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I. INTRODUCTION

Economics is a quantitative science. Macroeconomics depends on data for national income,
expenditure and output variables. Macro-monetary policy requires measures of inflation.
Microeconomics is based on data for prices and quantities of inputs and outputs. Even when the
variables of concern are difficult to measure, such as the output gap, expectations, and
‘happiness’, we use various techniques, e.g. survey data, to provide quantitative proxy
variables—often according these data more weight than is consistent with their inherent
measurement errors. Without such quantification, comparisons over time, and on a cross-section
basis, cannot be made; nor would it be easy to provide a quantified analysis of the determinants
of such variables.

However, there is currently no such widely accepted measure, quantification, or time series for
measuring either financial or banking stability. What is most often used instead is an on/off (1/0)
assessment of whether a “crisis” has occurred.” This has then been used to review whether there
have been common factors preceding, possibly even causing, such crises, and to assess what
official responses have best mitigated such crises, see Bank Restructuring and Resolution, ed.
Hoelscher, (2006). While much useful research has been done employing a crisis on/off
dichotomy, it has several inherent deficiencies. In particular, the lack of a continuous scale
makes it impossible to measure with sufficient accuracy either (i) the relative riskiness of the
system in non-crisis mode, or (ii) the intensity of a crisis, once it has started. If the former could
be measured, it may be easier to take early remedial action as the danger of a systemic crisis
increases, while measurement of the latter would facilitate decision making on the most

appropriate measures to address the crisis.

? For a review of the literature on financial crises, see Bordo (2001).



In our view, a precondition for improving the analysis and management of financial (banking)
stability is to be able to construct a metric for it. The purpose of this paper is therefore to present
a method for estimating a set of stability measures of the banking system (BSMs). There is no
unique, best way to estimate BSMs, any more than there is a unique best way to measure such
concepts as “output” or ‘inflation,” but we hope to demonstrate that our approach is reasonable.
Moreover, there are very few alternative available measures which might be used.

Briefly, and as described in far more detail below, we conceptualize the banking system as a
portfolio of banks comprising the core, systemically important banks in any country. Thus, we
infer the banking system’s portfolio multivariate density (BSMD) from which we construct a set
of BSMs. These measures embed the banks’ distress inter-dependence structure, which captures
not only linear (correlation) but also non-linear distress dependencies among the banks in the
system. Moreover, the structure of linear and non-linear distress dependencies changes
endogenously as banks’ probabilities of distress (PoDs) change; hence, the proposed stability
measures incorporate changes in distress dependence that are consistent with the economic cycle.
This is a key advantage over traditional risk models that most of the time incorporate only linear
dependence (correlation structure), and assume it constant throughout the economic cycle. *
Consequently, the proposed BSMs represent a set of tools to analyze (define) stability from three
different, yet, complementary perspectives, by allowing the quantification of (i) “common”
distress in the banks of a system, (ii) distress between specific banks, and (iii) distress in the

system associated with a specific bank; i.e., “cascade effects”.

3 In contrast to correlation, which only captures linear dependence, copula functions characterize the whole
dependence structure; i.e., linear and non-linear dependence, embedded in multivariate densities (Nelsen, 1999).
Thus, in order to characterize banks’ distress dependence a novel non-parametric copula approach is employed; i.e.,
the CIMDO-copula (Segoviano, 2009), described below. In comparison to traditional methodologies to model
parametric copula functions, the CIMDO-copula avoids the difficulties of explicitly choosing the parametric form of

(continued...)



In this paper we estimate the proposed BSMs using publicly available information; i.e., CDS-
spreads and stock prices from Bloomberg, from 2005 up to the beginning of October 2008.
These estimations are to illustrate the methodology rather than to make an assessment of the
conjunctural financial stability of any particular system. We examine relative changes in stability
over time and among different banks’ business lines in the US banking system. We also analyze
cross-region effects between American and European banking groups. Lastly, we show how our
technique can be extended to incorporate the effect of foreign banks on sovereigns with banking
systems with cross-border institutions. For this purpose, we estimate the BSMs for major foreign
banks and sovereigns in Latin America, Eastern Europe and Asia. This implementation
flexibility is of relevance for banking stability surveillance, since cross-border financial linkages
are growing and becoming significant; as has been highlighted by the financial market turmoil of
recent months. Thus, surveillance of banking stability cannot stop at national borders.

We show how these BSMs can be constructed from a very limited set of data, e.g., empirical
measurements of distress of individual banks. Such measurements can be estimated using
alternative approaches, depending on data availability; thus, the data set that is necessary to
estimate the BSMs is available in most countries. Consequently, such measures can be provided
for a wide group of developing, as well as developed, countries. Being able to establish such a
set of measures with a minimum of basic components, makes it feasible to undertake a wider
range of comparative analysis, both time series and cross-section. It is important to note that
when measurements of distress of non-banking financial institutions (NBFIs) i.e., insurance
companies, hedge funds etc. are available, our methodology can be easily extended to

incorporate the effects of such institutions in the measurement of stability, hence allowing us to

the copula function to be used and calibrating its parameters, since CIMDO-copula functions are inferred directly
(continued...)



estimate a set of stability measures for the financial system. This could be of relevance for
countries where NBFIs have systemic importance in the financial sector.

Economically, this approach is based on the micro-founded, general equilibrium theoretical
framework of Goodhart, Sunirand and Tsomocos (2006), which indicates that financial
instability can arise either through systemic shocks, contagion after idiosyncratic shocks or a
combination of both. In this respect, the proposed banking system stability measures represent a
clear improvement over purely statistical or mathematical models that are economically a-
theoretical and therefore difficult to interpret.

Over the past decade, important insights into the analysis of financial stability have been gained.
For example, Segoviano (1998), Segoviano and Lowe (2002), and Goodhart and Segoviano
(2004), present simple approaches that vary in the degree of sophistication to quantify portfolio
credit risk (all of these approaches were based on parametric models, and accounted only for
correlations that were fixed through the cycle) and analyze the procyclicality of banking
regulation and its implications for financial stability. Segoviano and Padilla (2006), present a
framework for macroeconomic stress testing combined with a model for portfolio credit risk
evaluation, which accounts for linear and non-linear dependencies among the assets in banks’
portfolios and their changes across the economic cycle; however, in all these cases, the authors
focus on individual banks’ portfolios or in the overall aggregate banking system. In Goodhart,
Hofmann and Segoviano (2004, 2006), and Aspachs et al. (2006) focus is on systemic risk;
however, authors make use of average measurements of distress of the system, which do not

incorporate banks’ distress dependencies, nor their changes across the economic cycle.

(implicitly) from the joint movements of the individual banks’ PoDs.



Thus, we hope that the proposed BSMs will allow to complement previous research on financial
stability. We are therefore extending research as follows in order to achieve specific aims.

i.  We examine relative changes in the BSMs over time and between countries, in
order to identify the occasion, and determinants, of changes in the riskiness of the
banking system;

ii.  We try to predict future movements of the BSMs for use as an early-warning
mechanism;
iii.  We explore the significant macroeconomic and financial factors and shocks
influencing the BSMs, in order to identify macro-financial linkages; and
iv.  We explore the factors that can limit and reverse tendencies towards instability, so
as to discover what instruments may be available (and under what conditions) to
control such instability.
In Section II, we explain the importance of incorporating banks’ distress dependence in the
estimation of the stability of the banking system and describe the modeling steps followed in our
framework. In Section III, we present the consistent information multivariate density (CIMDO)
methodology to infer the banking system’s multivariate density (BSMD) from which the
proposed BSMs are estimated. These are defined in Section IV. In Section V, we present
empirical estimates of the proposed BSMs as described above. Finally, conclusions are presented

in Section VI.

