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Abstract

We introduce a new method for the estimation of discount functions, yield curves and forward
curves from government issued coupon bonds. Our approach is nonparametric and does not
assume a particular functional form for the discount function although we do show how to impose
various restrictions in the estimation. Our method is based on kernel smoothing and is defined
as the minimum of some localized population moment condition. The solution to the sample
problem is not explicit and our estimation procedure is iterative, rather like the backfitting
method of estimating additive nonparametric models. We establish the asymptotic normality
of our methods using the asymptotic representation of our estimator as an infinite series with
declining coefficients. The rate of convergence is standard for one dimensional nonparametric
regression. We investigate the finite sample performance of our method, in comparison with

other well-established methods, in a small simulation experiment.

Some key words: Coupon bonds; Kernel Estimation; Hilbert Space; Nonparametric regression; Term
structure estimation; Yield curve; Zero coupon.

Journal of Economic literature classification: C14, G12

O1LSE and Yale University. Address for correspondence: Department of Economics, London School of Eco-
nomics, Houghton Street, London WC2A 2AE, United Kingdom. E-mail address: lintono@lse.ac.uk. Web page:
http://econ.lse.ac.uk/staff/olinton/. Research was supported by the National Science Foundation, the Danish
Social Science Research Council, and the North Atlantic Treaty Organization. Thanks go to Frank Diebold and two
referees, to Olaf Bunke, Greg Connor, Stewart Hodges, Andrew Jeffrey, Thong Nguyen, and Peter Phillips for helpful

comments.



1 Introduction

The term structure of interest rates is a central concept in monetary and financial economics. Prices
of fixed income securities like bonds, swaps, and mortgage backed bonds (MBB’s) are functions of the
yield curve, and pricing of derivatives also depends on the yield curve. The spread between long and
short term interest rates carries information about the level of future interest rates, see for example
Campbell and Shiller (1991) and Engsted and Tanggaard (1995). The slope of the yield curve has
frequently been used in empirical studies as a predictor of future inflation and national incomes, see
Frankel and Lown (1994) and Estrella and Mishkin (1998) for example. Therefore, estimation of
yield curves has had a long tradition among financial researchers and practitioners. See Campbell,
Lo, and Mackinlay (1997) for further discussion.

A fundamental problem is that the yield to maturity on coupon bonds are not directly comparable
between bonds with different maturities or coupons. Thus, there is a need for a standardized way of
measuring the term structure of interest rates. One such standard is the yield curve of zero-coupon
bonds issued by sovereign lenders.

The construction of this yield curve poses several problems for applied research. First, many
governments do not issue longer term (i.e., greater than 1-2 years) zero-coupon bonds. Hence the
yield curve must be inferred from other instruments. A simple solution can be derived from the law
of one price by assuming the absence of arbitrage. Arbitrage in the bond market will cause the price
p of any bond (coupon or zero) with payments b(7;) at time 7, to be equal to the discounted value of
the future cash flow 7 = 7 | b(7;)d(7;), where the discount factor is d(r;) at time 7;. The future
income stream, b(7y),...,b(7,), is assumed known and non-random. The second problem is that,
in practice, small pricing errors perhaps due to non-synchronous trading, taxation, illiquidity, and
bid-ask spreads necessitates adding an error term to 7. The error term should be sufficiently small to

ensure that they do not represent (gross) violations of the law of one price (no-arbitrage condition).*
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The statistical problem we address is to estimate the function d(-) from a sample of coupon paying
bonds. Note that, based on a continuous time approximation, we have d(t) = exp(—ty(t)), where
y(t) is the yield curve, and y(t) = exp(— fot f(s)ds), where f(t) is the forward curve, see Anderson,
Breedon, Deacon, Derry, and Murphy (1996, pp 12-13). Both of these relationships are invertible, so
that knowing d is equivalent to knowing y or f.

Following the seminal work of McCulloch (1971), the standard approach to estimation here is to
assume a parametric specification for d(t) or y(t) or f(¢) and to use linear or nonlinear least squares to
estimate the unknown parameters. For example, McCulloch (1971, 1975), Shea (1984) use regression
splines for d(t), Chambers, Carleton, and Waldman (1984) uses polynomials for y(t), Vasicek and
Fong (1982) uses exponential splines for d(t), while Nelson and Siegel (1988) proposes powers of
exponentials for y(t). An approach based on linear programming methods has been suggested by
Schaefer (1981). If the specification is considered parametric, i.e., to be a complete and correct
representation of the functions of interest, i.e., the mean, then standard asymptotic theory can be
used to derive the limiting distribution of the estimator and to justify confidence intervals obtained
from this. However, a number of these authors are arguing against adherence to any fixed model and
really are viewing the problem as being nonparametric. Some recent studies by Fisher, Nychka, and
Zervos (1995) and Tanggaard (1997) have taken this line. When we view the estimation problem
as nonparametric, there is little existing theory regarding the distribution of the estimators; for
example, no-one has established the asymptotic distribution of the spline estimates discussed above.

We adopt a nonparametric approach in which we do not a priori specify the functional form of the
discount function or forward curve. We shall suppose that the discount function d(-) is a continuous
and indeed smooth function of time to maturity. Although this is not guaranteed by purely arbitrage
arguments, it does seem plausible. We propose a new class of methods for estimating d(-) based
on perhaps the most central of all smoothing methods, the kernel method. The flexibility of our
method is very important in practical applications because parametric estimates are often flawed
by specification biases. It is not immediately obvious how to estimate the function d(-) by kernel
methods, since this function affects the mean function indirectly through a convolution with the
payment function. We first interpret the function d as the solution of some population mean squared

error criterion. We then smooth the sample version of this to obtain an empirical criterion function,

notes and T-bills with identical payment streams can be priced differently, although when taking account of the various

transactions costs, there were not, on average, arbitrage opportunities.



which is regular enough to provide consistent estimates. Several versions of the localization are
possible including local constant and local linear [which has some well known advantages in other
contexts, see Tsybakov (1986) and Fan (1992)]. It turns out that our methods do not generally
have explicit solutions, i.e., our estimator is defined as the solution of a linear integral equation. In
practice, our solutions are defined through the method of successive approximations.? We also give
a ‘backfitting’ interpretation to our procedure, as in Opsomer and Ruppert (1997) and Mammen,
Linton and Nielsen (1999). We establish the convergence of our iterative scheme and establish
the asymptotic properties of the estimator. We obtain a representation of our estimator as an
infinite series with declining coefficients, which thereby provides its asymptotic distribution — it is
asymptotically normal at the standard rate of convergence for one-dimensional kernel regression.
The asymptotic distribution of the implied estimators of y(¢) and f(t) can be easily obtained by
the delta method. Our regularity conditions are ‘high level’, but we show how they are satisfied
in some leading cases. We also exploit the relationships with the yield curve and forward curve to
suggest alternative methods, thus we write d(-) = 1(0(-)) for some known function 1, making 6 now
the object of estimation. The purpose of this is to give some added flexibility and/or to enforce
consistency with theory. For example, by taking d(t) = exp(—ty(t)) we can directly impose the
restrictions that d(0) = 1 and d(t) > 0 for all ¢, at the same time we are directly estimating the yield
curve itself.

We point out that the estimation problem is similar to that considered in Engle, Granger, Rice,
and Weiss (1986) in which electricity demand over a billing period is modelled as a sum of individual
daily demands each determined by temperature on the day concerned. They used splines, which
effectively parameterizes the function d and makes the estimation problem standard nonlinear re-
gression. They did not provide any asymptotic theory to justify their approach, at least not for the
pointwise distribution of the nonparametric part. A similar estimation problem occurs quite widely
with grouped data. For example, Chesher (1997) estimates the individual nutrient intake-age rela-
tionship from household level intake and individual characteristics like age. Again, he used splines
but did not provide any justification for the validity of his method. A related problem arises in
nonparametric simultaneous equations [Newey and Powell (1988)] and in estimating solutions of in-
tegral equations [Wahba (1979), Nychka, Wahba, Goldfarb, and Pugh (1984), and O’Sullivan (1986)].

See also Hausman and Newey (1995) for a related problem involving differential equations. With

2See Rust (1997) for discussion of some alternative methods.



minor modifications we can provide new estimators in all these situations and find their asymptotic
distribution.

In section 2 we discuss [for reasons of completeness] smoothing of pure discount bonds. In section
3 we present our new methods for smoothing the yield curve. In subsection 3.1 we present the local
constant version of our estimate, i.e., the object of interest is the discount function, while subsection
3.2 gives the local linear extension. In subsection 3.3 we describe the local constant exponential
version and its one-step approximation. We present the asymptotic properties of our methods in
section 4. In section 5 we provide a small simulation study that compares our method with some
alternatives. Proofs are given in the appendix. In the sequel all integrals are Lebesgue integrals, and

run from —oo to 400 unless otherwise stated.

