Introduction	Model	Estimation	Forecastability	Summary

Funding Liquidity and Its Risk Premiums

Jaehoon Lee

University of Illinois at Urbana-Champaign

June 7, 2012

Introduction	Model	Estimation	Forecastability	Summary
●00000	000000	0000000		o
Summary				

- A model is derived to explain that, during a crisis, large stocks' liquidity is more correlated with stock market returns than small stocks' liquidity.
- The estimated funding liquidity appears correlated
 - positively with aggregate hedge fund leverage ratios, stock market sentiments, and the total number of M&A activities
 - negatively with bond liquidity premiums, Moody's Baa-Aaa corporate bond spreads, and the relative prevalence of liquidity mergers
- The estimated funding liquidity forecasts stock market returns with strong significance

Introduction	Model	Estimation	Forecastability	Summary
●oooooo	000000	0000000		o
Summary				

- A model is derived to explain that, during a crisis, large stocks' liquidity is more correlated with stock market returns than small stocks' liquidity.
- The estimated funding liquidity appears correlated
 - positively with aggregate hedge fund leverage ratios, stock market sentiments, and the total number of M&A activities
 - negatively with bond liquidity premiums, Moody's Baa-Aaa corporate bond spreads, and the relative prevalence of liquidity mergers
- The estimated funding liquidity forecasts stock market returns with strong significance

Introduction	Model	Estimation	Forecastability	Summary
●oooooo	000000	0000000	000000	o
Summary				

- A model is derived to explain that, during a crisis, large stocks' liquidity is more correlated with stock market returns than small stocks' liquidity.
- The estimated funding liquidity appears correlated
 - positively with aggregate hedge fund leverage ratios, stock market sentiments, and the total number of M&A activities
 - negatively with bond liquidity premiums, Moody's Baa-Aaa corporate bond spreads, and the relative prevalence of liquidity mergers
- The estimated funding liquidity forecasts stock market returns with strong significance

- Asset liquidity: the ease with which an asset is traded (e.g.) bid-ask spreads
- Funding liquidity: the capacity for a trader to raise funds (e.g.) margin requirements
- These two are interconnected, but not identical
 Kyle and Xiong (2001), Gromb and Vayanos (2002), Brunnermeier and Pedersen (2009)
- The question is how to estimate funding liquidity?

Introduction	Model	Estimation	Forecastability	Summary
oo●ooo	000000	0000000		o
Previous	Literature			

Literature for measuring the funding liquidity

- Fontaine and Garcia (2012): difference in yields between on-the-run and off-the-run Treasury bonds
- Hu, Pan, and Wang (2011): price deviations of Treasury bonds
- Adrian and Shin (2009): the ratio of aggregate market-based liabilities to bank-based loans (1990–2008)
- Ang, Gorovyy, and van Inwegen (2011): hedge funds' aggregate leverage ratios (2005–2010)

Introduction	Model	Estimation	Forecastability	Summary
ooo●oo	000000	0000000		o
Anecdote #1				

Large (less volatile) stocks are preferred to small (more volatile) stocks during a financial crisis

- Ben-David, Franzoni, and Moussawi (2011, RFS)
 hedge funds sold more high- than low-volatility stocks, and shifted their portfolio towards larger stocks during the financial crisis.
- Anand, Irvine, Puckett, and Venkataraman (2011)
 : smaller and more volatile stocks experience a more severe liquidity decline during the crisis.

Negative stock market returns are followed by a decline in stock liquidity

- Liquidity providers (both speculators and specialists) in aggregate are almost always net long on the stock market (94% of time from 1994 to 2004)
- Negative market returns lower their own capital and make them financially constrained
- Hameed, Kang, and Viswanathan (2010, JF)
- Comerton-Forde, Hendershott, Jones, Moulton, and Seasholes (2010, JF)

- In good times, large and small stocks' liquidity would be equally correlated with market returns
- In bad times, large stocks' liquidity would be more correlated with market returns than small stocks' liquidity
- Thus, the difference of the two correlations can be used as a proxy of funding liquidity

Introduction	Model	Estimation	Forecastability	Summary
000000	●ooooo	0000000		O
The Econom	ıy			

- Two dates : *t* = 0, 1
- Two risky assets
 - They are in fixed supply of one share for each
 - The distribution of terminal payoffs is known ex ante

$$v \sim \mathcal{N}(v_0, \, \Omega)$$

• Asset 1 is larger and less volatile than Asset 2

$$v_0^{(1)} > v_0^{(2)}$$
 and $\frac{\sigma_1}{v_0^{(1)}} < \frac{\sigma_2}{v_0^{(2)}}$

• Three market participants : customer, speculator, financier

At time t = 0, a customer

- Holds the total fixed supplies of risky assets : 1
- Trades y shares to maximize his CARA utility at t = 1

$$\max_{y} E_0 \left[-\exp\left(-\gamma W_1^{(c)}\right) \right]$$

s.t. $W_1^{(c)} = p_0^\top \mathbf{1} + (v - p_0)^\top (y + \mathbf{1})$

Therefore,

$$y^* = \frac{1}{\gamma} \Omega^{-1} (v_0 - p_0) - \mathbf{1}$$

Agent 2:	Speculator			
Introduction	Model ○○●○○○	Estimation 0000000	Forecastability	Summary o