II. DISTRESS DEPENDENCE AMONG BANKS AND STABILITY OF THE BANKING SYSTEM
The proper estimation of distress dependence amongst the banks in a system is of key
importance for the surveillance of stability of the banking system. Financial supervisors

recognize the importance of assessing not only the risk of distress i.e., large losses and possible



default of a specific bank, but also the impact that such an event would have on other banks in
the system. Clearly, the event of simultaneous large losses in various banks would affect a
banking system’s stability, and thus represents a major concern for supervisors. Bank’s distress
dependence is based on the fact that banks are usually linked—either directly, through the inter-
bank deposit market and participations in syndicated loans, or indirectly, through lending to
common sectors and proprietary trades. Banks’ distress dependence varies across the economic
cycle, and tends to rise in times of distress since the fortunes of banks decline concurrently
through either contagion after idiosyncratic shocks, affecting inter-bank deposit markets and
participations in syndicated loans—direct links—or through negative systemic shocks, affecting
lending to common sectors and proprietary trades—indirect links. Therefore, in such periods, the
banking system’s joint probability of distress (JPoD); i.e., the probability that all the banks in the
system experience large losses simultaneously, which embeds banks’ distress dependence, may
experience larger and nonlinear increases than those experienced by the probabilities of distress
(PoDs) of individual banks. Consequently, it becomes essential for the proper estimation of the
banking system’s stability to incorporate banks’ distress dependence and its changes across the
economic cycle. Quantitative estimation of distress dependence, however, is a difficult task.
Information restrictions and difficulties in modeling distress dependence arise due to the fact that
distress is an extreme event and can be viewed as a tail event that is defined in the “distress
region” of the probability distribution that describes the implied asset price movements of a bank
(Figure 1). The fact that distress is a tail event makes the often used correlation coefficient
inadequate to capture bank distress dependence and the standard approach to model parametric
copula functions difficult to implement. Our methodology embeds a reduced-form or non-

parametric approach to model copulas that seems to capture adequately default dependence and
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its changes at different points of the economic cycle. This methodology is easily implementable
under the data constraints affecting bank default dependence modeling and produces robust
estimates under the PIT criterion. *
Figure 1. The Probability of Distress
0.5
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Source: Authors’ calculations.
In our modeling of banking systems’ stability and distress dependence, we follow four steps
(Figure 2).
Step1: We conceptualize the banking system as a portfolio of banks.
Step 2: For each of the banks included in the portfolio, we obtain empirical measurements of
probabilities of distress (PoDs).
Step 3: Making use of the Consistent Information Multivariate Density Optimizing (CIMDO)
methodology, presented in Segoviano (2006b) and summarized below, and taking as input
variables the individual banks’ PoDs estimated in the previous step, we recover the banking
system’s (portfolio) multivariate density (BSMD).
Step 4: Based on the BSMD, we estimate the proposed banking stability measures (BSMs).

Figure 2. The Banking System’s Multivariate Density

* The PIT criterion for multivariate density’s evaluation is presented in Diebold et al (1999).



11

Step 1:
View the Banking System as a of Banks

Step 4:

Estimate Banking Stability
Measures (BSMs

PoD of Bank X

PoD of Bank Y
Step 2: Step 3:
Estimate individual Recover the Banking System’s
Banks’ PoDs. Multivariate Density (BSMD)

Source: Authors’ estimations.

Section III describes the procedure to recover the BSMD.

III. BANKING SYSTEM MULTIVARIATE DENSITY

The Banking System Multivariate Density (BSMD) characterizes both the individual and joint
asset value movements of the portfolio of banks representing the banking system. The BSMD is
recovered using the Consistent Information Multivariate Density Optimizing (CIMDO)
methodology (Segoviano, 2006b). The BSMD embeds the banks’ distress dependence
structure—characterized by the CIMDO-copula function (Segoviano, 2009)—that captures linear
and non-linear distress dependencies among the banks in the system, and allows for these to
change endogenously throughout the economic cycle, reflecting the fact that dependence
increases in periods of distress. These are key technical improvements over traditional risk
models, which usually account only for linear dependence (correlations) that are assumed to
remain constant over the cycle or a fixed period of time. In order to show such improvements in

the modeling of distress dependence—thus, in our proposed measures of stability—in what
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follows, we (i) model the BSMD using the CIMDO methodology, and (ii) illustrate the
advantages embedded in the CIMDO-Copula to characterize distress dependence among the
banks in the banking system.

A. Modeling the Banking System Multivariate Density

We recover the BSMD employing the CIMDO methodology and empirical measures of
probabilities of distress (PoDs) of individual banks. There are alternative approaches to estimate
individual banks’ probabilities of distress. For example, (i) the Structural Approach (SA), (ii)
Credit Default Swaps (CDS), and (iii) Out of the Money Option Prices (OOM). These are
discussed further in Section V. It is important to emphasize the fact that individual banks’ PoDs
are exogenous variables in the CIMDO framework; thus, it can be implemented with any
alternative approach to estimate PoDs. Consequently, this provides great flexibility in the
estimation of the BSMD.

The CIMDO-methodology is based on the minimum cross-entropy approach (Kullback, 1959).
Under this approach, a posterior multivariate distribution p—the CIMDO-density—is recovered
using an optimization procedure by which a prior density ¢ is updated with empirical
information via a set of constraints. Thus, the posterior density satisfies the constraints imposed
on the prior density. In this case, the banks’ empirically estimated PoDs represent the
information used to formulate the constraint set. Accordingly the CIMDO-density—the
BSMD—is the posterior density that is closest to the prior distribution and that is consistent with
the empirically estimated PoDs of the banks making up the system.

In order to formalize these ideas, we proceed by defining a banking system—portfolio of

banks—comprising two banks; i.e., bank X and bank Y, whose logarithmic returns are
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characterized by the random variables x and y. Hence we define the CIMDO-objective function

as:® Clp.q]=l Ip(x,y)in {%} dxdy, where g(x,) and p(ry) € R,
q

2

It is important to point out that the prior distribution follows a parametric form ¢ that is
consistent with economic intuition (e.g., default is triggered by a drop in the firm’s asset value
below a threshold value) and with theoretical models (i.e., the structural approach to model risk).
However, the parametric density ¢ is usually inconsistent with the empirically observed
measures of distress. Hence, the information provided by the empirical measures of distress of
each bank in the system is of prime importance for the recovery of the posterior distribution. In
order to incorporate this information into the posterior density, we formulate consistency-
constraint equations that have to be fulfilled when optimizing the CIMDO-objective function.
These constraints are imposed on the marginal densities of the multivariate posterior density, and

are of the form:
[[pCon, dxdy=PoDl[ [ p(x.9) 7, dvdx=PoD; 0

where p(x, y)is the posterior multivariate distribution that represents the unknown to be solved.
PoD; and PoD; are the empirically estimated probabilities of distress (PoDs) of each of the

banks in the system, and Z[x-»' o)’ Z[xy ) are indicating functions defined with the distress

thresholds )., estimated for each bank in the portfolio. In order to ensure that the solution for

p(x, y)represents a valid density, the conditions that p(x,y) >0 and the probability additivity

> A detailed definition and development of the CIMDO objective function and constraint set, as well as the
optimization procedure that is followed to solve the CIMDO functional is presented in Segoviano (2006b).
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constraintJ‘ I p(x,y)dxdy=1, also need to be satisfied. Once the set of constraints is defined, the

CIMDO-density is recovered by minimizing the functional:

L[p.q]=| [ pCe,y)in p(x, y)drdy [ [ p(x, y)n g(x, y) dxdy + 2)

A Uj.p(x,y) X oy xdy — PoDj‘} +4, U'[p(x,y) X oy ydx— Pthy} + 1 Ujp(x,y) dxdy—l}

where 4,4, represent the Lagrange multipliers of the consistency constraints and x represents

the Lagrange multiplier of the probability additivity constraint. By using the calculus of
variations, the optimization procedure can be performed. Hence, the optimal solution is

represented by a posterior multivariate density that takes the form

() =4(x.) epol+; Oy, ez ﬁ} 3)

Intuitively, imposing the constraint set on the objective function guarantees that the posterior
multivariate distribution—the BSMD—contains marginal densities that satisfy the PoDs
observed empirically for each bank in the banking portfolio. CIMDO-recovered distributions
outperform the most commonly used parametric multivariate densities in the modeling of
portfolio risk under the Probability Integral Transformation (PIT) criterion.’ This is because
when recovering multivariate distributions through the CIMDO approach, the available
information embedded in the constraint set is used to adjust the “shape” of the multivariate
density via the optimization procedure described above. This appears to be a more efficient
manner of using the empirically observed information than under parametric approaches, which

adjust the “shape” of parametric distributions via fixed sets of parameters. A detailed

® The standard and conditional normal distributions, the t-distribution, and the mixture of normal distributions.
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development of the PIT criterion and Monte Carlo studies used to evaluate specifications of the
CIMDO-density are presented in Segoviano (2006b). In Appendix 3, we provide a summary of
the evaluation criterion and its results.

B. Distress Dependence among Banks in the System

The BSMD embeds the structure of linear and nonlinear default dependence among the banks
included in the portfolio that is used to represent the banking system. Such dependence structure
is characterized by the copula function of the BSMD; i.e., the CIMDO-copula, which changes at
each period of time, consistently with changes in the empirically observed PoDs. In order to
illustrate this point, we heuristically introduce the copula approach to characterize dependence
structures of random variables and explain the particular advantages of the CIMDO-copula. For
further details see Segoviano (2009).