2 Smoothing of Pure Discount Bond Yields

In an efficient bond market, $1 delivered at some future date 7 has one, and only one, price, d.
The function d(7), giving the discount factor as a function of 7, is called the discount function. In
practice small pricing errors due to rounding-off, tax effects, and inefficiencies distort the pricing
mechanism. Therefore, the discount function must be derived from a sample of noisy zero coupon
bond prices, py, ..., p, with times to maturity 7; < ... < 7,,. We shall not require that the times be
equally spaced. The statistical model is based on random perturbations of the present value pricing

relationship, i.e.,

bi = bz(Tz>d(Tz) + Ei, L= 17 ] (1)

where ¢; are an error sequence with Elg;] = 0, ¢ = 1,...,n, where b;(7;) is the payment, i.e., the
principal, returned to the bond investor when bond i matures at date 7;. Note that b;(7;) and 7;
are known and fixed constants, and that the statistical problem is one of estimating the discount
function d(7). The discount function can be defined as any function d(-) which minimizes the

population criterion function
n

lim 1 El{p; — b;(7:)0(7:)}’]

n—oo M
i=1

with respect to 6(-). The limiting criterion function exists and has a unique minimum provided that

{7;} is dense in a compact interval and that the first two moments of p; are finite. This suggests the



following localized sample based criterion function

Qu(8) = S Wilr) {pi — bilr)6)”, o

where {W;} is a set of smoothing weights, depending only on the 7’s, which are small for 7; distant

from 7, i.e., the criterion is weighting preferentially bonds with similar maturities to 7. Let d(7)

minimize @, (6) with respect to 6. The solution to the first order condition is given by

S i War)bi(i)ps
d(t) = ST WinB () (3)

In kernel smoothing, the weight sequence is derived from a kernel function. A kernel function is

a symmetric, continuously bounded real function, K, that integrates to one; we shall also suppose
throughout that K > 0. The weights are then determined by the formula W;(7) = K,(1 — 7;),
where Kj(u) = K(u/h)/h, where K(-) is a density function and h = h(n) is a sequence of positive
numbers. The bandwidth parameter, h, determines the degree of smoothing. Small values make
the estimated curve E(T) very approximate and irregular, while large values of h make the estimate
close to the sample average. This estimation method was suggested in Tanggaard (1992). The
asymptotic distribution of C/i\(T) is covered by Theorems 1 and 2 of Gozalo and Linton (1998) when
g; are independent.

There are two aspects of the estimation procedure. First, there is the smoothing aspect. Smooth-
ing is necessary because prices are noisy. The noise can originate from minor market imperfections,
non-synchronous trading, price-discreteness (tick size), temporary imbalances in demand and supply.
Furthermore, tax-effects (clienteles), and illiquidity premia may also affect the present value relation-
ship. The need for smoothing can be reduced by a careful sample selection procedure. However, in
general it is not possible to completely avoid the need for smoothing. The second aspect is interpo-
lation. Interpolation is necessary because not all time points of interest have some payment coming
due. In the US market, for example, T-notes are issued with original time to maturity 1,2,3,5, 10,
and 20 years. Thus, if we want to avoid using off-the-run issues in estimation, there is a clear need
for interpolation of the yield curve between 5 and 10 years. And in general we do not want to plot
the yields as a scatter plot, which further necessitates a smooth graphical picture of the yield curve.

However, a proper interpolation of yields between maturities where no payments are due, requires

a formal model of the dynamics of the term structure of interest rates. This is not the objective



of this paper, and we therefore take a purely statistical approach and smooth the yield curve using

kernel smoothing.

3 Smoothing of Coupon Bonds

As discussed in section 2, most bond markets do not posses zero coupon bonds for useful spans of
maturities. The discount function must therefore be extracted from quotations of coupon bond data
instead. Coupon bonds generate several payments at future dates, and in an efficient bond market,
the present value of these future payments should, apart from a small error, be equal to the trading
price, p;. As in section 2, the sample consists of n bonds with quoted prices p1, ..., p,. Furthermore,
b;(7;;) # 0 denotes the payment returned to the owner of bond ¢ at date 7;;, where 7,1 < ... < Tim,
are the possible payment dates. For United States treasury issued notes and bonds, the payments
are usually equal semiannual coupons ¢;, 7 = 1,...,m;_1, while in the final period one receives the
redemption value R; [usually this is normalized to be 100] plus the final coupon ¢;.> The model
considered in section 2 corresponds to the special case where m; = 1. In general, m; will be larger
than one and will vary from bond to bond. Frequently, however, some maturities will coincide, so
that the total number, say m, of distinct times {7;;} will lie somewhere between max;<;<, m; and
2 i1 M-

The statistical model we adopt is

pi :Zbi(Tij)d(Tij)+5i; i=1,...,n, (4)
j=1
where ¢; is a random sequence satisfying E[e;] = 0, ¢ = 1,...,n. To our knowledge, all previous

treatments of this problem have assumed that ¢; are independent random variables, possibly het-
erogenous in distribution. We shall allow for correlation across i [i.e., across bonds]; this is because it
is expected that there is a common source for some of the pricing errors which make the error terms.
However, we will need to assume that the correlation is weak enough for a central limit theorem to

be applied.

3Sometimes there are short or long first and last coupons, meaning that these coupons may be larger or smaller
than the other coupons. Other bond markets have similar payment schemes with annual and semi-annual payments

being the norm.



The statistical problem is to extract estimates of the unknown discount function d(-) based on

4 We can write this relation as

a sample of observed bond prices, coupon payments, and times.
p = Bd + ¢, where p, e are the n x 1 vectors of prices and errors respectively, while B is an n x m
matrix containing the payments, and d is the m x 1 vector of discount factors. This would suggest
estimating the unknown vector d by regression techniques such as least squares. However, the number
m can be very large [m >> n] in a typical sample of bonds, because there is little overlap in payment
times. Furthermore, for each bond the payments are usually the same until the last period, i.e.,
b;(7ij) = b;(1i) for all j, k with 1 < j,k < m,;. This tends to make the matrix B rank deficient and
preclude the direct use of ordinary least squares to estimate d. The problem is really that the finite
sample least squares criterion function does not impose smoothness on the function d [this problem
arises generically in standard nonparametric regression and, indeed, in the no-coupon bond case].
We can interpret the function d(-) in (4) as being any minimizer [with respect to 6(-)] of the limiting

criterion function

n

g{.lo% ' El{p; — ibi(ﬂ‘j)@(ﬂ‘j)}2]a ()

which exists provided the sequence {7;;} becomes dense in a compact set. We choose an alternative
finite sample criterion which imposes smoothness throughout its approach to infinity. One simple
method is to group the data into bins which have similar 7;;, and then to do least squares on this
grouped data. This amounts to a histogram approach to estimation. We shall use a kernel version

of this procedure, which improves on the poor bias of this method.

3.1 Local Constant Smoothing

Our trick is to generalize an interpretation of a smoother in terms of a global projection. We first
outline this interpretation in the pure discount bond setting and then see how to apply it to the

general case (4). Consider the following global criterion function

Qu(0) =3 [ Kalt = 7 (s = bi(r)ote)) e, ©)

“Note that the Engle, Granger, Rice and Weiss (1986) model allowed the regression function to be observed only

through a linear functional but also included some parametric effects.



and let 5() minimize this criterion with respect to functions 6(-) € ©, where © is the class of all
functions for which the resulting integral is well defined.> The solution to this calculus of variations
problem can be obtained from the necessary condition for 5() to be a minimizer, see Weinstock (1951,
pp 20-22), which is that the Gateaux derivative of @,, with respect to § must be zero in all directions.
To find the solution, however, it is convenient just to look in the direction of point masses. Let ¢,
be the Dirac [generalized] function at 7, that is, [6,(u)f(u)du = f(7) for any function f which is
continuous at 7, see Lighthill (1958). Now replace 6(-) by 5() +€6.(+), where € is a real number, and

differentiate the criterion function with respect to € at ¢ = 0. We obtain

/ K (t — 7)bi(7:)6, (£){pi — bi(1:)0(t) }dt = 0.

Now use the fact that [ 6, (¢)Kp(t—7:)dt = Kp(r —7;) and [ 8-(£)0(t) Kp(t—73)dt = 0(7) K (T — X;)
to see that 9(7’) =S pibi(T) KT — 7)) > or b (i) K (7 — 7'1) which is in fact the kernel version
of (3). In this case, we already arrived at 9(7’) as the minimizer of a local criterion function and the
global criterion function (6) just provides a nice interpretation.’ In our case, however, it is essential
to start with the global criterion function.

