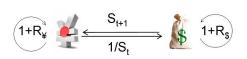
Discussion:

"Carry Trades and Currency Crashes"

Igor Makarov


London Business School

June 2008

Overview

- Goal: link carry trade and dynamics of FX
 - $\hookrightarrow \mathsf{Many} \text{ interesting results}$
- I focus on the following three:
 - Carry trade increases probability of currency crashes
 - Co-movement among currencies with similar interest rates
 - Unwinding of carry trade when volatility is high

Intuition

- Returns (logs): $z_{t+1} = r_{s,t} r_{t+1} s_t + s_{t+1}$
- Carry trade increases probability of currency crashes
 → Plantin and Shin 2007: traders cannot trade continuously; can take only limited positions + funding externalities ⇒ slow building of positions with rapid unwinding
- Co-movement among currencies with similar interest rates
 → Investors trade similar currencies in the same direction
- Unwinding of carry trade when volatility is high

 \hookrightarrow Common volatility component across markets; easier to violate margin requirements; common liquidity problems

Crossection of Skewness

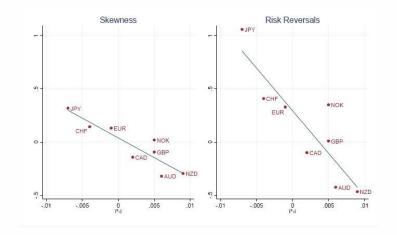
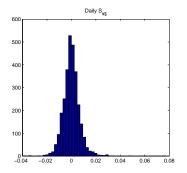
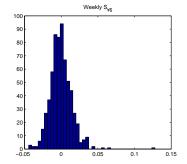
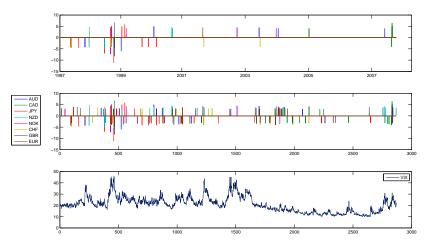


Figure 2: Cross section of skewness (Panel A) and risk-reversals (Panel B) for different interest differentials $i^{\ast}-i.$


Skewness Forecast


	$Skewness_{t+1}$	$Skewness_{t+1}$	$Skewness_{t+1}$	$\operatorname{Risk}\operatorname{Rev}_t$	$RiskRev_t$
$i_t^* - i_t$	-28.51	-22.18	-27.34	-15.51	-30.70
	(11.59)	(12.59)	(11.52)	(29.20)	(25.91)
z_t		-3.34	-2.11		7.87
		(0.60)	(0.69)		(1.39)
$\operatorname{Futures}_t$	-0.26	0.13	0.18	1.16	0.27
	(0.12)	(0.15)	(0.14)	(0.19)	(0.12)
$Skewness_t$	0.12	0.18	0.17	0.10	-0.02
	(0.05)	(0.05)	(0.05)	(0.09)	(0.10)
$\operatorname{RiskRev}_t$			-0.16		
			(0.04)		
\mathbb{R}^2	0.12	0.18	0.21	0.20	0.41

• Why is physical and risk-neutral skewness so different?


Skewness

• Skewness in FX is driven by extremal events

Tails

• Is sample skewness a good measure of currency crashes?

Correlation of FX changes

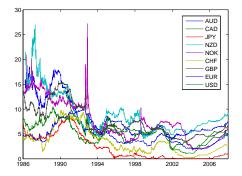

	(1)	(2)	(3)	(4)
$ i_1^* - i_2^* $	-10.89	-6.62	-16.39	-13.41
	(3.81)	(3.62)	(4.05)	(6.41)
$ ho(i_1^*,i_2^*)$	0.63	0.28	0.70	0.32
	(0.16)	(0.08)	(0.17)	(0.08)
Average $\rho(\Delta s_1, \Delta s_2)$	2.54	2.56		
	(0.08)	(0.08)		
Time Fixed Effects			Yes	Yes
Country-Pair Fixed Effects				Yes
	0.18	0.36	0.05	0.03

Table 7: Correlation of FX rate changes and magnitude of interest rate differentials

Correlation of FX changes

 Interest rates converge over the period + economies get more integrated ⇒ mechanical relation?

Figure: Interbank interest rates

VIX and FX

Table 4: Sensitivity of weekly carry trade positions, price of skewness insurance, and carry trade returns to changes in VIX

	$\Delta Futures_t$	$\Delta Futures_{t+1}$	$\Delta RiskRev_t$	$\Delta RiskRev_{t+1}$	z_t	z_{t+1}
$\Delta \text{VIX}_t \times \text{sign}(i_{t-1}^* - i_{t-1})$	-1.47	-1.29	-5.33	-2.74	-0.43	-0.03
2.966 (1982-2020- 4 601) -5 81 (1983)	(0.77)	(0.57)	(2.64)	(3.39)	(0.11)	(0.11)
$Futures_{t-1}$	-0.09	-0.10	a n		20 26	1.50 50
	(0.01)	(0.01)				
$RiskRev_{t-1}$	10301 651		-0.16	-0.11		
			(0.02)	(0.02)		
R^2	0.04	0.06	0.08	0.04	0.00	-0.00

VIX and FX

Low(high) interest rate FX tends to appreciate(depreciate) when volatility is high (Table 4; Lustig, Roussanov & Verdelhan 2008)

 → Table 4: R² is low ⇒ non-linear relation

Unconditional								VIX>30									
	AUD	CAD	JPY	NZD	NOK	CHF	GBP	EUR		AUD	CAD	JPY	NZD	NOK	CHF	GBP	EUR
AUD	1.00								AUD	1.00	(-
CAD	0.44	1.00							CAD	0.38	1.00						
JPY	0.27	0.11	1.00						JPY	-0.20	-0.09	1.00					
NZD	0.79	0.38	0.24	1.00)				NZD	0.63	0.08	-0.23	1.00				
NOK	0.42	0.28	0.28	0.39	1.00	1			NOK	0.13	-0.01	0.54	0.14	1.00			
CHF	0.37	0.22	0.39	0.34	0.72	1.00)		CHF	-0.13	-0.04	0.64	-0.11	0.86	1.00		
GBP	0.39	0.26	0.28	0.38	0.52	0.60	1.0	0	GBP	-0.03	0.06	0.67	-0.07	0.84	0.86	1.00	0
EUR	0.43	0.27	0.34	0.41	0.78	0.92	0.6	2 1.00	EUR	-0.12	-0.02	0.65	-0.12	0.90	0.94	0.90	0 1.00

Carry trade revisited

• What is the optimal strategy/portfolio?

Figure: Barclays Intelligent Carry ETN

• Interesting and important question

 Overall supportive evidence for sudden FX moves and unwinding of carry trades

• Wanted: a dynamic model of carry trade that can be taken to the data