The copula approach

The copula approach is based on the fact that any multivariate density, which characterizes the
stochastic behavior of a group of random variables, can be broken into two subsets of
information: (i) information of each random variable; i.e., the marginal distribution of each
variable; and (i1) information about the dependence structure among the random variables. Thus,
in order to recover the latter, the copula approach sterilizes the marginal information of each
variable, consequently isolating the dependence structure embedded in the multivariate density.
Sterilization of marginal information is done by transforming the marginal distributions into
uniform distributions; U(0,1), which are uninformative distributions.” For example, let x and y be

two random variables with individual distributions x ~ F', y ~ H and a joint distribution

7 For further details, proofs and a comprehensive and didactical exposition of copula theory, see Nelsen (1999), and
Embrechts (1999) where also properties and different types of copula functions are presented.
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(x, y) ~ G. To transform x and y into two random variables with uniform distributions U(0,1) we
define two new variables as u = F (x),v=H (), both distributed as U(0,1) with joint density

c[u, v] . Under the distribution of transformation of random variables, the copula function c[u, v]

1s defined as:

g[F(fl) (u),H(fl) (v)}
SLF ) Ja[E#7 ()]

cluv]= @)
where g, £, and & are defined densities. From equation (4), we see that copula functions are
multivariate distributions, whose marginal distributions are uniform on the interval [0,1].
Therefore, since each of the variables is individually (marginally) uniform; i.e., their information
content has been sterilized, their joint distribution will only contain dependence information.
Rewriting equation (4) in terms of x and y we get:

e[F(x).H(v)]= —fg[)[j;f[]y] : (5)

From equation (5), we see that the joint density of # and v is the ratio of the joint density
of x and y to the product of the marginal densities. Thus, if the variables are independent,
equation (5) is equal to one.

The copula approach to model dependence possesses many positive features when compared to
correlations (See Box 1). In comparison to correlation, the dependence structure as characterized
by copula functions, describes linear and non-linear dependencies of any type of multivariate
densities, and along their entire domain. Additionally, copula functions are invariant under
increasing and continuous transformations of the marginal distributions. Under the standard

procedure, first, a given parametric copula is chosen and calibrated to describe the dependence
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structure among the random variables characterized by a multivariate density. Then, marginal
distributions that characterize the individual behavior of the random variables are modeled
separately. Lastly, the marginal distributions are “coupled” with the chosen copula function to
“construct” a multivariate distribution. Therefore, the modeling of dependence with standard
parametric copulas embeds two important shortcomings:

(1) It requires modelers to deal with the choice, proper specification and calibration of parametric
copula functions; i.e., the copula choice problem (CCP). The CCP is in general a challenging
task, since results are very sensitive to the functional form and parameter values of the chosen
copula functions (Frey and McNeil, 2001). In order to specify the correct functional form and
parameters, it is necessary to have information on the joint distribution of the variables of
interest, in this case, joint distributions of distress, which are not available.

(i1) The commonly employed parametric copula functions in portfolio risk measurement require
the specification of correlation parameters, which are usually specified to remain fixed through
time (see Appendix 1). Thus, the dependence structure that is characterized with parametric
copula functions, although improving the modeling of dependence vs. correlations, still embeds

the problem of characterizing dependence that remains fixed through time.*

¥ Note that even if correlation parameters are dynamically updated using rolling windows, correlations remain fixed
within such rolling windows. Moreover, the choice of the length of such rolling windows remains subjective most of
the time.



18

Box 1. Drawbacks to the Characterization of Distress Dependence of Financial Returns
with Correlations

Interdependencies of financial returns have been traditionally modeled based on correlation analysis (De Bandt
and Hartmann, 2001). However, the characterization of financial returns with correlations presents important
drawbacks, the most relevant of which are the following.

Financial Returns and Gaussian Distributions

The popularity of linear correlation stems from the fact that it can be easily calculated, easily manipulated under
linear operations, and is a natural scalar measure of dependence in the world of multivariate normal
distributions. However, empirical research in finance shows that distributions of financial assets are seldom in
this class. 1/ Thus, using multivariate normal distributions and, consequently, linear correlations, might prove
very misleading for describing bank distress dependence (Embrechts, McNeil, and Straumann, 1999).
Moreover, when working with heavy tailed distributions—that usually characterize financial asset returns—
their variances might not be finite; hence correlation becomes undefined. 2/

Linear and Nonlinear Dependence

Another problem associated with correlation is that the data may be highly dependent, while the correlation
coefficient is zero. Equivalently, the independence of two random variables implies they are uncorrelated, but
zero correlation does not imply independence. A simple example where the covariance disappears despite

strong dependence between random variables is obtained by taking X ~ N (0, 1) ,Y = X, since the third

moment of the standard normal distribution is zero.

Nonlinear Transformations

In addition, linear correlation is not invariant under nonlinear strictly increasing transformations 7 : R — R.
For two real-valued random variables we have in general p (T (X ) , I (Y )) £ p (X Y ) This is relevant

when modeling dependence among financial assets. For example, suppose that we have a copula function
describing the dependence structure among bank percentage returns. If we decide to model the dependence
among logarithm returns, the copula will not change, only the marginal distributions (Embrechts, McNeil, and
Straumann, 1999).

Dependence of Extreme Events

Furthermore, correlation is a measure of dependence in the center of the distribution, which gives little weight
to tail events; i.e., extreme events, when evaluated empirically. Hence, since distress is characterized as a tail
event, correlation is not an appropriate measure of distress dependence when marginal distributions of financial
assets are non-normal. (De Vries, 2005).

1/ Empirical support for modeling financial returns with z-distributions can be found in Danielsson and de Vries
(1997), Hoskin, Bonti, and Siegel (2000), and Glasserman, Heidelberger, and Shahabuddin (2000).

2/ Even for jointly elliptical distributed random variables there are situations where using linear correlation does
not make sense. If we modeled asset values using heavy-tailed distributions; e.g., #,-distributions, the linear
correlation is not even defined because of infinite second moments.
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The CIMDO-copula

Our approach to model multivariate densities is the inverse of the standard copula approach. We
first infer the CIMDO-density as explained in Section III.A. The CIMDO-density embeds the
dependence structure among the random variables that it characterizes; therefore, once we have
inferred the CIMDO-density, we can extract the copula function describing such dependence
structure, i.e., the CIMDO-copula. This is done by estimating the marginal densities from the
multivariate density and using Sklar’s theorem. The CIMDO-copula maintains all the benefits of
the copula approach:

(1) It describes linear and non-linear dependencies among the variables described by the
CIMDO-density. Such dependence structure is invariant under increasing and continuous
transformations of the marginal distributions.

(i1) It characterizes the dependence structure along the entire domain of the CIMDO-density.
Nevertheless, the dependence structure characterized by the CIMDO-copula appears to be more
robust in the tail of the density (see discussion below), where our main interest lies i.e., to
characterize distress dependence.

However, the CIMDO-copula avoids the drawbacks implied by the use of standard parametric
copulas:

(1) It circumvents the Copula Choice Problem. The explicit choice and calibration of parametric
copula functions is avoided because the CIMDO-copula is extracted from the CIMDO-density
(as explained above); therefore, in contrast with most copula models, the CIMDO-copula is
recovered without explicitly imposing parametric forms that, under restricted data sets, are
difficult to model empirically and frequently wrongly specified. It is important to note that under

such information constraints, i.e., when only information of marginal probabilities of distress
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exists; the CIMDO-copula is not only easily implementable, it outperforms the most common
parametric copulas used in portfolio risk modeling under the PIT criterion. This is especially on
the tail of the copula function, where distress dependence is characterized. See Appendix 3 for a
summary of this evaluation criterion and its results.

(i) The CIMDO-copula avoids the imposition of constant correlation parameter assumptions. It
updates “automatically” when the probabilities of distress are employed to infer the CIMDO-
density change. Therefore, the CIMDO-copula incorporates banks’ distress dependencies that
change, according to the dissimilar effects of shocks on individual banks’ probabilities of
distress, and that are consistent with the economic cycle.

In order to formalize these ideas, note that if the CIMDO-density is of the form presented in

equation (3), Appendix 2 shows that the CIMDO-copula, c,(u,v), is represented by

[ F'\ ). H, () ] exp{—[1+;1 }} (6)
[ alr @ Jesw L, )] ol 0)Jexo (A, (0] e

c.(u,v)=

where u=F,(x)< x=F '(u), and v=H (y) < y=H,'(v). Equation (6) shows that the
CIMDO-copula is a nonlinear function of 4,4, and x, the Lagrange multipliers of the CIMDO

functional presented in equation ( 2 ). Like all optimization problems, the Lagrange multipliers
reflect the change in the objective function’s value as a result of a marginal change in the
constraint set. Therefore, as the empirical PoDs of individual banks change at each period of
time, the Lagrange multipliers change, the values of the constraint set change, and the CIMDO-
copula changes; consequently, the default dependence among the banks in the system changes.
Thus, as already mentioned, the default dependence gets updated endogenously; i.e.,

“automatically” with changes in empirical PoDs at each period of time. This is a relevant
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improvement over most risk models, which usually account only for linear dependence
(correlation) that is also assumed to remain constant over the cycle or a fixed period of time.

