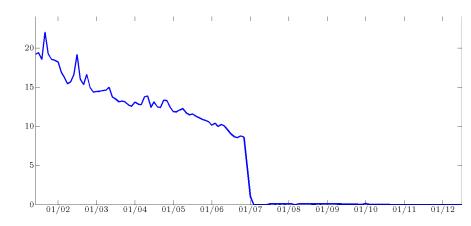
Competing on Speed

Emiliano S. Pagnotta & Thomas Philippon

New York University, Finance Department

June 7, 2013

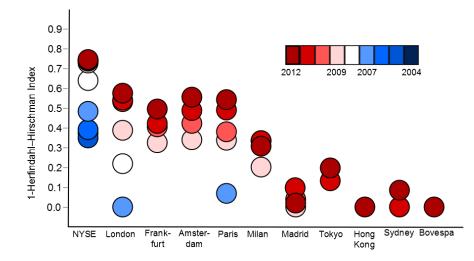


Avg. Execution Speed NYSE in seconds (Source: SEC Rule 605)

1.b Speed ↗

Arctic Fibre shaves 60ms London-Tokyo, cutting through icebergs

2. Fragmentation \nearrow



Issue & Analytical Approach

Financial Markets Organization

- Why do exchanges compete on speed?
- Both execution speed and fragmentation increased, is there a relationship?

Normative:

- Social value of exchanges speed investments?
- Is fragmentation socially desirable?
- Optimal Regulation?

Key insight

- All investors value speed, but not equally \Rightarrow Speed acts as (vertical) differentiation factor
- Emphasis on liquidity and gains from trade, abstracts from asymmetric info, liquidity externalities

Issue & Analytical Approach

Financial Markets Organization

- Why do exchanges compete on speed?
- Both execution speed and fragmentation increased, is there a relationship?

Normative:

- Social value of exchanges speed investments?
- Is fragmentation socially desirable?
- Optimal Regulation?

Key insight

- All investors value speed, but not equally \Rightarrow Speed acts as (vertical) differentiation factor
- Emphasis on liquidity and gains from trade, abstracts from asymmetric info, liquidity externalities

Issue & Analytical Approach

Financial Markets Organization

- Why do exchanges compete on speed?
- Both execution speed and fragmentation increased, is there a relationship?

Normative:

- Social value of exchanges speed investments?
- Is fragmentation socially desirable?
- Optimal Regulation?

Key insight

- All investors value speed, but not equally \Rightarrow Speed acts as (vertical) differentiation factor
- Emphasis on liquidity and gains from trade, abstracts from asymmetric info, liquidity externalities

Main Findings

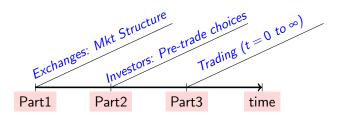
• Speed-Enhancing Investments

- Accelerate fragmentation
- Welfare effects are <u>positive</u> in single exchange economies and ambiguous otherwise

• Fragmentation:

- Incentivizes trading speeds
- Enhances "<u>market quality</u>" (evidence in O'Hara Ye 2011) and investor participation, but not necessarily higher <u>welfare</u>
- **Regulations** that protect executions (*SEC's trade-through*) distort competition, increase fragmentation and may have *negative welfare effects*

Model Structure and Presentation Plan



- 1. Trading Model
- 2. Outcomes in Consolidated Market
- 3. Outcomes in Fragmented Markets
- 4. Calibration and Empirical Implications

1. Trading in one market (time 0 to ∞) Micro foundations of Speed Demand

- Two assets: cash (yields r). Illiquid asset yields μ per unit of time, total supply ā. Holdings a in {0,1}.
- Mass one continuum of investors. Fraction \overline{a} initially endowed with 1 unit asset. Flow utility

$$u_{\sigma,\varepsilon_t}(a_t) = (\mu + \sigma \varepsilon_t) a_t$$

- time-varying type ε in $\{+,-\}$, times~ exp(γ), $\mathsf{Pr}_{\{\varepsilon=+\}} = 1/2$
- fixed type $\sigma \in [0,\overline{\sigma}]$ CDF G (can see as brokers' "clienteles")
- Trading
 - Contact rate (speed) is ρ (i.e. "latency" ρ^{-1})
 - Conditional on contact, market is Walrasian