We define the following localized sample criterion function

Qn(0) = %Z /{Pi - Z bi(7:5)0(s45) Y ﬂ{Kh(Sil —Ta) dsa}, (7)
i—1 j=1 =1

where for each {s;}, the local criterion function

Z{pi - Z bi(Ti5)0(si5) } H Kn(si — Ta) (8)
-1 =1

is preferentially weighting bonds whose maturities 7;1, ..., T;n, are close to the sequence {s;}. Al-
though the local criterion (8) does impose the requirement that 6(-) is constant in a small neigh-
bourhood of s;;, unfortunately it does not provide sensible estimates because we have to allow the

evaluation points of 8 to vary with both ¢ and j, so that there is not enough restriction imposed at a

SFor positive K, the integral is well-defined (possibly equal to infinity) for all measurable functions 6(-).
6See Nielsen and Linton (1998) for some discussion of a similar example where global criterion functions provide

interpretation.



single point. The averaging in (7) imposes the necessary structure.” We define our estimator d, 1710
as any minimizer of @, () with respect to () € ©. We discuss existence of a solution below, but
we next show how to solve the minimization in (7) using the method introduced above. Replace 6(-)
n (7) by JLC(-) + €64(+), where € is a real number, and differentiate the right hand side of (7) with

respect to € at € = 0. This gives the following first order condition

0 = ZZ/{}% 1[j # r]bi(ri;)dro(si;) —bi(Tir)jLC(S)}

bi(Tir) H 1[5 # r] {Kn(sij — 74j) dsij} Kn(s — 7a)

n m; m;

- sz % Tz'r Kh S - Tz'r Zzzbz 7—1] Tz'r Kh(s - T’LT) /C/Z\LC(t)Kh<t - Tij) dt

i=1 r=1 i=1 r=1 j=
;e
—ZZb Tir) 2K (s — 74r)dro(s), 9)
=1 r=1

which has used the fact that f Ky(sij — 7i5)ds;; = 1 to eliminate many of the integrals. The first

order condition can be rewritten as

dc(s) =d(s) + / Hio(s, t)dpe(t)dt, (10)

where

— D i1 Dpey Pibi(Tir) K (s — Tir)

M) = T S b7 P — 7ar) 1)

Dict Dopy Dot Ui(Tir )bi(Ti5 ) K (s — 730 ) K (t — 745)
Doy Dorey bi(Tir )2 K (s — Tir) ’

The expression (10) is a linear integral equation involving the intercept d and the linear operator

Hic(s,t) = — (12)

H Lo, both of which quantities are fairly simple functions of the data [ratios of sample averages of

kernel weighted data]. This structure is important in deriving the asymptotic properties of d, LC-

"Note also that by a change of variable

mg m;

Z/{pl Zb Tij)0(7ij + huij) Y H{K wi)duq }

which is asymptotically equivalent to (5).
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Relation (10) suggests the following iteration for the calculation of ELC:

At (s) =d(s) + / Hpo(s,)de(t)dt, a=0,1,..., (13)

where the starting value d O]C is equal to d, say. The integration in (13) can be computed numerically.
We discuss this further in the application section below, see also Mammen, Linton, and Nielsen
(1999) for a related computation.

The quantity d(s) can be thought of as the minimizer with respect to the scalar  of the criterion
function

> Z{pl — bi(Tir)OY K (5 — Tir). (14)

i=1 r=1

This function corresponds to a sum of zero-coupon bond criteria. Therefore, an alternative interpre-
tation of our algorithm is that at each stage we are applying the smoother defined by (14) with p;
replaced by the partial residuals

Zb Tij /7“] () Kn(t — 74;)dt.
J#T

This gives our algorithm a backfitting interpretation [see Hastie and Tibshirani (1990)] in which the
basic smoothing operation is given by (14).

Our iterative method (13) is called successive approximation. For a detailed discussion we re-
fer the reader to Kantorovich and Akilov (1964) and Luenberger (1969). A necessary condition
that the iterative calculation C/i\LC converges can be based on a check of the operator norm of
the operator Hycg(-) = Hypo(-,t)g(t) dt. For a norm || - || on the functions g the correspond-
ing norm of the operator Hyc is defined as |[Hic| = SUD)||g=1 I Hrcgll. If ||g|| is defined as the
supremum norm ||gle = sup, |g(z)|, we get that |Hic|le = Supsf]ﬁLC(s,tﬂdt. If ||g|| is de-
fined as the Ly norm ||g||2 = [ |g(x)[? dx, then |[HLc|]2 can be calculated by an iterative algorithm
[HLol2 = limy_oo | Hrcer||2, where the function ey is defined as e, = Hycer_1/||Hrcer_1]|2, and the
initial condition e is chosen appropriately. Compare with the calculation of the absolutely maximum
eigenvalue of a finite order matrix ( in this case, ey should not be orthogonal to the eigenvector cor-
responding to the maximal eigenvalue). Under reasonable conditions, the function d has a bounded
sup norm and a bounded L; norm. Furthermore, it follows from a Neumann expansion that the

linear transformation I — 7—A£LC has the inverse (I — ﬁLc) = oH 1o, provided ||ﬁLc|| < 1 with

11



respect to either the sup norm or to the Ly norm (see e.g., Riesz and Sz.-Nagy (1990), p. 152). When
[Hiellz < 1 or |[Hiellso < 1, it therefore follows that the iterative calculation of dzc converges and
that the solution is -
d=(I-He)'d=) Hid
k=0
The resulting estimate C/i\LC can be interpreted as least squares projection of the data in an

appropriate function space. For this purpose we consider the following norm on n tuples of functions

g= (gla s 7gn)7 namely

ol =3 [ {Z bmj)gi(sij)} T (Kl — i) s} (15)

If one puts 7,(+) as equal to p;[> 7", bi(7i;)] " [which is a constant function], then the function tuple
(C/i\Lc, e C/i\Lc) is the projection of n = (ny,...,n,) onto the linear subspace {g = (g1,...,9n) : 1 =
. = gn} with respect to the norm || -||. This relation helps to understand that drc is always well
defined (up to differences that have norm 0 with respect to || - ||). In particular, for the unique
existence of dyc it is not required that ||Hyc|| < 1.5
Finally, it can be expected that e; will be heteroskedastic, since bonds with a long time to
maturity can be affected by many sources of errors. Consequently, we expect the variance of ¢;,
denoted o2, will vary proportionately with 7;,,. In this case a weighted criterion function taking
account of the different accuracies of each bond would perhaps lead to more efficient estimates, at
least in terms of variance. Suppose that o; = v f(Tiy,) for some known function f and unknown
parameter 7. Then, the weighted criterion function is given by (5) where we redefine p; — p;/ f(Tim,)

and b;(7;;) = b;i(7i;)/ f(Tim,;). Therefore, estimation proceeds as above with the transformed data.

$Furthermore, our approach allows us to incorporate restrictions on the shape of d. For example, a natural constraint
is to suppose that d is monotone. A natural estimate based on kernel smoothing is defined as minimizer of (7) where
the minimization runs now over the constrained class of functlons [e.g., over all monotone | functions d.] Let us denote
the resulting estimate by dw,m,» Then it is easy to see that dw,m, is the projection of d onto the constrained class

with respect to the norm || - || defined in (15). This means that

m; m;

doomstr = argmmZ/{Zb Tij)| s” s” H {Kn(sij — Tij) dsij},

where the minimization runs over the constrained class of functions d. See Mammen (1991) and Matzkin (1994) for

discussion of nonparametric estimation of monotone and other constrained functions.
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3.2 Local linear smoothing

Kernel smoothing leads to estimates with design dependent bias and with poor accuracy at bound-
aries, see for example Tsybakov (1986) and Fan (1992). An approach that is known to overcome
these disadvantages in regression is local linear smoothing. For the definition of the local linear
smooth in our model we just replace 6(-) in (7) by a linear function. Thus, consider the following

tuple (ELL, ELLJ) that minimizes

Z/ {pi — ibi(Tij)[d(Sij) + (735 — Sij)dl(sij)]} H {Kn(sij — 745) dsiz} (16)

with respect to (d,d;). The local linear smooth is now defined as dy,. Again, the minimizer of (16)
can be easily calculated by an iterative algorithm. To solve the minimization in (16) we proceed as
in the last section and put d = EL 1 +ebs and d; = d, i1+ €65 and differentiate with respect to € and

set ¢ = 0. We end up with the following system of equations:

dre(s) \ dpi(t)
(hgm(s) ) _( ) [ Bty ( ALLJ@) " )

( (s) ) = M(5)"! ( ST S pibi(rie) Kl = i) )
di(s) 2t ey Pibi(Tir) K (s — Tip) 5=

where

and

1 - < 7—17" Kh(S_Tir> bi(Tzr>2MKh( Tzr) > (18)
i=1 r=1 TZ

r ZTW SKh( Tir) bi(Tzr)meh(s - Tzr)

Furthermore Hy(s,t) is equal to M(s) ' Hy (s, t), where Hy.(s,t) is a two times two matrix with

Hll S t = ——Zzzb Tzr 7-1] Kh( TiT‘>Kh(t_7-ij)7

elements:

13



ﬁgl(s,t> = —% ZZ Zbl(’f”‘)bz(T”)?K}l(S — Tir>Kh(t — Tij),

— 1 . Tir — STij —1
HQQ(S,t) = _EZZZbZ(TW)bZ(TU> A ]h Kh(S—TiT)Kh(t—Tij>.