A speculator

• Trades x shares to maximize his profits

$$\max_{x} E_0 \left[(v - p_0)^\top x \right] = \max_{x} (v_0 - p_0)^\top x$$

Subject to margin constraints

$$|x_1| m_1 + |x_2| m_2 \le W_0^{(s)}$$

A financier

 Determines the margin requirements based on Value-at-Risk (VaR) method

$$\pi = \mathsf{P}\left\{\left.\left|\boldsymbol{v}^{(j)} - \boldsymbol{p}_{0}^{(j)}\right| > m_{j}\right.\right\}$$

• Believes that the current price is the ex ante expected terminal payoff

$$\mathbf{v}\sim\widehat{\mathcal{N}}(\,\mathbf{\textit{p}}_{0},\,\Omega\,)$$

• Therefore,

$$m_j = \Phi^{-1}(1-\pi) \cdot \sigma_j$$

Trades over Speculator's Initial Wealth

Simulated Price Impact of a Trade

- Price impact of a trade is defined as {p₀|_{e=0} − p₀|_{e=ê}} / v₀ where e denotes an exogenous trade shock
- The speculator's initial wealth is simulated as W₀^(s) + η where η denotes an exogenous shock to the speculator's capital

How to Estimate Funding Liquidity

 Asset liquidity for large and small stocks using the Amihud (2002) measure

$$\textit{illiq}_t^{(i)} = \frac{1}{D_t} \sum_{d=1}^{D_t} \frac{|r_{i,t,d}|}{\textit{vol}_{i,t,d}}$$

 Rolling correlations between stock market returns and asset liquidity

 $\rho_{\text{small}} = \text{corr}$ (Stock Market Returns, Illiquidity of Small Stocks)

 $\rho_{\text{large}} = \text{corr} (\text{Stock Market Returns}, Illiquidity of Large Stocks})$

• Funding liquidity as their difference

 $fliq \equiv \rho_{\text{large}} - \rho_{\text{small}}$

High fliq implies low funding liquidity

fliq and Aggregate Hedge Fund Leverage Ratio

- Provided by Ang, Gorovyy, and van Inwegen (2011)
- fliq is lagging behind the aggregate hedge fund leverage ratio

fliq and Bond Liquidity Premium

• Fontaine and Garcia (2012) estimate bond liquidity premiums using the difference of yields between on-the-run and off-the-run bonds

 Introduction
 Model
 Estimation
 Forecastability
 Summary

 000000
 000000
 000000
 000000
 0

fliq and Moody's Baa-Aaa Spreads

fliq and M&A Activities

• M&As are likely to be made more often when funding liquidity is high

fliq and Liquidity Mergers

- Almeida, Campello, and Hackbarth (2011): liquidity mergers are defined as liquid firms' acquiring financially distressed firms which would be otherwise inefficiently terminated
- Values are created by reallocating liquidity rather than by operational synergies

Introduction	Model	Estimation	Forecastability	Summary
		000000		

Real GDP Growth Forecast by Funding Liquidity

dep var: real GDP growth rate

Horizon (h)	1 qtr	2 qtr	3 qtr	4 qtr	5 qtr	6 qtr	7 qtr
		Panel A	. Regression o	n fliq $\equiv \rho_{\text{large}}$	$- ho_{\rm small}$		
fliq	-0.996***	-1.270***	-1.160***	-1.183***	-0.992***	-0.876***	-0.645*
	(-2.975)	(-3.828)	(-3.518)	(-3.582)	(-2.967)	(-2.611)	(-1.933)
obs	234	233	232	231	230	229	228
R ²	0.037	0.060	0.051	0.053	0.037	0.029	0.016
		Panel B. F	legression on	fliq and Yield (Curve Slope		
fliq	-0.940***	-1.197***	-1.104***	-1.134***	-0.954***	-0.854**	-0.625*
	(-2.845)	(-3.712)	(-3.419)	(-3.516)	(-2.913)	(-2.566)	(-1.882)
slope	0.221***	0.297***	0.262***	0.270***	0.259***	0.173**	0.151*
	(2.833)	(3.912)	(3.439)	(3.527)	(3.320)	(2.168)	(1.886)
obs	234	233	232	231	230	229	228
R ²	0.069	0.118	0.098	0.102	0.082	0.049	0.032

Introduction	Model	Estimation	Forecastability	Summary
000000	000000	0000000	000000	0

In-Sample Predictability Test

Dependent Variable

: Stock market excess returns in the next month

	(1)	(2)	(3)	(4)	(5)	(6)
$ ho_{small}$	3.268*** (3.720)		0.837 (0.892)		2.062** (2.419)	
holarge	-2.431*** (-2.874)			0.837 (0.892)		-0.492 (-0.568)
holarge — $ ho$ smal	I	-2.931*** (-3.926)	-2.431*** (-2.874)	-3.268*** (-3.720)		
log(CAPE)	-0.469 (-1.145)	-0.419 (-1.073)	-0.469 (-1.145)	-0.469 (-1.145)	-0.695* (-1.662)	-0.634 (-1.447)
obs R ²	779 0.020	779 0.019	779 0.020	779 0.020	779 0.013	779 0.004