1. Trading in one market (time 0 to ∞) Micro foundations of Speed Demand

- Two assets: cash (yields r). Illiquid asset yields μ per unit of time, total supply ā. Holdings a in {0,1}.
- Mass one continuum of investors. Fraction \overline{a} initially endowed with 1 unit asset. Flow utility

$$u_{\sigma,\varepsilon_t}(a_t) = (\mu + \sigma \varepsilon_t) a_t$$

- time-varying type ε in $\{+,-\}$, times~ exp(γ), $\mathsf{Pr}_{\{\varepsilon=+\}} = 1/2$
- fixed type $\sigma \in [0,\overline{\sigma}]$ CDF G (can see as brokers' "clienteles")
- Trading
 - Contact rate (speed) is ρ (i.e. "latency" ρ^{-1})
 - Conditional on contact, market is Walrasian

• Value function $(\sigma, \varepsilon(t))$ holding a: $V_{\sigma, \varepsilon(t)}(a, t) =$

$$\mathbb{E}_{t}\left[\underbrace{\int_{t}^{T} e^{-r(s-t)} u_{\sigma,\varepsilon(s)}(a) ds}_{\text{Flows until contact}} + \underbrace{e^{-r(T-t)} \left(V_{\sigma,\varepsilon(T)}(a_{T}^{*},T) - p_{T}(a_{T}^{*}-a)\right)\right]}_{\text{Cont. value at time-T contact}}\right]$$

• **Optimal holdings** have recursive structure (similar to Lagos Rocheteau (EMA 2009)):

$$\bar{u}(p;\sigma,\varepsilon) = \arg\max_{a \in \{0,1\}} \left\{ \bar{u}(a;\sigma,\varepsilon) - rpa \right\}$$
$$\bar{u}(a;\sigma,\varepsilon) \equiv \frac{(r+\rho)u_{\sigma,\varepsilon}(a) + \gamma \mathbb{E}_{\varepsilon} \left[u_{\sigma,\varepsilon'}(a) \right]}{r+\rho+\gamma}$$

• Value function $(\sigma, \varepsilon(t))$ holding a: $V_{\sigma, \varepsilon(t)}(a, t) =$

$$\mathbb{E}_{t}\left[\underbrace{\int_{t}^{T} e^{-r(s-t)} u_{\sigma,\varepsilon(s)}(a) ds}_{\text{Flows until contact}} + \underbrace{e^{-r(T-t)} \left(V_{\sigma,\varepsilon(T)}(a_{T}^{*},T) - p_{T}(a_{T}^{*}-a)\right)\right]}_{\text{Cont. value at time-T contact}}\right]$$

• **Optimal holdings** have recursive structure (similar to Lagos Rocheteau (EMA 2009)):

$$a^{*}(p; \sigma, \varepsilon) = \arg \max_{a \in \{0,1\}} \left\{ \bar{u}(a; \sigma, \varepsilon) - rpa \right\}$$
$$\bar{u}(a; \sigma, \varepsilon) \equiv \frac{(r+\rho)u_{\sigma,\varepsilon}(a) + \gamma \mathbb{E}_{\varepsilon} \left[u_{\sigma,\varepsilon'}(a) \right]}{r+\rho+\gamma}$$

- Supply: $\bar{a} \leq 1/2$. Since 1/2 investors have $\varepsilon = +1$, supply is short.
- Investors: Let $\hat{\sigma} > 0$ type indifferent on buying when $\mathcal{E} = 1$

- "Active" $\sigma \geq \hat{\sigma}$: buy when $\varepsilon = 1$, sell when $\varepsilon = -1$
- "Transient/Small" $\sigma < \hat{\sigma}$: sell initial holdings and leave
- Demand Functions: $a^* = 0$ when $\varepsilon = -1$ or $\sigma < \hat{\sigma}$; $a^* = 1$ when $\varepsilon = +1$ and $\sigma \ge \hat{\sigma}$
- Market Clearing: $\frac{1}{2} \int_{\sigma} \sum_{\varepsilon} a^*(p; \sigma, \varepsilon) dG(\sigma) = \bar{a}$
- Equilibrium: $(p, \hat{\sigma})$ solving demand system and market clearing.