IV. BANKING STABILITY MEASURES

The BSMD characterizes the probability of distress of the individual banks included in the
portfolio, their distress dependence, and changes across the economic cycle. This is a rich set of
information that allows us to analyze (define) banking stability from three different, yet
complementary, perspectives. For this purpose, we define a set of BSMs to quantify:

(a) Common distress in the banks of the system.

(b) Distress between specific banks.

(c) Distress in the system associated with a specific bank.

We hope that the complementary perspectives of financial stability brought by the proposed
BSMs, represent a useful tool set to help financial supervisors to identify how risks are evolving
and where contagion might most easily develop.

For illustration purposes, and to make it easier to present definitions below, we proceed by
defining a banking system—portfolio of banks—comprising three banks, whose asset values are
characterized by the random variables x and y and ». Hence, following the procedure described

in Section III.A, we infer the CIMDO-density function, which takes the form:

p(x,y,r) =q(x,y,r) eXp{—[1+/A¢+(@%,w))+@ z[xg,m))+ (4 ;g[xg’w))}}. (7)

where g(x,y,r) and p(x,y,r) € R’.
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A. Common Distress in the Banks of the System

In order to analyze common distress in the banks comprising the system, we propose the Joint

Probability of Distress (JPoD) and the Banking Stability Index (BSI).

The Joint Probability of Distress

The Joint Probability of Distress (JPoD) represents the probability of all the banks in the system
(portfolio) becoming distressed, i.e., the tail risk of the system. The JPoD embeds not only
changes in the individual banks’ PoDs, it also captures changes in the distress dependence
among the banks, which increases in times of financial distress; therefore, in such periods, the
banking system’s JPoD may experience larger and nonlinear increases than those experienced by

the (average) PoDs of individual banks. For the hypothetical banking system defined in equation

(7) the JPoD is defined as P(X NY N R) and it is estimated by integrating the density (BSMD)

as follows: | [ | » (x, v,r)dxdydr = JPoD (8)

The Banking Stability Index

The Banking Stability Index (BS]) is based on the conditional expectation of default probability
measure developed by Huang (1992).” The BSI reflects the expected number of banks becoming

distressed given that at least one bank has become distressed. A higher number signifies

increased instability. For example, for a system of two banks, the BSI is defined as follows:

P(XZx;)+P(Y2x;’)
1-P(X<x,Y<x))

BSI= (9)

? This function is presented in Huang (1992). For empirical applications see Hartmann et al (2001).
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The BSI represents a probability measure that conditions on any bank becoming distressed,
without indicating the specific bank."

B. Distress between Specific Banks

Distress Dependence Matrix

For each period under analysis, for each pair of banks in the portfolio, we estimate the set of
pairwise conditional probabilities of distress, which are presented in the Distress Dependence
Matrix (DiDe). This matrix contains the probability of distress of the bank specified in the row,
given that the bank specified in the column becomes distressed. Although conditional
probabilities do not imply causation, this set of pairwise conditional probabilities can provide
important insights into interlinkages and the likelihood of contagion between the banks in the
system. For the hypothetical banking system defined in equation (7), at a given date, the DiDe is
represented in Table 1.

Table 1. Distress Dependence Matrix

Bank X Bank Y Bank R
Bank X 1 P(X/Y) P(X/R)
Bank Y P(Y/X) 1 P(Y/R)
Bank R P(R/X) P(R/Y) 1

Source: Authors’ calculations.

Where for example, the probability of distress of bank X conditional on bank Y becoming

P(X=x,Y2x))
P(Y=zx))

distressed is estimated by P(X > X,

Y2x5)= (10)

' Huang (1992) shows that this measure can also be interpreted as a relative measure of banking linkage. When the
BSI=1 in the limit, banking linkage is weak (asymptotic independence). As the value of the BSI increases, banking
linkage increases (asymptotic dependence).
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C. Distress in the System Associated with a Specific Bank

The Probability of Cascade Effects

The Probability of Cascade Effects (PCE), given that a specific bank becomes distressed,
characterizes the likelihood that one, two, or more institutions, up to the total number of banks in
the system become distressed. Therefore, this measure quantifies the potential “cascade” effects
in the system given distress in a specific bank. Consequently, we propose this measure as an
indicator to quantify the systemic importance of a specific bank if it becomes distressed. Again,
it is worth noting that conditional probabilities do not imply causation; however, we consider
that the PCE can provide important insights into systemic interlinkages among the banks
comprising a system. For example, in a banking system with four banks, X, Y, Z, and R, the PCE
given that bank X becomes distressed, corresponds to the probability set marked in the Venn
diagram (Figure 3). In this example, the PCE can be defined as follows:

PCE=P(Y/X)+P(Z/X)+P(R/X)
-[P(YNR/X)+P(YNZ/X)+P(ZNR/X)] (11)
+P(YNRNZ/X)

Figure 3. Probability of Cascade Effects

Source: Authors’ estimations.
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V. BANKING STABILITY MEASURES: EMPIRICAL RESULTS

To illustrate the methodology, in this section we estimate the proposed BSMs to:

(1) Examine relative changes in stability over time and among different banks’ business.

(i1) Analyze cross-regional effects between different banking groups.

(ii1) Analyze the effect of foreign banks on sovereigns with banking systems with cross-border
institutions.

Our estimations are performed from 2005 up to October 2008 using only publicly available data,
i.e., CDS-spreads and stock prices from Bloomberg, and include major American and European
banks and sovereigns in Latin America, Eastern Europe and Asia. Implementation flexibility in
our approach is of relevance for banking stability surveillance, since cross-border financial
linkages are growing and becoming increasingly significant, as has been highlighted by the
financial market turmoil of recent months. Thus, surveillance of banking stability cannot stop at
national borders. An important feature of this methodology is that it can be implemented with
alternative measures of probabilities of distress of individual banks, which we describe below.
We continue by presenting the estimated BSMs and analyzing them.

A. Estimation of Probabilities of Distress of Individual Banks

There are alternative approaches by which probabilities of distress (PoDs) of individual banks
can be empirically estimated. The most well known include the structural approach (SA), PoDs
derived from Credit Default Swap (CDS) spreads (CDS-PoDs), or from out-of-the-money
(OOM) option prices. These alternative approaches present diverse advantages and
disadvantages, in terms of availability of data necessary for their implementation,

parametrization of quantitative techniques, and consistency of empirical estimations. An
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extensive empirical analysis of these approaches is presented in Athanosopoulou, Segoviano, and
Tieman (2009). The SA presented significant difficulties for the proper parametrization of its
quantitative framework. It also produced estimates that appeared inconsistent. The OOM
approach suffered from the latter problem, in addition to data restrictions for its implementation
across time. Nor were CDS-PoDs free of problems. There are arguments against the
trustworthiness of the CDS spreads as a reliable barometer of firms’ financial health. In
particular, CDS spreads may exaggerate a firm’s “fundamental” risk when there is (i) lack of
liquidity in the particular CDS market, and (ii) generalized risk aversion in the financial system.
Although such arguments might be correct to some degree, these factors can become self-
fulfilling if they affect the market’s perception and, therefore, have a real impact on the market’s
willingness to fund a particular firm. Consequently, this can cause a real effect on the firm’s
financial health, as has been seen in the recent financial turmoil. Moreover, although CDS
spreads may overshoot at times, they do not generally stay wrong for long. Rating agencies have
mentioned that CDS spreads frequently anticipate rating changes. Though the magnitude of the
moves may at times be unrealistic, the direction is usually a good distress signal. For these
reasons, and due to the problems encountered with the other approaches (which we consider
more serious), we decided to use CDS-PoDs to estimate the proposed BSMs. Although we
consider that CDS-PoDs represent reasonable input variables to estimate the proposed BSMs, we
keep in mind their potential shortcomings when drawing conclusions in our analysis.
Furthermore, since none of these estimators represents a “first best” choice, we continue
performing empirical research to improve the estimation of individual banks’ PoDs and to
investigate which of the alternative approaches (already investigated or to be investigated) is the

most appropriate for specific countries and types of banks. Thus, if we found a better approach, it
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would be straightforward to replace the chosen PoD approach in the estimation of the BSMs,
since PoDs are exogenous variables in the CIMDO framework. Equivalently, although in this
exercise we employed CDS-PoDs, the CIMDO methodology is not intrinsically related to CDS-
PoDs. Finally, we would like to explain our definition of “distress” risk. Assessing at what point
“liquidity risk” becomes solvency risk, i.e., credit risk, is difficult, and disentangling these risks
is a complex issue. Additionally, note that many times, CDS cover not only the event of default
of an underlying security but a wider set of “credit events”, i.e., downgrades. We consider the
combined effects of these factors, which are embedded in CDS spreads, to be “distress” risk, i.e.,
large losses and the possible default of a specific bank. Thus, our definition of “distress” risk is
broader than “default”, “credit” or “liquidity” risks.

