if

α∗ > αP3,then W ′(α∗) = 0. Therefore, α∗ = α3. Consequently, ∀α ∈ AOPT , α ≤ α∗.

• If Cmin ≥ C then α∗ = 1, so in any case ∀α ∈ AOPT , α ≤ 1.

�
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Figure 1 

Possible equilibria for different values of α 

 

 

 

 

 

 

 

 

Figure 2 

Informational impact of trades (a-µµµµ) in the Pareto dominant equilibrium  
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Figure 3: Expected profits of slow and fast institutions  

 

 

 

 

 

 

  

 

 

 

 

Figure 4 

Volume of trade in the Pareto dominant equilibrium 
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Figure 5 

Illustration of our assumptions on the distribution of traders in a discrete case 

We assume that investors have potential access to a N=6 markets. The scale of an institution is defined by the number of markets to which 

it can participate. Namely, an institution of type t can participate to n(t) ≤ N markets (or has n(t) trading opportunities) and n(t) increases in 

t, i.e., a higher value of t corresponds to a bigger institution. Thus, we will refer to t as the size of an institution. Institutions’ sizes are 

distributed over [t--, t
--
] with a frequency f(t) such that: f(t) = N/n(t). 

Thus, the total number of trading opportunities faced by all type t institutions is exactly equal to the number of markets. We assume that 

these opportunities are uniformly distributed across markets so that in each market there is an equal proportion of each type of trader. In 

other words, within each market, investors’ types have a uniform distribution. 
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)=6/6=1. 
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Figure 6 
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