Equation (17) suggests the following iteration for the calculation of d, .7, and d, LLA:

a+1 = a
( h%§+1}<8) ) _ ( _d(S) ) 1 /ﬁLL(s,t) < 2&%@) ) dt. (19)
LL,1 (s) di(s) hdLL,l(t>
As starting value (cﬁLO]L, hc/ZTLO]L,l) one can choose (d,d;) for example. In this case the operator Hyp is
a 2 by 2 matrix, but otherwise is very similar to H LC-
A sufficient condition that the iterative calculation ELL and c?l L converges can be based on a
check of the operator norm of the operator Hyg(-) = i Hpp(-,t)g(t) dt. It is easy to see that the
iterative calculation of ELL and c/i\l L1, converges if ||ﬁLL|| < 1, where ||ﬁLL|| is defined with respect

to the sup norm or to the Ly norm. In this case the limit is given as

C/Z\LL > ~k E
~ = H _ .
()~ E7(3)

3.3 Local Constant Exponential Smoothing

We now consider an important modification to the basic smoothing methods we outlined above.
Instead of fitting locally linear functions we fit now locally exponential functions. This approach is
motivated by the fact that we can expect the discount function to be closer to log linear than linear,
as was suggested by Vasicek and Fong (1982). We shall fit the function d(s) = exp(—y(s)s), in other
words we will estimate the yield curve directly. This specification imposes the natural restriction
that d(-) be positive and that d(0) = 1. Alternative specifications here include d(s) = 1 + sg(s) for
some function g, which was used in Jordan (1994), and d(s) = exp(—su(s)/(1 + s)), which imposes
the additional restriction that d(s) — 0 as s — oo and was used in Tanggaard (1997). See Gozalo
and Linton (1998) for discussion of local nonlinear smoothing methods in nonparametric regression.

We define now the function y;cg(-) which minimizes
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Z/{pz Zb 7ij) exp{—7i;y(si;) } H{Kh Sij — Tij) dsij}, (20)

with respect to y(+). To solve the minimization we put y = yrcg +€ds, where € is a real number and 05
is the Dirac [generalized| function in s. Differentiation of the right hand side with respect to e gives
(at € = 0) a single first order condition that defines the estimator. Unfortunately, the resulting first
order condition is a nonlinear integral equation. Although there are a number of solution methods
applicable here, our knowledge about the convergence of such methods is incomplete.

We suggest the following approach based on the local nonlinear least squares criterion function

in 0 -
Z Z {pik - bi(Tik) eXp<_7—ik9)}2 Kh(S — Tik)7 (21)
i=1 k=1

where

Pik = Pi — Z bi(7i;) exp{ =7y (Ti;) }-
j=1
ik

Now let /y\[f]c 5 be given and define Z/\[Lag E] (t) as the minimizer of (21) with p; replaced by

Pl = i Zb / exp{ 7 ()} (t — 74y,
J;ﬁk

Taking some initial value /y\[LO}C 5, we proceed a = 1,2, . ... The nonlinear optimization problem (21) can

itself be approximately solved using Newton’s method or Fisher scoring. We expect that reasonable
implementations of this method will converge, but have no proof of this.

Note that a consistent initial value is provided by ¥;(t) = —log c/l\](t) /t, where j = LC, LL.
We can also define ‘one-step’ estimators, denoted /y\[LHCE(t), which use 7;(t) as initial condition and
terminate at a = 1. In this case, of course, there is no issue about the convergence of the algorithm.
Furthermore, the statistical properties of this estimator can be derived, as in Linton (1997,1998).
Finite step methods have been studied in a general context by Robinson (1988), but the basic idea
goes back to Fisher (1925).

A local linear exponential version of this algorithm can be defined similarly, and the same com-

ments regarding asymptotic properties and one-step estimators apply.’

9For the local linear exponential, we minimize
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3.4 Estimating Related Quantities
3.4.1 Estimating The Yield and Forward curve from the Discount Function

Estimates of the yield curve and forward curve can be obtained from estimates of d by the relations
y(t) = —log(d(t))/t and f(t) = —d'(t)/d(t). Specifically, y;(t) = —log( ;(t))/t, where j = LC,LL.
In the forward curve case we can take the following estimator based on the local constant,

[ K} (t — s)dpe(s)ds

[ Ku(t — s)dpe(s)ds

ch(t) = -

or we can make use of the local linear estimation to define

dppa(t)

fro(t) = Tall)

3.4.2 Estimating the discount function and forward curve from the Yield Curve

The discount function can of course be estimated by c@(t) = exp(— tg/jj( )), where j = LCE, LLE.
The implicit forward curve, f(t), is defined through the relation y(t fo u)du/t. Note that
differentiation of the last equality gives f(t) = y(t) + ty/(t). Given an estlmate, y, of the yield curve

y and an estimate ¥’ of its derivative, we can estimate f by

An estimate y' of y' is given by the estimate yrrp 1 (see the last section) or can be calculated by

smoothed differentiation of an estimate § of y, Y ox(t) = [ K} (t — 8)yrcp(s)ds.

<
3

Ms

>~ (ot = b expl-raldo + (ra = )} Ko = 7

?ﬁ
Il

1

where
a]: b( . ) ~la] D1 — OV (E— 7::)dt
Pix = DPi — Z TU exp{ sz[yo7LLE()+y1 LLE( )(TU )}} n( TZJ) .

J#k
Further details are available from the authors upon request.
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4 Asymptotic Properties

Our main results are for the local constant and local linear discount function smoothing methods.
We also provide a result for the one-step local exponential methods. As we show, the asymptotic
variances of these procedures described above are identical [when estimating the same quantity],

although the bias is certainly influenced by the chosen functional form.!°

4.1 Local Constant Smoothing

Our asymptotics will be stated for the case of nonrandom 7;; and m,. This includes some random
designs as special cases, when one works in the conditional distribution. We also give an example
of a random design that satisfies our conditions. We concentrate on the case of a nonrandom design
because our model (4) arises in other applications that would require another stochastic model for
the design. Specifically, the influential paper of Engle et al. (1986)) falls in our framework. Note also,
that our framework permits variable bandwidth methods with minimal changes in the assumptions.
Therefore, we prefer to state the theorem under conditions that may work also in these applications.
Our conditions are ‘high level” — they are defined mostly in terms of the operator H rc rather than

the primitives of the data.

4.1.1 Assumptions for Theorem 1

(A1) Model (4) holds. Furthermore, we suppose that the error variables ¢4, ..., &, are of the form
€i = ) ;- Qiju;, where uy, ..., u, are independent mean zero variables with £ |, |2t < C*F
for n large enough with constants C,6 > 0. The values 7;;, Q;; and m; are deterministic and
they, the distributions of u; and the functions b;(-) may depend on the sample size n. For two

constants 7;,7, > 0 the bandwidth A fulfils n=1"1 < h < n~72 for n large enough.

(A2) There exist constants p < 1, C' > 0 and x > 1 such that for n large enough ||7'A(LC||p < C and
[l < p for p = 2.

0For comparison, Gozalo and Linton (1998) showed that the asymptotic variance of local nonlinear least squares

estimators does not depend on the specific functional form used in the estimation, although the bias does.

17



For the asymptotic treatment of our estimate at a fixed point s we make the following condition.

(A3) There exists a constant C' such that for n large enough
/ﬁw(s,t)2 dt < C?,
max lzn:/ ‘/ﬁLC(t,U)Rj(U) du
1<j<nn =
| [ rcs,)Ryta) dul = of (/1) 1og(n) ).

max |R;(s)| = 0((n/h)1/2),

1<i<n

2

dt = o(h™1),

where _
> o bi(Ta) Kn(t — 7q)
Do Doy b )2 KR (t = Tir)

Rj(t) = Z Qij 1
i=1 n

Furthermore, it holds that
suC(5)72 = 0(1).

The quantity s£(s) is defined in the statement of Theorem 1 below.

(26)

For the uniform asymptotic expansion of our estimate on an interval S we need the following

additional condition.