Define "effective speed" $s \equiv \frac{\rho}{r+\gamma+\rho}$

Result: Trading Equilibrium

- Allocations: Fraction of active traders with mis-allocated assets converges to $\frac{\gamma}{4} \frac{(1-s)}{\gamma+rs}$
- Clearing Price:

$$p = \frac{\mu}{r} + \frac{\hat{\sigma}}{r} \left(\frac{r + \gamma s}{r + \gamma} \right)$$

- With full (limited) participation $\hat{\sigma} = (>)G^{-1}(1-2\overline{a})$.
- p constant a.s. given ε stationarity
- Walrasian Limit: $\rho \to \infty + \text{free access} \Rightarrow \rho \to \rho_W = \frac{1}{r} \left[\mu + G^{-1} \left(1 2\overline{a} \right) \right]$
- Key difference wrto literature: $(\hat{\sigma}, s)$ endogenous
 - Investors characteristics, State of technology, Competitive structure, Regulation

Define "effective speed" $s \equiv \frac{\rho}{r+\gamma+\rho}$

Result: Trading Equilibrium

- Allocations: Fraction of active traders with mis-allocated assets converges to $\frac{\gamma}{4} \frac{(1-s)}{\gamma+rs}$
- Clearing Price:

$$p = \frac{\mu}{r} + \frac{\hat{\sigma}}{r} \left(\frac{r + \gamma s}{r + \gamma} \right)$$

- With full (limited) participation $\hat{\sigma} = (>)G^{-1}(1-2\overline{a})$.
- p constant a.s. given ε stationarity
- Walrasian Limit: $\rho \to \infty + \text{free access} \Rightarrow \rho \to \rho_W = \frac{1}{r} \left[\mu + G^{-1} (1 2\overline{a}) \right]$
- Key difference wrto literature: $(\hat{\sigma}, s)$ endogenous
 - Investors characteristics, State of technology, Competitive structure, Regulation

Define "effective speed" $s \equiv \frac{\rho}{r+\gamma+\rho}$

Result: Trading Equilibrium

- Allocations: Fraction of active traders with mis-allocated assets converges to $\frac{\gamma}{4} \frac{(1-s)}{\gamma + rs}$
- Clearing Price:

$$p = \frac{\mu}{r} + \frac{\hat{\sigma}}{r} \left(\frac{r + \gamma s}{r + \gamma} \right)$$

- With full (limited) participation $\hat{\sigma} = (>)G^{-1}(1-2\overline{a})$.
- p constant a.s. given ε stationarity
- Walrasian Limit: $\rho \to \infty + \text{free access} \Rightarrow \rho \to \rho_W = \frac{1}{r} \left[\mu + G^{-1} (1 2\overline{a}) \right]$
- Key difference wrto literature: $(\hat{\sigma}, s)$ endogenous
 - Investors characteristics, State of technology, Competitive structure, Regulation

Participation Value with speed s

- Autarchy ("get and hold"): $W_{out} = \overline{a} \frac{\mu}{r}$
- $W(\sigma, \hat{\sigma}, s) \equiv \frac{\overline{a}}{2} \sum_{\varepsilon} V_{\sigma, \varepsilon}(1; s) + \frac{1-\overline{a}}{2} \sum V_{\sigma, \varepsilon}(0; s)$
- Solve system of Bellmans to find explicit $V_{\sigma,\varepsilon}(a)$, then...