B. Examination of Relative Changes of Stability over Time

The analysis of risks among banks in specific countries and among different business lines is
illustrated by estimating our proposed measures of stability for a set of large US banks as it was
up to October 2008 using only publicly available data. For this purpose, we focus on the largest
U.S. banking groups. The bank holding companies (BHC) that are included are Citigroup, Bank
of America, JPMorgan, and Wachovia. The investment banks (IB) included are Goldman Sachs,
Lehman Brothers, Merrill Lynch, and Morgan Stanley.'' In addition to the major U.S. banks, we
included Washington Mutual (WaMu) and AIG (a thrift and an insurance company both under

intense market pressure in September 2008). The results can be summarized as follows:

' Although IBs have recently changed their status to BHCs, we keep referring to this group of banks as IBs for the
purpose of differentiating their risk profiles in the analysis.
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Perspective 1. Common Distress in the Banks of the System: BSI and JPoD

o U.S. banks are highly interconnected, with distress in one bank associated with high
probability of distress elsewhere. This is clearly indicated by the JPoD. Moreover,
movements in the JPoD and BSI coincide with events that were considered relevant by

the markets on specific dates. (Figures 4 and 5).

o Distress dependence across banks rises during times of crisis, indicating that systemic
risks, as implied by the JPoD and the BSI, rise faster than idiosyncratic risks. The JPoD
and the BSI not only take account of individual banks’ probabilities of distress, but these
measures also embed banks’ distress dependence. Therefore, these measures may
experience larger and nonlinear increases than those experienced by the probabilities of
distress (PoDs) of individual banks. Figure 6 shows that daily percentage changes of the
JPoD are larger than daily percentage changes of the individual (average) PoDs. This
empirical fact provides evidence that in times of distress, not only do individual PoDs

increase, but so does distress dependence.

J Risks vary by the business line of the banks. Figures 4 and 5 show that IBs’ JPoD and
BSI are larger than BHCs. This chart also shows that for IBs, risks were higher at the

time of Lehman’s collapse.

Perspective 2. Distress between Specific Banks: Distress Dependence Matrix

The DiDes presented in Table 2 show the (pairwise) conditional probabilities of distress of the
bank in the column, given that the bank in the row falls into distress. The DiDe is estimated
daily. For purposes of analysis, we have chosen July 1, 2007, and September 12, 2008; thus, we

can show how conditional probabilities of distress have changed from a pre-crisis date to the day
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before Lehman Brothers filed for bankruptcy. We have also broken these matrices into four

quadrants; i.e., top left (quadrant 1), top-right (quadrant 2), bottom-left (quadrant 3) and bottom

right (quadrant 4), to make explanations clearer. From these matrices we can observe the

following:

Links across major U.S. banks have increased greatly. This is clearly shown by the
conditional PoDs presented in quadrant 1 of the DiDe’s presented in Table 2. On average, if
any of the US banks fell into distress, the average probability of the other banks being

distressed increased from 27 percent on July 1, 2007 to 41 percent on September 12, 2008.

On September, Lehman was the bank under highest stress. This is revealed by Lehman’s
large PoD conditional on any other bank falling into distress, which on September 12,
reached on average 56 percent (row-average Lehman). Moreover, a Lehman default was
estimated on September 12 to raise the chances of a default elsewhere by 46 percent. In other
words, the PoD of any other bank conditional on Lehman falling into distress went from 25

percent on July 1, 2007 to 37 percent on September 12, 2008 (column-average Lehman).

AIG’s connections to the other major U.S. banks were similar to Lehman’s. This can be seen
by comparing the chances of each one of the U.S. banks being affected by distress in AIG
and Lehman (column AIG vs. column Lehman) on September 12. Links were particularly
close between Lehman, AIG, Washington Mutual, and Wachovia, all of which were
particularly exposed to housing. On September 12, a Lehman bankruptcy implied chances of

88, 43, and 27 percent that WaMu, AIG, and Wachovia, respectively, would fall into distress.
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Perspective 3. Distress in the System Associated with a Specific Bank: Probability of
Cascade Effects

On September 12, using equation (11), we estimated the probability that one or more banks in
the system would become distressed, given that Lehman became distressed. This reached 97
percent. Thus, the possible “domino” effect observed in the days after its collapse, were signaled
by the PCE (Figure 7). This analysis (perspective 3) is in line with the insights brought by the
DiDe (perspective 2), which indicated Lehman’s distress would be associated with distress in

several institutions.

C. Analysis of Cross-Region Effects between Different Banking Groups

In order to gain insight into the cross region effects between American and European banking
groups, we included five major European banks (Barclays and HSBC from the UK, UBS and
Credit-Suisse (CSFB) from Switzerland, and Deutsche from Germany).

Perspective 1. Common Distress in the Banks of the System: BSI and JPoD

o The JPoD indicates that risks among European banks are highly interconnected, with
distress in one bank associated with a high probability of distress elsewhere in Europe.
The European JPoD and BSI move in tandem with movements in the US indicators,

coinciding also with relevant market events. (Figures 4 and 5).

o Distress dependence among banks in Europe also rises during times of crisis, indicating
that systemic risks, as implied by the JPoD and the BSI rise faster than idiosyncratic
risks. In Figure 6 it is clear that also for European banks, the daily percentage changes of

the JPoD are larger than those of the individual (average) PoDs.
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Risks for European banks as measured by JPoD and the BSI appear lower than those for US IBs’
and very similar to those for US BHCs’ across time. Figures 4 and 5 also show that risks among
European banks were similar at the time of the Bear Stearns debacle (March 17) and Lehman’s
collapse (September 15). This is in contrast to American banks for which risks appear larger at
the time of Lehman’s collapse. However, the situation in Europe appeared to be deteriorating fast

in mid-September.

Perspective 2. Distress between Specific Banks: Distress Dependence Matrix

Links across major European banks have increased significantly (Table 2). This is clearly shown
by the conditional PoDs presented in quadrant 4 of the DiDe matrices. On average, if any of the
European banks appeared in distress, the probability of the other banks being distressed

increased from 34 percent on July 1, 2007 to 41 percent on September 12, 2008.

o Among the European banks under analysis, UBS appeared to be the bank under highest
stress on September 12, 2008. It showed the largest PoD conditional on any other bank
falling into distress, reaching on average 48 percent (row-average UBS). UBS’s distress
would also be associated with high stress on Barclays, whose probability of distress
conditional on UBS becoming distressed was estimated to reach 31 percent on September

12, 2008. This was a significant increase from 18 percent estimated on July 1, 2007.

e Among the European banks under analysis, distress at Credit Suisse (CSFB) would be
associated with the highest stress on other European banks on September 12, 2008. The
(average) PoD of European banks conditional on CSFB falling into distress reached 43
percent (quadrant 4, column-average CSFB). However, the European bank that would be
associated with the highest distress among American Banks is Deutsche. The (average) PoD

of American banks conditional on Deutsche falling into distress reached 35 percent (quadrant
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2, column-average Deutsche). This might be related to the high integration of Deutsche in

some markets at the global level.

e On September 12, 2008, while failure of one of the U.S. banks implied (on average) chances
of distress of one European bank of 7 percent (quadrant 3), the (average) probability of
distress of one American bank, conditional on a European bank becoming distressed is above
30 percent (quadrant 2). This is possibly because a European default would imply more

generalized problems, including in U.S. markets.

Even though distress dependence does not imply causation, these results help explain why the
Lehman bankruptcy led to a global crisis. The bankruptcy of Lehman appears to have sealed the
fate of AIG and Washington Mutual, while putting greatly increased pressure on Wachovia, as
indicated by the DiDe. In market terms, this was equivalent to the failure of a major U.S.
institution, with significant reverberations on both sides of the Atlantic, as indicated by the PCE.
D. Analysis of Foreign Banks’ Risks to Sovereigns with Banking Systems with Cross-

Border Institutions

We extend our methodology to analyze how rising problems in advanced country banking
systems are linked with increasing risks to emerging markets. For this purpose, we use CDS
spreads written on sovereign and banks’ bonds to derive probabilities of distress of banks and
sovereigns. Therefore, such PoDs represent markets’ views of risks of distress for these banks
and countries. While absolute risks are discussed, the focus is largely on cross distress
dependence of risks and what they can say about emerging vulnerabilities (perspective 2). More
precisely, using publicly available data we estimate cross vulnerabilities between Latin
American, eastern European, and Asian emerging markets and the advanced country banks with

larger regional presences in these regions. The countries and banks analyzed are:
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Figure 6. Daily Percentage Change: Joint and Average Probability of Distress
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Figure 7. PCE: Lehman and AIG
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e Latin America. Countries: Mexico, Colombia, Brazil and Chile. Banks: BBV A, Santander,
Citigroup, Scotia Bank and HSBC.

e Eastern Europe. Countries: Bulgaria, Croatia, Hungary and Slovakia. Banks: Intesa,
Unicredito, Erste, Societe Generale, and Citigroup.

e Asia. Countries: China, Korea, Thailand, Malaysia, the Philippines, and Indonesia. Banks:
Citigroup, JP Morgan Chase, HSBC, Standard and Chartered, BNP, Deutsche, and DBS.