(A4) Condition (22) holds for all s € S with a constant C' that does not depend on s. The supremum
of the left hand side of (23) and of (24) over s € S is of order o(h™!) or o((n/h)"?log(n)™?),

respectively. The variables u; have a finite Laplace transform

sup Eexp(tlu;]) < C

1<i<n

(27)

for a constant C, for ¢ > 0 small enough, and for n large enough. Furthermore there exists a

constant C' such that for n large enough for all s € S

9
/ ‘gﬂw(s, t)‘ R(t) dt < nC,

where

(28)



4.1.2 Discussion

Assumptions (23)-(26) implicitly impose some restrictions on the @);;, i.e., the cross-sectional correlation,
however, our assumptions are rather general and do not impose any specific structure. We now dis-
cuss a particular model, due to Conley (1999), which we think might be of interest here. He supposes
that there is a variable z that drives the correlation between the €’'s. Let D, = {D,(i,7)} be the
n(n — 1)/2 vector of interpoint distances, where D, (i,5) = ||z; — 24|, and let X(D,,) be an n x n
covariance matrix such that Fee’ = X(D,,), where € = (e1,...,&,)". The variables z; are observable
and ancillary. The example z; = z(b;, 7;) for some function z(-) and vectors 7; = (741, .., Tim,)’
and b; = (b;(7i1), ..., bi(Tim,))" is quite convenient; according to this, two bonds are similar if their

nominal cash flows are similar. Suppose now that the matrix @, = (Qi;);;=; = Q(D,) satisfies

_ 2+ C(0) C(Dy(1,2)) -+ C(Dy(1,n))
N(Dy) = Q(D)Q(D,) = ¢ + C(0) C(Da(2:m)
. cn+C(0) |

Provided the function C' is continuous at zero and decreases to zero rapidly as the distance increases,
we can expect the central limit theorem to operate for standardized averages of €’s.

Our results can be used to treat random 7,5, ();; and m;. In this case, one has to assume that our
conditions hold conditionally given 7;;, ();; and m; with probability tending to one. We discuss now
the special case that Q;; = 1 and @;; = 0 for ¢ # j (in which case, €1, .. ., €, is an independent sample).
In particular, if one assumes that the variables m; are i.i.d. from some distribution with bounded
integer support and that the distribution of (7;1, . .., Tim, ), conditional on m;, is absolutely continuous
with respect to Lebesgue measure, it follows [under some additional regularity conditions| that the
kernel Hyc(s,t) converges to a function Hyc(s, t) with probability one as n — occ. In this case for the
verification of (A2) it suffices to show that the operator Hc defined by Hicg(s) = [ Hpc(s,t)g(t)dt
satisfies ||[H% || < 1 for a k > 1. Similarly one can check (22) and (28). The operator H o depends
on the payment functions and on the time distributions.

Consider the following special case:

1. m; isii.d. from some discrete distribution with frequency function f,, and support {1,...,mg}

for some fixed integer my.
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2. The random variable 7;; is continuously distributed on the interval [0,0.5] with density f,
which is strictly positive on its support. We then define
7 —1

’7' Tll—l-T,j:l,...,mi.

3. The coupon rate ¢; is randomly distributed on the interval [e;, €], where 0 < €1 < €2 < 1, with

density f.; it is independent of m; and 7;;. The payment function satisfies
bi(Ti5) =

Then, condition (A2) holds under a further condition on f,,, f;, and f..!! However, this condition
is rather complicated to state; instead we shall consider a special case, which gives better intuition.

Suppose further that m; = m for all i and that b;(7;;) = 3, for all 4, j. Then, one can show that

222 Bir
Y1 B

for k — oo. The limit will be less than one provided the 3,’s are sufficiently heterogeneous. This

Iz lo] — (29)

condition is likely to be met in practice because the redemption value is usually considerably larger
than the coupons. For an analytical example, suppose that 8; = ¢ < 1for j = 1,...,m — 1 and
that 8,, = 1 + ¢, then ||H5,|l2 < 1 for x large enough, provided c¢(m — 1)/(1 +¢) < (v/5 —1)/2.
This amounts to the requirement that slightly more than half of the total payment be received at
the end point. This condition can be satisfied provided the dataset contains many short maturity
bonds/small coupon bonds relative to long maturity/large coupons.'?

We give now a rough discussion why the other conditions in A3 hold under appropriate regularity
assumptions on the distribution of 7;; and m;. We will do this for the case that m,; has bounded
support. For a motivation of conditions (23) and (24) consider for simplicity the case m; = 1 (with

probability one), b; = 1. Then we get

/HLC s, u)R;(u) du ~ /HLc(S,U)Ri(U) du~ Hpo(s,mi1)/ fr(Ti1).

UTt is also easy to show that a sufficient condition for the function d in (5) to be unique on a given interval is that

there is a positive fraction of bonds that mature in each half-yearly sub-interval.
12In cases where this condition might be violated we can always ensure compliance by weighting the criterion function

to ensure that the ‘average bond’ satisfies this condition.
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So under boundedness conditions of H/f one expects that the left hand side of (23) and (24) is
of order O(1). For more general conditions on m; and b; a similar discussion applies with another
definition of f. For a check of (25) note first that under regularity conditions the denominator in
the definition of R;(s) converges to a smooth function g. So we get that the left hand side of (25) is
of order O(h™') if max; b;(s) and the kernel K are bounded and if g(s) > 0. So (25) follows because
nh — oo. The assumption (27) can be considerably weakened when more specific assumptions are

made on the data generating process and kernel.

4.1.3 Main Result

In our first theorem we will state asymptotic properties of the local constant estimate d, LC-

THEOREM 1 [ASYMPTOTIC NORMALITY OF LOCAL CONSTANT ESTIMATE]. Suppose that
Conditions A1-A2 hold and that A3 holds for a fized s. Then

m&\LC(S) — d<8) B B£C<S) — ]\7<07 1)7 (30)

s7¢(s)

Yot b (T ) K (s — Tir)
D im1 Doy bi(Tir )2 K (s — Tir)

skC(s)?2 = nhvar [Z 6m(s)€i] ,  where 0,;(s) =

/BTIL/C(S) _ ZH CB*LC

ﬂ*,LC(S> _ Zi:l Z (Tg)th(s — Tir)[d(74) — d(s)]
Zz 1 21 bi(Tir )2 Kn(s — Tar)
Z@ Lo it ey Ui T )0i(Tig) K (s — i) [ Kn(t — 735)[d(735) — d(t)] dt
D i1 2pe bi(Tir )2 Kn(s — 7ir) '
Under the assumption that conditions A1-A2 hold and that A4 holds for a finite interval S the

following uniform expansion holds

sup C/Z\Lc(8> —d(s) — pEC(s) — Z Oni(8)es| = op((nh)~?). (31)

seS

A version of Theorem 1 can be proved for the case that the operator norm ||7-A(zc||oo < 1 for a
k > 1, i.e., that Condition A2 holds for p = oo.
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For the special case of an independent sample ¢1,...,¢, (i.e, Q; =1 and Q;; = 0 for ¢ # j), we

get the following formula for sZ¢(s)?

SEC(5)2 = RS M bi(Ti) Kn(s — 7)) Val“[éfi]'
' [ S bi(Tin )2 (s — )]

The expansion (31) shows that asymptotically the estimate C/i\Lc(S) behaves like a statistic that

is linear in the error variables and that has a similar structure to a univariate kernel regression
smoother. Proceeding as in standard theory of kernel smoothing one can use expansion (31) for the
construction of pointwise confidence intervals and of uniform confidence bands and for the discussion
of optimal bandwidths, see e.g., Hirdle (1990).'® Under additional regularity conditions [like twice
continuous differentiability of d] it can be shown that the bias ﬁTLLC is of order h?. This follows by
showing that ﬁZ’LC is of this order. For this reason we will get the same asymptotic optimal rates in
our model as in standard nonparametric regression.

Theorem 1 can be used to determine the asymptotic distribution of the corresponding estimates
of y(t) and f(t). By the delta method,

Trols) —y(s) = —%@)d(s) +0p (|dre(s) - ds))) (32)
provided s > 0, from which we see that the asymptotic bias and standard deviation of yc(s) are
those of C/Z\Lc(s) multiplied by 1/sd(s). The estimated forward curve fALC(s) can be handled similarly.
Suppose that K has a bounded support [—a,a] and that it has a bounded derivative. Then if A1-A4
hold for S = [s — ah, s + ah| we get from (31) that

fro(s) = f(s) + A(s) + Y wai(s)es + op((nh®)72),

i=1

I3For example, in the independent error case, let
n
~ a2 2 /a2
Uﬂ(s) = Z 5ni(5)5i )
i1

where &, = p; — Y 0, bi(Ti,,.)ci(Ti,,.) are the corresponding residuals and c?(s) is any of our estimates of d(s). Then

d(s) * 2z /2Un(s) is an asymptotic 1 — a confidence interval for d(s), where 2, is the 1 — a quantile of a standard
normal distribution. As in usual nonparametric regression this property holds if the bias of j(s) is of smaller order
than (nh)_l/ 2. Because under appropriate regularity conditions the bias is of order h?, this requires a choice of h that
is of order o(n~'/?) (i.e., undersmoothing). For other choices of h the confidence intervals need bias corrections, see

the related discussions in usual nonparametric regression in Hérdle (1990).
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where A(s) = d~(s) [ Kun(s — t)[d'(t) — d'(s)]dt +d~(s) [ K} (s —t)BEC(t)dt — d2(s)d'(s) [ Kn(s —
t)3%C(t)dt, and

ZT:H bz(TW)Kh(t - Tir)

Zar=1 dt.
Dt Doy b7 2K (t — 715)

wns(s) = d1(s) / K (s—1)

One can check that under regularity conditions this implies that fALC(s) has an asymptotic bias
of order h? and variance of order (nh®)~!. This coincides with rates of convergence of derivative
estimates based on (smoothed) derivatives of local constant smoothers in standard nonparametric

regression.