Result: Participation Value with Speed s

• Ex ante net participation value is the sum of the value of transient ownership and trading repeatedly:

$$W(\sigma, \hat{\sigma}, s) - W_{out} = \frac{s\overline{a}\hat{\sigma}}{r} + \frac{s}{2r}\max(0; \sigma - \hat{\sigma})$$

- The value of trading is **super-modular** in (s, σ)
- Temporary ("small") traders only capture $\frac{s\bar{a}\hat{\sigma}}{r}$
- Now exchanges think how to extract rents (W \sim sufficient info)

Participation Value with speed s

- Autarchy ("get and hold"): $W_{out} = \overline{a} \frac{\mu}{r}$
- $W(\sigma, \hat{\sigma}, s) \equiv \frac{\overline{a}}{2} \sum_{\varepsilon} V_{\sigma, \varepsilon}(1; s) + \frac{1-\overline{a}}{2} \sum V_{\sigma, \varepsilon}(0; s)$
- Solve system of Bellmans to find explicit $V_{\sigma,\varepsilon}(a)$, then...

Result: Participation Value with Speed s

• Ex ante net participation value is the sum of the value of transient ownership and trading repeatedly:

$$W(\sigma, \hat{\sigma}, s) - W_{out} = \frac{s\overline{a}\hat{\sigma}}{r} + \frac{s}{2r}\max(0; \sigma - \hat{\sigma})$$

- The value of trading is **super-modular** in (s, σ)
- Temporary ("small") traders only capture $\frac{s\bar{a}\hat{\sigma}}{r}$
- Now exchanges think how to extract rents (W ~ sufficient info)

Participation Value with speed s

- Autarchy ("get and hold"): $W_{out} = \overline{a} \frac{\mu}{r}$
- $W(\sigma, \hat{\sigma}, s) \equiv \frac{\overline{a}}{2} \sum_{\varepsilon} V_{\sigma, \varepsilon}(1; s) + \frac{1-\overline{a}}{2} \sum V_{\sigma, \varepsilon}(0; s)$
- Solve system of Bellmans to find explicit $V_{\sigma,\varepsilon}(a)$, then...

Result: Participation Value with Speed s

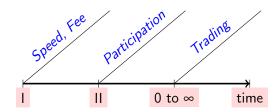
• Ex ante net participation value is the sum of the value of transient ownership and trading repeatedly:

$$W(\sigma, \hat{\sigma}, s) - W_{out} = \frac{s\overline{a}\hat{\sigma}}{r} + \frac{s}{2r}\max(0; \sigma - \hat{\sigma})$$

- The value of trading is **super-modular** in (s, σ)
- Temporary ("small") traders only capture $\frac{s\bar{a}\hat{\sigma}}{r}$
- Now exchanges think how to extract rents (W ~ sufficient info)

11 / 34

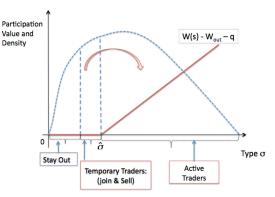
2. Consolidated Market



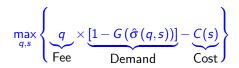
Investor Participation

- Pre-trade decision: $\mathscr{P}: [0, \bar{\sigma}] \longrightarrow \{0, 1\}$
- q: market access fee (membership, co-location, data feed...)
- If σ joins, enjoys $W(\sigma, \hat{\sigma}, s) q$
 - Marginal investor $W(\hat{\sigma},\hat{\sigma},s) W_{out} = q$
 - Then, mass active traders: $1-G\left(\hat{\sigma}
 ight)$





Single Exchange Problem



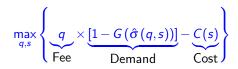
- Assumption 1: $G(\sigma) \sim 1 \exp\left(-\frac{\sigma}{v}\right), v > 0$
- Let ρ > 0 be "default speed"
- Assumption 2: Speed cost is c × max{0, ρ − ρ}, c > 0

• Recall
$$s = \frac{\rho}{r+\gamma+\rho}$$
, so cost is convex in s

Solution

$$\hat{\sigma}_{con} = v, \qquad s_{con} = 1 - \sqrt{2rc(\gamma + r)\left(\frac{e}{v}\right)}$$