The key observation from the analysis is that concerns about bank solvency and emerging market

instability appear to be highly interlinked. The markets’ evolving views of risks of distress for

these banks and countries, based on market credit default swaps, are presented in Figure 8.
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The level of risk in Latin America and Asia was falling in the run-up to the crisis, and was about
to converge with the low level of concern about advanced country banks and Eastern Europe.
However, since August 2008, both sovereign risk and bank risk have risen sharply and moved
increasingly in tandem. This points to close interlinkages between concerns about bank solvency
and emerging market instability.

Perspective 2. Distress between specific banks: distress dependence matrix

To gain insight into these interlinkages and how they have evolved, in Tables 3, 4 and 5, we
present the DiDe matrices estimated for Latin America, Eastern Europe and Asia respectively.
We have chosen July 1, 2007, and September 16, 2008; thus, we can show how conditional
probabilities of distress have changed from a pre-crisis period to the post-Lehman episode. The
DiDe matrices report probabilities that a bank/country in a row will become distressed if the
bank/country in the column fails. Most importantly, as well as links across countries (bottom
right, quadrant 4) and across banks (top left, quadrant 1) they report cross dependencies between
these groups. The bottom left (quadrant 3) reports how bank problems can presage sovereign
distress, while the top right (quadrant 2) indicates the opposite link. As noted above, while

dependence does not imply causation, such correlations provide important insights. In particular:

e Cross dependencies have risen sharply over the crisis, implying that systemic risks have
leapt. This is clearly seen when comparing the probability of distress of the sovereigns
conditional on distress on the banks between July 2007, when sovereigns appeared to have
low risk of contamination, and September 2008. For Latin America, the average conditional
PoD increased from 39 to 51 percent, for Eastern Europe from 16 to 46 percent and for Asia,
from 12 to 34 percent (quadrant 3). The increase in the probability of distress of the banks,

conditional on distress of the sovereigns, is even more significant, as eroding capital has
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increased exposure. For Latin America, the average conditional PoD of the relevant banks
increased from 13 to 54 percent, for Eastern Europe from 11 to 45 percent and for Asia, from

4 to 30 percent (quadrant 2).

Of particular interest is to see how bank problems can presage sovereign distress. We can see
that before the crisis, the conditional probabilities of distress for Chile and Mexico were the
lowest in Latin America (quadrant 3, row-average); however, on September 16, 2008, there
was a significant increase for Mexico, making it the country with the second highest
conditional PoD in its region. Chile also recorded an increase, although it still remains the
country with the lowest conditional PoD in its region. In Eastern Europe, on September 16,
our model was already signaling that Bulgaria and Hungary were under significant stress. In
Asia, Indonesia, Korea and the Philippines were at highest risk. However Slovakia and China

remained the least stressed in those regions (quadrant 3, row-average).

Country distress conditional on bank distress appears high (quadrant 3). Distress of Spanish
banks would be associated with the highest distress in Latin America and Italian banks in
Eastern Europe. Distress of Standard Chartered would be associated with significant stress in
Asia (quadrant 3, column-average). These results suggest that geographic roles matter, since

these banks have a substantial presence in the respective regions under analysis.

Moreover, these banks seem less dependent than others on country risks (quadrant 2, row-
average). This seemingly paradoxical pattern is likely because the Spanish/Italian banks are
seen as relatively safe, and hence their distress would signal larger systemic financial

problems that would feed through to emerging markets in which they have a large presence.
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Vulnerabilities between countries (quadrant 4) were highest in Brazil, Mexico, Bulgaria
Hungary, Indonesia, Philippines and Korea (quadrant 4, row-average). Vulnerabilities

between banks (quadrant 1) were highest for Citi, Scotia, Erste (quadrant 1, row-average).

Direct links between banks and countries matter. Distress in countries with a particularly
large foreign bank presence—such as Mexico and Croatia—is highly linked with potential
banking distress (quadrant 2). At a more specific level, direct links from individual banks to
countries also matter—for example, distress at Citigroup, Intesa, and DBS are relatively
more important for Mexico, Hungary, and Indonesia, respectively, than for other countries

(quadrant 3).

These results also illustrate how the leap in systemic risk, and hence indirect links, has
affected Asia, over and above direct regional and bilateral ties. This is because direct
ownership and lending by foreign banks is generally lower in Asia than in Eastern Europe or
Latin America. Since the banking systems are more insulated from these direct links, the
results are more likely to reflect indirect ones through overall risks linked to bank/sovereign
distress. In addition, links between banks may be somewhat less important for emerging
Asia, as borrowing through equity markets tends to play a larger role in local financial
markets. Thus, powerful indirect effects appear evident in all cases, particularly for Korea

and Indonesia.

An important strength of our approach is that market prices reflect perceptions of direct links
and indirect links. For the former, market presence might be an important element, as in
Latin America and Eastern Europe; however, for the latter, liquidity pressures and systemic
banking distress/macroeconomic spillovers might play an important role. This feature of our

approach appears to be particularly relevant in Asia.
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The results confirm that systemic bank risks and emerging market vulnerabilities are highly
dependent. This likely largely reflects the fact that distress in individual banks is a bellweather
for the state of the overall financial system, via direct or indirect links. In financial terms, the
world is increasingly a global village. The bottom line is that policies to limit systemic risks in
advanced country financial systems would also sharply reduce risks to emerging markets.

Figure 8. Foreign-Bank and Sovereign Risks
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V1. CONCLUSIONS

The purpose of this paper is to seek to provide a set of quantitative measures of the financial
stability of the main banks in any country, or region, so that this portfolio of banks’ relative
stability as a group can be tracked over time and compared in a cross-section of comparative
groupings. To this end we have developed a new framework that has several advantages.

o It provides measures that allow us to analyze (define) stability from three different, yet,

complementary perspectives.

° It can be constructed from a very limited set of data, i.e., the empirical measurements of
default probabilities of individual banks. Such measurements can be estimated using
alternative approaches, depending on data availability; thus, the data set that is necessary
for the estimation is available in many countries, both developed and developing, as long

as there is reasonable data to reflect individual banks’ PoDs.

o It embeds the banks’ default interdependence structure (copula function), which captures

linear and non-linear default dependencies among the main banks in a system.

o It allows the quantification of changes in the banks’ default interdependence structure at
specific points in time; hence, it can be useful to quantify the empirically observed
increases in dependencies in periods of distress, and relax the commonly used assumption

in risk measurement models of fixed correlations across time.

The empirical part of the paper applied this methodology to a number of country and regional
examples using publicly available information up to October 2008. This implementation

flexibility is of relevance for banking stability surveillance, since cross-border financial linkages
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are growing and becoming significant, as has been highlighted by the financial market turmoil of
recent months. Thus, surveillance of banking stability cannot stop at national borders.

The proposed measures will allow us to complement previous research in financial stability. For
example, by trying to predict future movements of the BSMs for use as an early-warning
mechanism; exploring the significant macroeconomic and financial factors and shocks
influencing the BSMs, in order to identify macro-financial linkages; and exploring the factors
that can limit and reverse tendencies towards instability, so as to discover what instruments may

be available (and under what conditions) to control such instability.
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APPENDIX I. COPULA FUNCTIONS

Let x and y be two random variables with individual distributions x ~ ',y ~ H and a joint
distribution (x, y) ~ G. The joint distribution contains three #ypes of information. Individual

(marginal) information on the variable x, individual (marginal) information on the variable y and
information on the dependence between x and y. In order to model the dependence structure
between the two random variables, the copula approach sterilizes the marginal information on x
and y from their joint distribution; consequently, isolating the dependence structure. Sterilization
of marginal information is done by transforming the distribution of x and y into a uniform
distribution; U(0,1), which is uninformative. Under this distribution the random variables have
an equal probability of taking a value between 0 and 1 and a zero probability of taking a value
outside [0,1]. Therefore, this distribution is typically thought of as being uninformative. In order
to transform x and y into U(0,1) we use the Probability Integral Transformation (PIT), presented
in Appendix 3.