4.2 Local Linear Smoothing

For a 2 x 2 matrix M we define || M||?> = sup,r,_, el Me.

ASSUMPTIONS FOR THEOREM 2

(B1) Assumption Al holds and there exist constants p < 1, C'> 0 and « > 1 such that for n large
enough [|Hzrll2 = supyy,—; [Hrrglla < C and [Hf,lla = supyyy,—1 IHELgll2 < p, where for a
function g : R* — R? we define ||g[|3 = [g. [lg(2)||* dz.

For the asymptotic treatment of our estimate at a fixed point s we make the following condition.

(B2) There exists a constant C' such that for n large enough

/||ErLL<s,t)||2 dt < 2, (33)
1wt o
%?%H / Hyp(s,u)R;(w) dul| = o((n/h)"?log(n)™), (35)

max || R;(s)]| = o(nh)'?),

1<j<n
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where now

R;(t) = M) bi(Ta) Kn(t — 74 :
(t) ;Q ()7 bilra) Kalt >((m_t)/h)

=1
Furthermore, it holds that
1S3 (s)~H I = O(D).

The matrix SLE(s) is defined in the statement of Theorem 2.

(B3) It holds that
2 et 2ory bi(Tir)* Kn(s — i) 522
n m; Tir—S 2
D izt Dy bilTir )2 K (s — Tir) [ h }
D it Doy bi(Tir ) Kn (s — i) B2
D it 2oy biTi )2 Kn(s — Tir)

For the uniform asymptotic expansion of our estimate on an interval S we need the following

additional condition.

(B4) Condition (33) holds for all s € S with a constant C' that does not depend on s. The
supremum of the left hand side of (34) and of (35) over s € S is of order o(h~!log(n)~?) or

o((n/h)Y?1og(n)"), respectively. The variables have a finite Laplace transform

sup Eexp(tju;]) < C

1<j<n
for a constant C, for t > 0 small enough, and for n large enough. Furthermore there exists a

constant C' such that for n large enough for all s € S
/ H%ﬁLc(s,t)H R(t) dt < nC, (36)

where
1 n
j=1
THEOREM 2 [ASYMPTOTIC NORMALITY OF LOCAL LINEAR ESTIMATE]. Suppose that Condi-

tion B1 holds and that B2 holds for a fixed s. Then

dro(s) — d(s) .

nhSEL(s)~1/2 o . s .
VnhSEE(s) . (dm(s) _d,(s)> BEL(s)| = N(0, 1), (37)
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where Iy is a 2 X 2 identity matrix and where

1 o e 1
SEL(s) = nhvar |[M(s) 1= bi(Tir) Kp(s — 7ir)e; )
=0 ()71 30D hlrin) Ko >5<<m_s>/h>]

=1 r=1

BEA(s) = > HELBEM(s),

k=0

ﬁZ’LL(S) _ M(S)il Z zl: bi(Tir)th(s — Tir)[d('ri'r> - d(S) - (TiT - S)d/(S)] ( (7., js)/h >

n  m;

+M(s)7PY N Z bi(Tir)0i(T35) Kn(s — Tir) /Kh(t — 7ij)[d(Ti5) — d(t)

i=1 r=1 j=1,r#j

1
—\Tij — d, d .
(1i; — t)d'(t)] t<(m_s>/h>

For the special case of an independent sample e1, ..., e, (i.e., Qi =1 and Q;; =0 fori /j) we get
under the additional assumption of B3 that sﬁc(s)’lc?LL(s) has asymptotic variance one, i.e., C/Z\LL(S)
has the same asymptotic variance as C/i\Lc(S). Under the assumption that Condition B1 holds and

that B4 holds for a finite interval S the following uniform expansion holds

d, d
aup () ) (A ) g
ses hdLL’l(S) hd (S)
— M(s)'= bi(Tir) Kn(s — Tir)ei < > H = 0p((nh)_1/2). (38)
n ; ; (Tir — s)/h
For the special case of an independent sample €1, ...,&, (i.e.,, Qi = 1 and Q;; = 0 for i # j) we

get the following formula for SZ¥(s)

SE(s) = na(s) Ly var[gl.](w%(s) ”i’°<8)”i’1<8)>M<s>l,

[ (s)via(s) U?,l(s)

Tir — S

vii(s) = Zbi(Tir)Kh(S — Tir) { 5 ] fori=1,...,nandj=0,1.
r=1

The asymptotic properties of 31 (s) and i () follow as above from the delta method.
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4.3 Local Exponential Smoothing

It is not possible at this stage to give a treatment of the convergence of the algorithm or the asymptotic
properties of the local exponential methods. Our previous results made heavy use of the Hilbert space
structure, which is not immediately available here. Instead, we shall examine the statistical properties
of the one-step estimators, which are themselves linear approximations to the nonlinear method. The
asymptotics of the one-step methods follows from the arguments given in Linton (1998).

We just outline the result for the one-step local constant exponential method @\[L”C 5(s). We first
of all define an infeasible estimator whose properties will determine those of ﬂ[Ll]C 5(s). Let y5op(s) be
the minimizer of the criterion (21) with respect to 6. It is a straightforward application of Gozalo and

Linton (1998, Theorem 2) to deduce the asymptotic distribution of ¥} ~z(s); specifically, we obtain

Yron(s) = {y(s) + Bn(s) + an(s) {1 + 0p (1)}, (39)

where . .
_ Zizl Zr:ll Kh(S - Tir>bi(7—ir)7-i7" eXp(_Tiry(S>>€i
Doy 2oy Kn(s — Tip)bi(7ir) 275 exp(—273y(s))

Here, o (s) is a sample average of independent [or more generally, weakly dependent] random vari-

a,(s)

ables and will satisfy a central limit theorem, while (3} (s) is a bias term which can be expected to
be of order h? under the usual conditions.'*

In a previous sub-section we established the uniform asymptotic expansion

gre(s) = {y(s) + 8, (s) + () {1 + 0, (1)}, (40)

LC

n

variables, and hence satisfies a central limit theorem, while 5= (s) is a deterministic bias function.

where «;“(s) is a sum of mean zero independent [or more generally weakly dependent] random

Combining the expansions for ¥ -5 (s) and yrc(s), we obtain after some fairly standard manipulations
that

ot (s) = {Trop(s) + B () HL + 0,(1)} (41)

H1n fact,

21;1 Z:Zl Ky (s — Tir)bi<7-i'r')27-i'r' exp(—274,y(8))[exp(=Tir (y(74r) —y(s)) — 1]
S o Kp(s — Tir)bi(Tir) 273, exp(—274y(8))

Bnls) =
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15 Note that the stochastic terms from

uniformly in s, where (3)*(s) is a deterministic bias term.
Yrc(s) do not appear in the leading terms of ﬂ[LHCE(s), i.e., the asymptotic variance of g[Ll]CE(s) is
the same as that of yj-y(s); this follows by the same arguments used in Linton (1998). The bias

of g’j[Ll]C 5 (s) is different from that of ¥ 5 (s) and includes additional terms. In conclusion, g’j[Ll]C g(s) is

asymptotically normal with variance var(a(s)).*6

Clearly, the biases of our procedures will in general be complicated functions of the data distri-
bution, and very hard to estimate. We can say that the local constant estimator is approximately
unbiased when d is a constant function, while the local linear estimator is approximately unbiased
when d is a linear function. Similarly, the local constant exponential will be approximately unbiased
when vy is a constant function, while the local linear exponential will be approximately unbiased when
y is a linear function. This is perhaps one reason why the exponential versions seem to do better -

the yield curve is much closer to a constant or linear function than is the discount function.

5 Simulation study

In this section we investigate the properties of the kernel yield curve estimator in a numerical example.
We study the performance of the local constant exponential (LCE) and local linear exponential (LLE)
estimators, and compare them with several well-known competitors.

We generated the data using the Nelson-Siegel yield curve model [Nelson and Siegel (1987)]. This
model has been in several empirical studies of term structure estimation methods [Bliss (1996) and

Dahlquist and Svensson (1996)]. We chose the extended version

1 —exp(—t/71) 1 —exp(—t/7)
t/m ] I [ t/T2

y(t) = o+ By [ ~ exp(—t/r2)

15The bias term is

Bir(s) = ii i Ki(s = 7ir)bi(Tin)bi(ij) Tire 79 7TV (T0) [ K (8 — 75)[e T O 0T0)) — 1]t
" ; =1 =1 =T Dit 2oty Kn(s = Tip)bi(7ir) 273, exp(—274y(s))

T ii i K (s — Tir)bi(Tin)bi(Tig) Tive™ TV Ty iy [ Ky (8 — 745) 85, (D)t
=1 =1 j=1 A > i1 2oty Kon(s = mir)bi(7ir)? 73, exp(—27iry(s)) '

16Tt is expected that further iterations have the same asymptotic variance, but that the bias formula involves

additional terms.
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Table 1 summarizes the three special cases we use here. In the first version, the curve is concave and
monotonically increasing, whereas the last two cases have a stationary point.