Single Exchange Problem



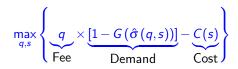
- Assumption 1: $G(\sigma) \sim 1 \exp\left(-\frac{\sigma}{v}\right)$, v > 0
- Let $\rho > 0$ be "default speed"
- Assumption 2: Speed cost is $c \times \max\{0, \rho \rho\}$, c > 0

• Recall
$$s = \frac{\rho}{r+\gamma+\rho}$$
, so cost is convex in s

Solution

$$\hat{\sigma}_{con} = v, \qquad s_{con} = 1 - \sqrt{2rc(\gamma + r)\left(\frac{e}{v}\right)}$$

Single Exchange Problem



- Assumption 1: $G(\sigma) \sim 1 \exp\left(-\frac{\sigma}{v}\right)$, v > 0
- Let $\rho > 0$ be "default speed"
- Assumption 2: Speed cost is $c \times \max\{0, \rho \rho\}$, c > 0

• Recall
$$s = \frac{\rho}{r + \gamma + \rho}$$
, so cost is convex in s

Solution

$$\hat{\sigma}_{con} = v, \qquad s_{con} = 1 - \sqrt{2rc(\gamma + r)\left(rac{e}{v}
ight)}$$

3. Fragmented Markets

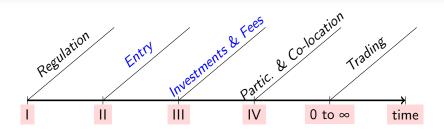
 $s_1 = s_2$

J. Bertrand

 $s_1 \neq s_2$

Pre-trade Decisions

- Two venues: wlog $s_1 < s_2$, fees (q_1, q_2)
- Pre-trade decision: $\mathscr{P} : [0, \bar{\sigma}] \longrightarrow \{0, 1, 2\}$
 - OTC dealer vs. exchange, Fiber optics vs. microwave, co-location?
- New: $\hat{\sigma}_{12}$ indifferent between 1 and 2
- Key: Investors' choices depends on price formation regulations



Vertically diff. duopoly Subgame Perfect Nash Equilibrium (e.g., Shaked Sutton, EMA 1983)

• First Stage: Market 1 owns s. Market 2 solves

$$\max_{s_{2}} \{ (1 - G(\hat{\sigma}_{12})) q_{2}(s_{2}) - C(s_{2}) \}$$

• Second stage: Markets compete in fees (q_1, q_2) , given speeds

Investor Protection

Regulation on Price Formation $T \in \{seg, prot\}$

- Segmentation: 2 asset markets, 2 liquidity markets
- Price Protection: 1 asset market, 2 liquidity markets ('gates')

Example (*SEC's trade-trough*): Buy C @ NYSE. If $p_{NYSE} > p_{Nasdaq}$, then unless $p_{NYSE} \searrow$, buy order @ NYSE is routed to NASDAQ.

Economic Area	Reg. Agency		Year	Investor Protection Model
		Reg.NMS		
		MiFID		
	FSA, FIEA			
South Korea	FSC			
Australia		MIR		

Investor Protection

Regulation on Price Formation $T \in \{seg, prot\}$

- Segmentation: 2 asset markets, 2 liquidity markets
- Price Protection: 1 asset market, 2 liquidity markets ('gates')

Example (*SEC's trade-trough*): Buy C @ NYSE. If $p_{NYSE} > p_{Nasdaq}$, then unless $p_{NYSE} \searrow$, buy order @ NYSE is routed to NASDAQ.