Under the PIT, two new variables are defined as u = F (x),v=H (y), both distributed as U(0,1)
with joint density ¢ [u, v] . Under the distribution of transformation of random variables (Cassella

and Berger, 1990), the copula function ¢[u,v] is defined as:
F (u ,H(_l) v
] £ A0

SLFO @) [a HOO(0)]

where g, f, and h are defined densities.

(12)

From equation (12), we see that copula functions are multivariate distributions, whose marginal
distributions are uniform on the interval [0,1]. Therefore, since each of the variables is
individually (marginally) uniform (i.e. their information content has been sterilized via the PIT),
their joint distribution will only contain dependence information. Rewriting equation (12) in
terms of x and y we get

c[F(x ]— x]chyl] (13)

From equation (13), we see that the joint density of u# and v is the ratio of the joint density of x
and y to the product of the marginal densities. Therefore, if the variables are independent,
equation (13) is equal to one.
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Sklar’s Theorem
Sklar’s Theorem is used in all applications of copulas. Let G be a joint distribution function with
marginals ' and H. Then there exists a copula C such that for all x, yin R,

G[x,y]=C[F(x),H(»)]. (14)

If F and H are continuous, then C is unique; otherwise, C is uniquely determined on RanF x
RanH. Conversely, if C is a copula and F and H are distribution functions, then the multivariate
function G defined by equation (14) is a joint distribution function with univariate margins F and
H. Then, the dependence structure is completely characterized by the copula C (Nelsen, 1999).
Nelsen also provides the following corollary to Sklar's theorem.

Corollary: Let G be any joint distribution with continuous marginals /" and H. Let

F (u),H ) (v)denote the (quasi) inverses of the marginal distributions. Then there exists a
unique copula C: [0,1] x [0,1]-[0,1] such that, g| F™ (u), " (v) |V €[0,1] x[0,1]. If the

cross partial derivatives of equation (14) are taken, we obtain:

gl y]=f[x]hly]e[F(x). 1 ()] (15)

The converse of Sklar’s theorem implies that we can couple together any marginal distributions,
of any family, with any copula function and a valid joint density will be defined. The corollary

implies that from any joint distribution we can extract the implied copula and marginal
distributions (Nelsen, 1999).

Parametric Copula Functions

In the finance literature, it is common to see the Gaussian-copula and the #-copula for modeling
dependence among financial assets. These are defined as follows:

Gaussian-copula: The copula of the bivariate normal distribution can be written as:

’ o) o) 1 s’ =2pst+t°
co (u,v)—'[_m j_w 2”(1_/02)% exp{ (-] }dsdt. (16)

Where p is the linear correlation coefficient of the corresponding bivariate normal distribution,

and @' denotes the inverse of the distribution function of the univariate standard normal

distribution.
t-copula: The copula of the bivariate ¢-distribution with v degrees of freedom and correlation p

—(v+2)/2
. NG 1 s> =2pst+1’
is: C), (u,v)—Lo Lc 2”(1_/02)% {14‘ U(l—pz) } dsdt.

Where #,' (v) denotes the inverse of the distribution function of the standard univariate z-

(17)

distribution with v degrees of freedom. As it can be seen, this copula depends only on p and v.
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APPENDIX II. CIMDO-COPULA

In order to provide a heuristic explanation of the CIMDO-copula, we compare the copula of a
bivariate CIMDO-distribution and a bivariate distribution of the form that the prior density in the
entropy functional would be set; e.g., a ¢-distribution. First, we recall from equation (4) that
copula functions were defined as

R L O R}
L EO @) EO )]

Assume that the prior has a density function ¢ (x, y) . Hence, its marginal cumulative distribution

functions are of the form, u = F(x) = Ij fm q(x,y)dydx, and
v=H(y)= J._x .[jwq(x,y)dxdy; where u=F(x) < x=F'(u), and v=H(y) < y=H'(v).
Therefore, its marginal densities are of the form, f(x)= J-jw q(x,y)dy, and

h) = q(x,y)dx.

Substituting these into the copula definition we get, the copula of the prior, ¢, (u,v),
g F~' (). H™(v)]
[ alF@,y]dy| q[xH"'()]dx

c,(u,v)=

(18)
Similarly, assume that the CIMDO distribution with g(x,y) as the prior is of the form,

p/(x,\y) =q(x,y)exp {—[1 +;1+ (2;([)(;7 ,w))+ (}; ZW m))}. We also define

u=F(x)ox=F '(u), and v=H, (y) < y=H,'(v).

Its marginal densities take the form,

£ =] atyyexpl-[ 1 G, (<D + oz, (v) | v, and

=] e |-[1+a G, (D+Fr, (1) ]|

Substituting these into the copula definition we get, the CIMDO-copula, c_(u,v),

a7 w.n e f1+a]]

[ alF ey Jexpl -z, (0| [ a[x. 1. ) ]exp| Az, (x)}dx

Equation (19) shows that the CIMDO-copula is a nonlinear function of ;1, ;1\1, and;lz , which

c.(u,v)=

. (19)

change as the PoDs of the banks under analysis change. Therefore, the CIMDO-copula captures
changes in PoDs, as these change at different periods of the economic cycle.
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APPENDIX III. CIMDO-DENSITY AND CIMDO-COPULA EVALUATION FRAMEWORK

We consider extremely important the evaluation framework used to assess whether
CIMDO-distributions and CIMDO-copulas provide improvements over the most commonly
parametric distributions, copulas used for portfolio credit risk modeling. In order to evaluate
these densities, we follow the Probability Integral Transformation approach (PIT) developed by
Diebold et al (1999). In what follows in this section, we provide a summary of the detailed
theoretical results supporting the chosen evaluation criterion. A complete development and
Monte Carlo exercise can be found in (Segoviano, 2006b).

The Probability Integral Transformation Approach (PIT)

Density evaluation is not a trivial problem, since there is no way to rank two incorrect density
forecasts such that all users will agree with the ranking. Ranking depends on the specific loss
functions of the users.'?

However, Diebold et al. (1998) assert that if a forecast coincides with a random variable true data
generating process (DGP), then it will be preferred by all forecast users, regardless of loss
function. Thus this proposition implies that, regardless of the users’ loss function, the correct
density is weakly superior to all forecasts. As a result, Diebold et al. (1998) suggest evaluating
forecasts by assessing whether the forecast densities are correct; i.e., by assessing whether the
forecast coincide with the true DGP.

Nonetheless, the task of determining whether a forecast equals the true DGP appears to be
difficult because the true DGP is never observed. Moreover, the true density may exhibit
structural changes at every point in time. To overcome this difficulty, they developed a method
based on the Probability Integral Transformation (PIT).

Diebold et al. (1998) prove that the series of the Probability Integral Transformations of a series
of density forecasts are distributed iid U(0,1) if the density forecasts coincide with the true DGP.
Thus, to assess whether a series of density forecasts coincides with the corresponding series of

true conditional densities, it is only necessary to test whether the sequence of density forecast
PITs are iid U(0,1).

Diebold et al. (1999) extend their results to the My-multivariate case. Suppose there is a series of
T, My-multivariate density forecasts. They factorize each period’s ¢, joint forecast density into
the product of their conditionals: '

The result is analogous to Arrow's celebrated impossibility theorem. The ranking effectively reflects a social
welfare function, which does not exist.

PNote that the My, multivariate density can be factorized into M ways at each period of time ¢.
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D1 (ltl s lﬁv[) = Pr1 (l?/[wl_l 5e - ltl ). P (l? |ltl) *Pr1 (ltl ).

This procedure produces a set of (M-1) conditionals and (1) marginal density. The PIT’s of the /"
random variable realizations under these M series will be iid U(0,1), individually and also when
taken as a whole, if the multivariate density forecasts are correct. The proof of this assertion in a
time series framework can be found in Diebold et al. (1999).

CIMDO: Density Evaluation

However, we needed to develop a slightly different test. This is because CIMDO recovers
densities with information at each period of time ¢.'* Thus, the density evaluation needs to be
done at specific periods of time . Alternatively, rather than evaluating a time-series as Diebold et
al (1999) do, we would like to evaluate cross-sectionally the multivariate distribution. As a
result, we need to prove that at each point in time ¢, the product of the conditionals and marginal
PIT’s on which a multivariate distribution can be decomposed is iid U(0,1).This proof is not
explicitly presented in Diebold et al (1999); therefore, we develop the proof in Segoviano
(2006b)

In the interest of parsimony, we focus on a portfolio containing two different types of assets
(e.g., types of loans or in the case of this paper, two different banks), whose logarithmic returns

are characterized by the random variables x and y, where x,y,e/' s.t.i=1,...M.
The portfolio bivariate density can be decomposed into,

p(x,y) = p(x)- p(y|x), (20)
p(x,y)=p(y)- p(x|y). 21

We start by analyzing the first case presented in equation (20). Under the PIT, two new variables
are defined as

u=Pkx) =x=P D),
v = Pylx) <y = PCO ).