We measure the performance of estimators by the root integrated mean squared error

IRMSE = / ’ \/ E [E(t) - §(t)} i, (42)

where £ is either the yield curve, the forward curve, or the discount function, while E is an estimator.

Here, a, b are constants. We also report results using the integrated mean absolute error

IMAE = / B ‘E(t) - §(t)‘ dt. (43)

These expected values are found by running a large number of Monte Carlo simulations of the
true yield curve and then averaging across the integrated squared errors [absolute errors] from the
corresponding estimator.

We use a design that resembles closely the structure of the US Treasury market. US Treasury
notes are issued with original maturities of 2,3,5, and 10 years. We exclude the long term bonds
with original time to maturity of 30 years. We [rather arbitrarily| select the coupon so as to make
the note trade at par or close to. T-Bills [zero coupons| are issued with original time to maturity 1
to 12 months. We generate prices for 12 Bills with time to maturity less than 1 year and 24 issues
with time to maturity larger than 1 year.

Prices are generated by discounting the future cashflow and adding a random error, ¢;, generated
as g; ~ NJ[0, U?], where the noise term is uncorrelated between bonds and the variance may vary from
bond to bond.

We consider two cases. The first case is when the variance is constant across maturities. In the
second case we follow the convention of letting the standard deviation be proportional with the bonds
duration, i.e., 02 = o x duration; [see Bliss (1996) for example].!”

In general, a constant bandwidth does not perform well, because the payment time distribution is

far from uniform. Accordingly, we use a non-constant bandwidth. For each s define s; = |s — m;],.i =

1"The duration is defined as a weighted average of the future payment dates. The formula is duration; =
S Tijwij, where @;; = (pv;/pv) is the relative contribution of the payment at time time j to the total dis-
counted value of the bond. For simulation purposes we used the discounted values under the true yield curve. In

practical applications one can use the Macauley duration where discounting is done using the redemption yield.
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1,...,n. Then we choose as the bandwidth a quantile of the distribution of s.'® For maturity intervals
such as the interval [0, 1],where relatively more bonds are redeemed, the bandwidth will become
smaller than in intervals with fewer bonds such as in the long end of the yield curve.!® For the
example of this paper we use the 33.33% quantile. The bandwidths determined by this method
range from 0.16 years for short maturities to 6.25 years for the longest maturities. This way of
determining bandwidth could be supplemented by an empirical measure of goodness of fit such as
generalized cross-validation.

Besides the kernel smoothers we computed three other estimators. The first one is the extended
Nelson Siegel procedure. Second, we estimate a cubic regression spline for the yield curve with knots
1/12,1.5,3,5, and 10 years. Finally, we estimate the cubic smoothing spline of Tanggaard (1997).%
The first alternative serves as a kind of benchmark. Depending on the heteroscedasticity structure
one can not hope to get a better fit than this, when in fact, the true curve is the ENS, and it is
interesting to see how close a nonparametric estimator can come to this.

Tables 3 and 4 clearly demonstrates that fitting the Nelson-Siegel model, when the true curve is the
NS, is better than anything else. This is the case for all error measures.?! In the more realistic cases
when we do not assume a known functional form, we see that the local linear exponential performs
better than the local constant exponential version. That is true irrespective of the performance
measure. Furthermore the LLE model perform better than any of the other curve estimators, the
only exception being the regression spline which performs better for the first version of the NS-curve.
However, the regression spline performs remarkedly worse for versions 2 and 3 of the NS-curve. This

is consequence of one of the major problems with regression splines (splines with fixed knots): the

18This is one of several examples of bandwidth formulas we tried. We also tried h(s) = B,f(s)™1, where f is an
estimate of the density of the payment times, while the parameters 3, 3, are chosen to minimize the cross-validation
criterions. We did some experiments but for several reasons, but found that it can not be used as a general purpose

bandwidth estimator. A major reason for this is the computational problems.
19Graphs of the estimated curves, clearly indicated that this method produced too high bandwidths for maturities

< 1 year. Therefore, we arbitrarily set the bandwidth to 1/6 year for these short maturities. This is explained by the
fact that bonds in this interval are zero coupon bonds, which should be smoothed less than the longer maturity bonds.

This changes only affects the estimates in the short end and had no substantial effect on the conclusions of this study.
20The spline smoother of Tanggaard is essentially the same model as the one suggested by Fisher at al. (1995). It

depends on a smoothing constant which is determed empirically by a generalised cross-validation type of smoother.
2IThe errors in estimation of the discount are so small that it is difficult to assess the difference between the

estimators.
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optimal placement of knots depends heavily on the curvature properties of the curve one is interested
in approximating. There are to our knowledge no good ways of estimating the knot placement in
this kind of model.

Given the superior curvature properties of cubic splines it is a bit surprising how relatively poor
the spline smoother (SS) performs. In a study - not reported here - of the performance under best
possible circumstances, i.e., when the degree of smoothing is best possible, we found that the spline
smoother performed better than any of the other curves. One explanation of these results is therefore
that this is related to the lack of a good bandwidth estimator.

Finally, the results also demonstrate that the error in estimating the forward curve is an order of
magnitude larger than for the yield curve. The errors in estimating the discount curve are measured
on another scale and can not be compared with the yield curve errors. However, panel III of tables
3 and 4 show that the discount curve alone can hardly be used to discriminate among competing
estimators.

Overall this example shows that kernel methods is a powerful method of estimating zero-coupon
term structures. In most examples the estimation error is smaller than for competing methods. The
problems with this and other nonparametric methods lies in good methods for empirical estimation

of the degree of smoothing.

6 Concluding Comment

One nice feature of our projection approach to estimation is that has a sensible intepretation under

misspecification; we are finding the function d that is closest to the price vector in the chosen metric.

7 Appendix: Proofs of Theorems

PrOOF OF THEOREM 1. For simplicity we suppose that Condition A2 holds with k = 1. The
general case can be treated by slightly more complicated arguments. We start with the proof of
(31). Suppose that Al and A2 hold and that A4 holds for a finite interval S. We note first that for
functions g with ||g||2 < oo one gets by application of the Cauchy Schwarz inequality from (22), see
also (A4), that

sug! Hyo(s, t)g(t) dt] < Sugl Hio(s,)* dt]||glla < Cllgllo- (44)
s€ ElS
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Note now that

Edpc(s) Zargjnin Z/ {Z bi(7i5)[d(Ti5) — U(Sij)]} H {Kn(sij — 745) dsiz} (45)

and
n m; 2 m;
ch(S) — Ech(S) —=arg min Z/ {Efi - Z bi(Tij)U(Sij)} H {Kh(sij - Tij) dSij} . (46)
v i=1 j=1 j=1
For the proof of (31) we show first that
Edpo(s) — d(s) = BE(s). (47)
For the proof of (47) note first that equation (45) implies that
n m; 2 m;
Edrc(s) — d(s) =argmin Z/ {Z bi(7ij)[d(Ti5) — v(sij) — d(%‘)]} [T{&n(si; — 7i5) dsis} -
v i=1 j=1 j=1
This minimization can be solved like in Section 3.1. This gives
0 = >3 bi(ra)Ku(s — ma)[d(rir) — d(s)]
i=1 r=1

n o m; m;

+ Z Z Z bi(Tir ) bi(T45) Kn (s — Tir) /Kh(t — 7i)[d(T5) — d(t)] dt
=1 r=1 31;;

n  m; m;

D bilran)bi(ri) Knls — i) / Kiu(t —74) [EELC(t) —d(t)| dt

i=1 r=1 j=1
r#j

- [EJLC@ - d(s)] i i bi(Tar )2 Kn (5 — Tar).

i=1 r=1

This equation can be written as
Edio(s) — d(s) = 825 (s) + / H(s,t) [ECTLC@) —d(t)| dt.

Iterative application of this equation gives (47) because of (A2).
For the study of the stochastic component dyc(s) = C/Z\Lc(s) — Edyc(s) we get from (46) that

dro(s) =Y Hicdiols),
k=0
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where . .
7 (s) = Dic1 Zr:’; €ibi(Tir) Kn(s — m)'
Do Domy bi(Tir ) 2K p (5 — Tir)

We show now that

sup| > Hodyo(s)| = op((nh)~1/?) (48)
seS 1

holds. This shows
sup|dio(s) = dye(s)| = op((nh) %), (49)
sE

Therefore, (47) and (48) imply (31).