Economic Area	Reg. Agency	Regulation	Year	Investor Protection Model
USA	SEC	Reg.NMS	2007	Trade-through (top of the book)
Canada	IIROC, CSA	OPR	2011	Trade-through (full book)
Europe	ESMA	MiFID	2007	Principles-based
Japan	FSA, FIEA	FIEA	2007	Principles-based
South Korea	FSC	FSCMA	2011	Principles-based
Australia	ASIC	MIR	2011	Principles-based

IMPLICATIONS: MARKET ORGANIZATION

Proposition: Price protection and competition

Price protection **increases the profits of the slow venue** and decreases total active participation

- $\hat{\sigma}^{prot} > \hat{\sigma}^{seg}$: All temporary traders will join slow market \Rightarrow demand less elastic for slow venue
- Ex-Post venue competition less intense \Rightarrow total investor participation \searrow

IMPLICATIONS: MARKET ORGANIZATION

Proposition: Price protection and competition

Price protection **increases the profits of the slow venue** and decreases total active participation

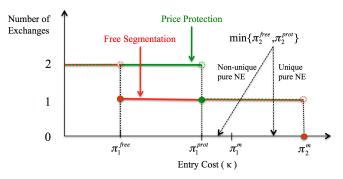
- $\hat{\sigma}^{prot} > \hat{\sigma}^{seg}$: All temporary traders will join slow market \Rightarrow demand less elastic for slow venue
- Ex-Post venue competition less intense \Rightarrow total investor participation \searrow

Entry: Endogenous fragmentation

- Two potential entrants, simultaneous entry game (see paper)
- Entry cost κ . Market *i*'s net profit is $\pi_i^{\mathsf{T}} \kappa$, $\mathsf{T} \in \{seg; prot\}$

Proposition: Price protection and entry

Price protection helps entry and thus expands the ex-ante number of markets



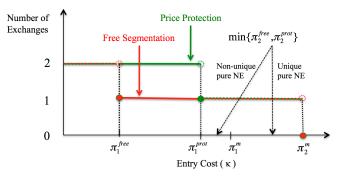
Rationalizes U.S. experience Post Reg NMS (2007)

Entry: Endogenous fragmentation

- Two potential entrants, simultaneous entry game (see paper)
- Entry cost κ . Market *i*'s net profit is $\pi_i^{\mathsf{T}} \kappa$, $\mathsf{T} \in \{seg; prot\}$

Proposition: Price protection and entry

Price protection helps entry and thus expands the ex-ante number of markets



• Rationalizes U.S. experience Post Reg NMS (2007)

Fragmentation and Market Quality

Proposition: Speed and Market Quality

- Consolidated market: Participation same as with exogenous speed
- Fragmented market: Participation fast venue alone is higher than monopolist case $(\hat{\sigma}_{12} < \hat{\sigma}_M)$
- The fast venue chooses higher speed than monopolist

Intuition: Scale and differentiation $s_2 > s_M$

- Two-way feedback: trading technologies \longleftrightarrow fragmentation
- Measurable Market Quality (Liquidity, Participation, Volumes) <u>higher</u> under fragmentation (as reported in O'Hara Ye (2011) for U.S., Degryse et at. (2011) for Europe)

Fragmentation and Market Quality

Proposition: Speed and Market Quality

- Consolidated market: Participation same as with exogenous speed
- Fragmented market: Participation fast venue alone is higher than monopolist case $(\hat{\sigma}_{12} < \hat{\sigma}_M)$
- The fast venue chooses higher speed than monopolist

Intuition: Scale and differentiation $s_2 > s_M$

- Two-way feedback: trading technologies \longleftrightarrow fragmentation
- Measurable Market Quality (Liquidity, Participation, Volumes) <u>higher</u> under fragmentation (as reported in O'Hara Ye (2011) for U.S., Degryse et at. (2011) for Europe)

IMPLICATIONS: PARTICIPATION AND WELFARE

What is the Social Value of...

- 1. Endogenous speed?
- 2. Exchange competition?
- 3. Price Protection?

Welfare (pre-trading)

$$\mathcal{W} \equiv \underbrace{\sum_{i} \int_{\sigma} (W(\sigma, \hat{\sigma}_{i}, s_{i}) - W_{out}) dG(\sigma)}_{\text{Partic. gains & Allocation efficiency}} - \underbrace{\sum_{i} (\kappa + C(s_{i}))}_{\text{Entry+Speed Investment}}$$

• See paper for efficient market design

IMPLICATIONS: PARTICIPATION AND WELFARE

What is the Social Value of...