First we prove that u,v are distributed iid U(0,1) then we prove that they are independent.

Uniform Distribution Proof
Based on the PIT, we present the distributional proof.

Theorem: Probability Integral Transformation

' Recall that the CIMDO- density is re-estimated at each period of time; i.e., it updates period by period.
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Let x be a random vector with absolute continuous cumulative density function (cdf) F.
Define a new random variable, the Probability Integral Transformation (PIT) as,

U = F(x).

Then, U ~ U(0,1) regardless of the original distribution 7. Note that in this case, U = F(x)
is a generalization of u = P(x) and v=P(y/x).

Proof. U ~ U(0,1)

For u on [0,1], we have:

PlU < u] = P[F(x) < u]

= P[F'[F(x)] < F' (u)]

= Plx < F'(u)]

= FIF' (w)]

= u [ |

For u <0, P[U<u]:0 and for u >1,P[U>u]=0 since the range of a cdf'is [0,1].

Independence Proof
Proposition. u,v are independent.

Proof. In order to prove the independence assumption, we know that the joint density ¢ [u, v] is

defined under the distribution of transformations of random variables as (Cassella and Berger,
1990),

clu,v] = p[ PV (w), PV () ] -

ole 2l
2le 2

Since in this case

u=P) = x = PO = 25 = PO,

v = POR) =y = PO = 2 = P (o],

x_Y_y

v ou
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we get

cfu,v] = p[ PO (), PV ()] - p[x].—lp[ﬂx]’

_ . 1l
P T T

—p() - plok) =L
=) -0 b
= 1.

which proves that u,v are independent. H

Monte Carlo Experiment

Finally, on the basis of these results, when we empirically compare different multivariate
densities, we are able to assess that the specification of a given multivariate density will be better
than alternative specifications, the closer the Probability Integral Transformations of its
marginals and conditionals are to iid U(,1)."”

As already mentioned, the true DGP is never observed; hence, in order to perform the density
evaluation, we need to simulate the DGP. Consequently, the procedure to perform the CIMDO-
density evaluation, described below, was performed for different specifications of DGPs.

1. Take the values of two empirically observed PoDs of different financial assets.'®

2. Simulate the DGP of a bivariate density, whose marginal distributions fulfill the values of
the PoDs describe above. Assume this to be the frue DGP. Under this DGP specification, we
simulated a bivariate series of 10,000 observations (random variable realizations).

3. Recover the CIMDO-density, using the empirically observed PoDs.

4. Calibrate the most common parametric distributions assumed for the modeling of
portfolio credit risk. These include multivariate normals, multivariate z-distributions and mixture
of normals. The calibration procedure that is performed for these distributions is in line with
common practice in risk modeling, when information constraints bind. Such calibration ensures
that the PoDs of the assumed parametric densities are consistent with the empirically observed
PoDs.

"> Recall that this is due to the fact that the series of the Probability Integral Transformations of a series of density
forecasts are distributed iid U(0,1) if the density forecasts coincide with the true DGP.

' In this case financial assets refer to two different types of loans or two different banks.
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5. Decompose the competing distributions; i.e., the CIMDO-distribution and parametric
distributions, into the product of their marginal and conditional probabilities, as indicated in
equation (29).

6. Estimation of Probability Integral Transformations (PITs). We computed the probability
integral transformation (PIT’s) of the random variable realizations under the following
conditional and marginal distributions, z,, = P(x|y), z, = P(y), z,, = P(y|x), z, = P(x),
where P represents the cdf of each of the evaluated distributions. We henceforth refer to the
PIT’s of the random variable realizations under the conditional/marginal densities as z-variables.
We obtained the z-variables for each of the distributional specifications that we evaluated and
compared.'”’

7. Testing for iid U(0,1) . Our aim was to assess whether a bivariate density specification is
. z_ were iid. U(0,1) . Testing for iid U(0,1) is

usually done in two stages. First the iid assumption is tested and then, conditional on the series
being iid, the uniform distribution is tested.

correct by testing whether the series z_, , z , z

x/y > y/x >

(1) Test for the iid assumption. As we proved above, the PIT’s of the marginal and
conditional densities, in which a multivariate distribution can be decomposed, are
independent at a given period of time; therefore, there is no need to test for
independence.'®

(i1) Test for the uniform distribution assumption. Conditional on the series being
independent, we proceeded to test for the uniform distribution assumption.

Note that if F(z) ~U(0,1) and z € [0,1] ,then F(z)=z for z e [0,1]. Thus the cdf of z isa 45°
degree line. Equivalently, the cdf of the PIT’s of the random variable realizations under the true
DGP will be a 45" degree line if they are uniform distributed.

Thus, in order to assess the correctness of a given density specification, we plotted the empirical
cdf's of their z-variables and checked how closely these were to the 45° degree line."”

17 These distributions were the standard normal, the conditional normal, the conditional t-distribution, the mixture
model and CIMDO. We henceforth refer to the PIT’s obtained under each of these parametric distributions as: NStd,
NCon, TCon, NMix and CIMDO respectively.

'® In time series frameworks, auto-correlation coefficients (ACF’s) and Ljung-Box-Q-statistics of the z-variables are
used to test for independence. At a given period of time, the z-variables are independent, as it was proved above.
Therefore, it is not necessary to test for independence.

" We also computed the Kolmogorov-Smirnov (K-S) tests with H,: F =U(0,1), H,: F #U(0,1). K-S tests

results are presented in Segoviano (2006b).
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Results

Given the highly restrictive data sets that is available (only PoDs, representing partial
information of the marginal densities) for the proper specification of all the competing
distributions, we never expected to obtain a series of PIT’s that would be iid U(0,1). We rather
focused on the relative improvements of one specification versus another by analyzing how close
their series of probability integral transformations are to iid U(0,1).

Results show that under this criterion, CIMDO-distributions outperform parametric distributions
along the whole domain of the distribution; however, it is in the region of default of the CIMDO-
derived distribution (upper right corner) that the improvement is best. This result is consistent
with the fact that the information embedded in the CIMDO-derived density, via the moment-
consistency constraints, is information of the region of default. Achievement of better accuracy
in the upper right corner of the empirical cdf is important. This is because this is the range of the
distribution’s domain that has greatest relevance in estimating extreme losses of a portfolio of
financial assets. This is because it represents, for each of the assets making up the portfolio, the
probability of going into default. Hence the possibility to model probability densities that
improve estimation in this particular region is of relevance. As an example of the results of the
Monte Carlo experiment, we reproduce the following figures.

Density Evaluation
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Source: Authors’ calculations.

In these figures, we compare the empirical cdf’s of the z, and z, variables respectively,

corresponding to CIMDO, NStd, TCon and the true-DGP (45° degree line). It is clear that
CIMDO’s distribution outperforms NStd and TCon along the whole integration domain of the
distribution. However, it is in the region of default (upper right corner) where improvements are
the best.

CIMDO: Copula Evaluation

As described in Box 1, copula functions are multivariate distributions; however, with the
particularity that their marginal distributions are uniform on the interval [0,1]. Hence, they can
be evaluated as any other multivariate density. Nonetheless, as described in equation (20), the
first step in the evaluation procedure is to decompose a multivariate density into the product of
its marginal and conditional densities. Consequently, it necessary to show that a copula function
can be decomposed into the product of its marginal and conditional distributions. Once such
decomposition is performed, the marginal and conditionals can be evaluated under the PIT
criterion, following exactly the same procedure than the one described above. A copula function

g[F(fl) (u),H(fl) (v)}
FLF @) |n[ 5 () |

was defined as, c[u,v]=
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This represents the bivariate density function of the variables U and V. This density function can
be decomposed into c(u,v) =c(v)-c(u|v), and c(u,v) =c(u)-c(v|u). In the interest of
parsimony, we focus on the first case. The conditional density function of U given some v is
¢, (u|v)=c(u,v) because the marginal density function of V' is the constant 1. Therefore,

C,,(ulv)= J-OM ¢, (u|v)du , from the copula definition, this is equivalent

e[ P w), ()]
to,C, ()= FLFO ) i 5 (v)

x=F"'(u), thus,

du . Since U = F (x) & x = F ' (u), we get

Cowlm=[" fg[;;;)l();();:):dfv(x),

C ol =[ fg[x]th;[()f();) £(x)ds,

C, =] ghEHiI()é%) sz,

C,ul)=] = 0], G, 1) 22)

Thus, the distribution of U given some fixed v is uniform. Recall the PIT proof. Once this
decomposition is performed, the marginal and conditional copulas can be evaluated under the
PIT criterion. In order to do this, we have carried out a Monte Carlo experiment similar to the
one described above.
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