For the proof of claim (48) we will show

sup [Hiedic(s)| < " Ro. (50)

IS

where p < 1 is introduced in Condition (A2) and where R, is a random variable with R, =
op((nh)~'/?). This implies (48) because of

up | S i) 39 = Ruf(1 = ) = op((uh) ).
k=1 k=1

ES

For the proof of (50) we will show that
[Hrcdicla = op((nh)™?), (51)
Sup Hiodio(s)] = op((nh)™). (52)
We argue now that (51) and (52) imply (50). Note that (A2) implies
[ cdiolle < 7 Hzedicll
for £ > 1. Because of (44) this implies

S‘ég Hicdio(s)] < C|Hid diell: < p"Ry

for £ > 2 with R, = ||7-A{LCEZVEC||2/p2. With (51) and (52) we get (50). So for the proof of (31) it
remains to show (51) and (52). For the proof of (51) we get using (A1) and (23)

o~ o~ 1 <& ~ ~
E“HLC’dzCH% = F ﬁ Z /HLc(S,t)HLc(S,’U>Ri(t)R]‘(’U) dv dt ds UUy
1,j=1
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= %Z/ﬁLC(Sat)ﬁLC(S,’U)Ri(t)Ri(U) dv dt ds var|u]

2
§n22/‘/HLCtv ) dv

dt C

This shows (51). For the proof of (52) we write
HLCdLC — Tz UJ“

where

Note first that for s € S and a,c > 0 we have

Pr( (nh)*[Hycd;o(s)] > c)
< E exp (al%g(n) [(nh>1/27:zLCJ*LC(S) - C})

< n@ HE exp ((a/c) log(n)(h/n)l/zn(s)ui)a

i=1
where the independence of the error variables u; has been used. We use now exp(z) < 1+ = +
(1/2)2?[1 + exp(x)]. With d;(s) = (a/c)log(n)(h/n)/?ri(s)u; this gives the following upper bound

for the last term

IN

- H{l—I—E )+ E (di(s)*[1 +exp (di(s)]}

n

= 0 [T{1+E (di(s))”[1+ exp (di(s))]} -

i=1
We use now that for a constant D the following inequality holds
E w2[1 +exp (di(s))] < D.

This follows from the uniform bound for the Laplace transform of u;, see (27), and from

sup(a/c) log(n) (h/n)"/?|ri(s)| — 0,

seS
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see (24). In a next step we apply 1+ z < exp(z). This gives

Pr( (nh)"*[Hicdio(s)] > o)

n

< n H [1 + D ((a/c) log(n)(h/n)l/%“i('s)ﬂ
< n® exp [Z D ((a/c) log(n)(h/n)1/2n(8))2]

< n %14 o0(1)),

where in the last step (23) has been used, see also Condition A4. With the same arguments one gets
a bound for Pr( (nh)Y2[Hpcd:(s)] < —c). This gives that for a,c > 0

Pr( (nh)'*[Hicdio(s)] > ¢) <n~*(2+ o(1)).

This implies that for all constants b > 0 and finite sets S,, C S with n® elements we have that

sup [Frodie(s) = op((ah) /) (53
S€Sn
Because u; has a bounded Laplace transform [see (27)] it holds that sup,.;, |u;| = Op(log(n)).

Because of assumption (28) this implies that for a constant C’ large enough
a - Tk c'’
sup ]a—HLCdLC(s)] =op(n*).
ses 0US
Therefore for an appropriate choice of S,, we can achieve that

sup inf |Hred:o(s) — Hiodio(t)] = op((nh)~/?). (54)

se§ t€Sn

Claim (52) follows from (53) and (54). This shows (31). Note that the above argument can be
extended to allow for only a finite number of moments on u; using a truncation argument, provided
stronger assumptions on the operator H Lo are made. We come now to the proof of (30). Because of

(47) we have to show
Vnhdye(s)s=C(s)™' = N(0,1) (55)

in distribution. We argue now that

dio(s) = djc(s) = op((nh) /7). (56)
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This follows as in the proof of (49) where now S = {s}. Note that now, because S is finite, the proof
of (52) follows immediately from (23) and the boundedness of o2, see (A1). Because of (56) and (26)
for the proof of (55) it suffices to show

Vnhdi o (s)s=C(s)™t = N(0,1) (57)

n

in distribution. Note that

1: o(s) = \/h/nZRi(s)ui.

Now, claim (57) follows with a standard version of the central limit theorem from (25) and the

existence of a uniform bound for Eu?"® see (A1). This finishes the proof of Theorem 1. [

%

PrOOF OF THEOREM 2. Claims (37) and (38) can be shown as in the proof of Theorem 1.
Under the additional assumption of B3 one gets that M(s) is asymptotically equivalent to a diagonal
matrix with diagonal elements: n=*> " S b;(74)2Kp(s —7i) and n=t Y00 S b4 ) 2K (s —

Tir)[(Tir — 8)/h]?. Using expansion (38) for S = {s} one gets that C/i\LL(S) has the same asymptotic

variance as dpc($). |
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Tables

Special cases of the Nelson-Siegel model
Y1 Y2 Ys
B, ] 0.065 0.04 0.0
B | -0.015 0.01 0.05
G5 0.05 0.1 2
71| 0.5 6 0.75
To 6 0.5 125

Table 1: Parameters of the extended Nelson-Siegel model.
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Estimator Description

NS Extended Nelson-Siegel

LCFE Local constant exponential with variable bandwidth
LLE Local linear exponential with variable bandwidth

RS Regression spline with 5 fixed knots

SS Smoothing spline. Smoothing constant determined by GCV

Notes: The knots for the regression spline are placed at maturities 1/12,1.5,3,5,10 years.

Table 2: Summary of estimators
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Error measure MSE MAE

L: Yield curves YNS1 YNS2 YNS3 | YNS1 YNS2 YNS3
Yns 0.01 0.00 0.00 | 0.00 0.00 0.00
Yok 007 014 034|005 0.10 0.25
YLLE 0.05 0.07 0.05 | 0.04 0.06 0.04
Yrs 0.04 0.31 0.07 | 0.0l 0.09 0.02
Yss 032 035 064|019 024 0.34
IT: Forward curves Insay fns2 fwnss | fvsg fys2  [nsgs
fus 0.0l 0.01 0.01 | 0.00 0.01 0.00
fros 046 095 3.62 | 037 079 2.60
frie 0.32 0.67 047 | 020 034 021
frs 0.05 029 0.09 | 0.04 017 0.06
fss 0.45 0.67 0.72 | 0.37 057 0.59
III: Discount curves | dys1 dns2 dnss | dvsi dnse dnss
dys 0.00 0.00 0.00 | 0.01 0.01 0.01
dror 0.00 000 0.02 015 032 1.05
drre 0.00 0.00 0.0 | 0.11 020 0.11
drs 0.00 0.00 0.00 | 0.02 0.07 0.03
dss 0.00 0.01 0.04 | 0.33 054 0.59

Notes: The table reports the estimation errors when estimating a yield curve based on simulated
data from one of 3 versions of the extended Nelson-Siegel model. Estimation errors are summarised
by the root mean squared error (square root of M SFE), as well as the mean absolute error. For the
yield curves and forward curves the scale is percentage points. The noise term is homoscedastic with
standard deviation equal to 0.03. The number of bonds is n = 36. The numerical precision is better
than 1072

Table 3: Estimation errors with homoscedastic noise term.
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Error measure MSE MAE

I: Yield curves YNs1 YNS2 YNS3 | YNS1 YNS2 YNS3
Yns 0.00 0.00 0.00 | 0.00 0.00 0.00
YLoE 0.10 0.19 0.33 | 0.08 0.15 0.23
YLLE 0.04 006 005|003 005 0.04
YRrs 0.04 029 007 | 003 025 0.06
Yss 0.35 040 059 | 0.30 0.32 0.52
II: Forward curves | fnsi  fns2 fnss | fnsy fns2  fnss
fus 0.00  0.00 0.01 | 0.00 0.00 0.01
fros 048 090 335|037 074 234
frie 029 061 072|020 038 0.35
frs 019 142 037 | 016 120 0.31
fss 136 1.08 1.94 | 1.04 092 1.58
I1I: Discount curves | dys1 dns2 dnss | dvsy dns2 dnss
dys 0.00  0.00 0.00 | 0.01 0.01 0.01
dror 0.00 001 002|025 052 0.99
drre 0.00 0.00 0.00 | 011 020 0.14
dps 0.00 0.01 0.00 | 0.10 0.84 0.20
dss 0.0l 001 0.04 | 090 0.89 1.62

precision is better than 1072

Notes: The table reports the estimation errors when estimating a yield curve based on simulated
data from one of 3 versions of the extended Nelson-Siegel model. Estimation errors are summarised
by the root mean squared error (square root of M SE), as well as the mean absolute error. For the
yield curves and forward curves the scale is percentage points. The noise term is heteroscedastic

with standard deviation equal to 0.01 x duration. The number of bonds is n = 36. The numerical

Table 4: Estimation errors with heteroscedastic noise term.
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