- 1. Endogenous speed?
- 2. Exchange competition?
- 3. Price Protection?

Welfare (pre-trading)

$$\mathscr{W} \equiv \underbrace{\sum_{i} \int_{\sigma} (W(\sigma, \hat{\sigma}_{i}, s_{i}) - W_{out}) dG(\sigma)}_{\text{Partic. gains & Allocation efficiency}} - \underbrace{\sum_{i} (\kappa + C(s_{i}))}_{\text{Entry+Speed Investment}}$$

• See paper for efficient market design

Does faster trading increase welfare?

Summary of Results

Consolidated Trading:

- Social welfare always higher with speed investments
- Speed can be socially excessive

Fragmented Trading:

- There exists unique default speed \underline{s}_0 s.t. investments increase welfare iff $\underline{s} < \underline{s}_0$
- When differentiation costs are high (e.g., cost of technology is high) participation may be "excessive"

Policies?

- 1. Consolidated: never optimal to ban speed-enhancing investments in this environment
- 2. Fragmented: taxing may be welfare improving

Does faster trading increase welfare?

Summary of Results

Consolidated Trading:

- Social welfare always higher with speed investments
- Speed can be socially excessive

Fragmented Trading:

- There exists unique default speed \underline{s}_0 s.t. investments increase welfare iff $\underline{s} < \underline{s}_0$
- When differentiation costs are high (e.g., cost of technology is high) participation may be "excessive"

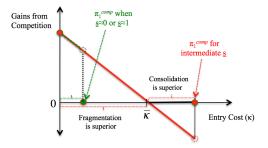
Policies?

- 1. Consolidated: never optimal to ban speed-enhancing investments in this environment
- 2. Fragmented: taxing may be welfare improving

Should we Encourage Exchange Competition?

Proposition. Social Value of Competition

Consolidation is superior iff $\kappa \leq \pi_1$ and $\kappa > \mathscr{W}_{\textit{Frag}} - \mathscr{W}_{\textit{Monop}}$



- Old. Without liquidity externalities and entry costs fragmentation is always best (Bertrand outcome)
- New. Suboptimal Fragmentation unlikely when differentiation is difficult <u>s</u> ≈ 0, or <u>s</u> ≈ 1, or c high, or type heterogeneity low

Does Price Protection add Value?

• Model: Affects participation, speed choices, and importantly, entry.

Price Protection and Welfare

Entry affected?

- Yes: First order effect (more participation, more speed). Sign depends on entry costs.
- No: Small negative effect (total participation \searrow)

Does Price Protection add Value?

• Model: Affects participation, speed choices, and importantly, entry.

Price Protection and Welfare

Entry affected?

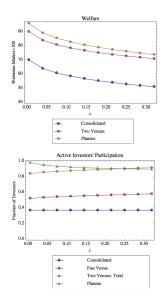
- Yes: First order effect (more participation, more speed). Sign depends on entry costs.
- No: Small negative effect (total participation \searrow)

4. Calibration

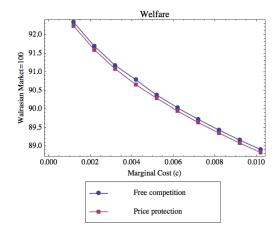
Parameter	Notation	Baseline Value [*]
Interest rate	r	2.5%
Holding cash flow	μ	2.44
Default contact rate	ho	$2.95 imes10^5$
Short-run contact rate market 2	$\overline{\rho}_2$	1.18×10^6
Long-run contact rate consolidated market	ρ_{con}	$5.90 imes 10^6$
Switching intensity temporary types	γ	73,710
Marginal cost of speed investments	c	$7.6 imes10^{-9}$
Asset supply	\bar{a}	0.47
Average investor type (baseline value)	ν	0.5

*The values of parameters $\{r,\mu,\underline{\rho},\underline{\rho}_2,\rho_{con},\gamma\}$ correspond to annual rates.

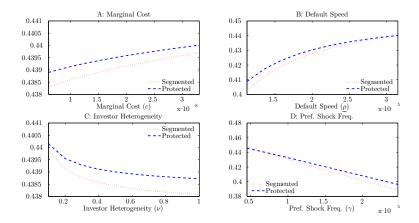
Welfare I: Regulation-Free Market



Welfare II: Entry-neutral price protection



Trading Fragmentation (1-HHI)



Asset prices are bad proxy for welfare

Table III: Short-Run Price Decomposition (Walrasian Price=100)

	Limited		Price Protection Distortion				
	Participa-	Illiquidity		Price			
	tion	Discount		Price			
	Distortion		Distortion				
Consolidated	18.98	-4.05		114.94			
Slow Venue	0.38	-0.33		100.06			
Fast Venue	1.78	-0.18		101.60			
VWAP	1.32	-0.28		101.09			
National Best	0.38	-0.33	0.16	100.21			
A ===							

Table IV: Long Run Price Decomposition (Walrasian Price=100)

	Limited Participa- tion Distortion	Illiquidity Discount	Price Protection Distortion	Price
Consolidated	18.98	-0.25		118.73
Slow Venue	0.82	-0.41		100.40
Fast Venue	2.62	-0.04		102.58
VWAP	2.04	-0.29		101.88
National Best	0.82	-0.41	0.19	100.60

Extension: Generalized Portfolio Holdings

- Pref. shocks $\varepsilon_i \in \{\varepsilon_l, \varepsilon_h\}$, π prob ε_h . Let $\theta_{i\sigma} = \mu + \varepsilon_i \sigma$ $u_{i\sigma}(a) = \theta_{i\sigma}u(a)$
- Adjusted utility

$$\overline{u}_{i\sigma}(a) = \left(\mu \frac{(r+\rho)\varepsilon_i \sigma + \gamma(2\pi-1)\sigma}{r+\gamma+\rho}\right) u(a) = \overline{\theta}_{i\sigma}u(a)$$

• Optimal portfolio holdings

$$a_{i\sigma} = \left(u'\right)^{-1} \left(\frac{rp}{\overline{\theta}_{i\sigma}}\right)$$

• Example: $u(a) = \frac{a^{1-\xi}}{1-\xi}$. Assume A1 and let $\mu = 0$, then equilibrium price

$$p = \frac{v}{r} \left[\frac{\kappa(s, \pi, \xi)}{\overline{a}} \Gamma\left(1 + \frac{1}{\xi}\right) \right]$$

• where κ known function and Γ is the Gamma Function

A Few Related Papers

- Search Frictions. and asset prices: Duffie Garleanu Pedersen (2005, 2007), Weill (2007, 2008), Lagos Rocheteau (2009), Vayanos Tang (2008),...
- Theory of Fragmentation. Mendelson (1987), Pagano (1989), Madhavan (1995),...
- Liquidity Level & Risk. Amihud Mendelson (1986), Constantinides (1986), Vayanos (1998), Lo et al. (2004); Pastor Stambaugh (2004), Eisfeldt (2004), Acharya Pedersen (2005)
- **Competition between exchanges**. Santos Scheinkman (2001, margins), Foucault Parlour (2000, listing fees), Pagnotta Philippon (2012, Speed)
- Vertically differentiated oligopolies. Gabsewisz and Thisse (1979), Shaked and Sutton (1982, 1983),...

Final Remarks

- We provide a positive and normative analysis of trading speed and fragmentation in financial markets
 - Positive. Accounts for US and European experiences after Reg. NMS & MifID.
 - Testable implications for market organization, volumes, prices...
 - Normative. Several regulation insights. First normative analysis of investor protection
- Stresses poor mapping between price levels and welfare: tensions PRIMARY-SECONDARY markets
- Tractable model for regulation/policy analysis

THANKS !