Introduction	Model	Estimation	Forecastability	Summary
			00000	

Horse Race Tests

Dependent variable: stock market excess returns in the next month

	(1)	(2)	(3)	(4)	(5)
$ ho_{ m large} - ho_{ m small}$	-2.931*** (-3.926)	-2.782*** (-2.911)	-3.077*** (-2.997)	-2.598*** (-3.344)	-2.638*** (-3.172)
log(CAPE)	-0.419 (-1.073)	-1.611* (-1.829)	-0.741 (-1.457)	-0.805* (-1.878)	-0.311 (-0.652)
variance premium		28.826*** (4.915)			
market return variance			-0.014*** (-2.744)		
average stock variance			0.005*** (3.689)		
riskfree interest rate				-1.862** (-2.561)	
small-stock value spreads					-1.088 (-0.796)
obs R ²	779 0.019	251 0.077	450 0.035	779 0.029	672 0.017

Reference: Goyal and Santa-Clara (2003), Ang and Bekaert (2007), Campbell and Vuolteenaho (2004)

Introduction Mode	el Estimati	on Forecastability	Summary
		000000	

Horse Race Tests (cont.)

Dependent variable: stock market excess returns in the next month

	(6)	(7)	(8)	(9)	(10)
$ ho_{ m large} - ho_{ m small}$	-3.067*** (-4.140)	-3.134*** (-3.701)	-8.250*** (-3.453)	-8.417*** (-2.875)	-7.415*** (-3.050)
log(CAPE)	-0.255 (-0.584)		-1.283 (-0.961)	0.323 (0.243)	0.308 (0.232)
Moody's Baa-Aaa spreads	0.345 (0.662)				
net payout yields		0.628 (0.874)			
consumption-wealth ratio (cay)			101.247*** (3.050)		95.377*** (2.682)
average correlation				23.328*** (3.821)	22.507*** (3.591)
obs R ²	779 0.020	708 0.022	234 0.090	176 0.095	176 0.132

Reference: Chen, Roll, and Ross (1986), Boudoukh, Michaely, Richardson, and Roberts (2007), Lettau and Ludvigson (2001), Pollet and Wilson (2010)

Introduction Model Estimation coooco Summary coooco

Out-of-Sample Predictability Test

• Three steps of out-of-sample test

$$exr_{s} = \hat{\beta}_{0} + \hat{\beta}^{\top}X_{s-1} + \epsilon_{s}, \quad s = 1, \cdots, t$$
$$\hat{\epsilon}_{t+1} = exr_{t+1} - \left(\hat{\beta}_{0} + \hat{\beta}^{\top}X_{t}\right)$$
$$\mathsf{RMSE} = \sqrt{\frac{1}{T - t_{0}}\sum_{t=t_{0}+1}^{T}\hat{\epsilon}_{t}^{2}}$$

Models to Compare

Introduction 000000	Model 000000	Estimation 0000000	Forecastability ooooooo	Summary o
Out-of-Samp	ole Predicta	bility Test		
Model 1 :Model 2 :	constant risk pre time-varying risk	mium premium		

# in-sample # predictions	RMSE1	RMSE2	R ²	ENC-T	ENC-REG	ENC-NEW
	Panel A.	Prediction w	ith $ ho_{\text{large}}$ a	nd $ ho_{small}$		
\sim Dec 2005 $$ Jan 2006 \sim	5.431	5.348	0.030	1.30*	1.36*	1.60**
\sim Dec 2001 $$ Jan 2002 \sim	4.807	4.729	0.032	1.71**	1.94**	2.87**
\sim Jul 1995 Aug 1995 \sim	4.873	4.812	0.025	1.81**	2.15**	4.51**
\sim Feb 1984 Mar 1984 \sim	4.625	4.595	0.013	1.87**	2.13**	5.68**
\sim Mar 1975 Apr 1975 \sim	4.579	4.559	0.008	1.93**	2.12**	6.40**
\sim Sep 1970 Oct 1970 \sim	4.664	4.634	0.013	2.27**	2.55**	8.06**
\sim Apr 1966 May 1967 \sim	4.649	4.622	0.011	2.27**	2.56**	8.17**
	Panel B	. Prediction w	with $ ho_{large}$.	$^- ho_{small}$		
\sim Dec 2005 $$ Jan 2006 \sim	5.431	5.347	0.030	1.58**	1.40*	1.48**
\sim Dec 2001 $$ Jan 2002 \sim	4.807	4.729	0.032	2.04**	1.97**	2.73**
\sim Jul 1995 Aug 1995 \sim	4.873	4.812	0.025	1.91**	2.17**	4.48**
\sim Feb 1984 Mar 1984 \sim	4.625	4.593	0.014	2.01**	2.18**	5.81**
\sim Mar 1975 Apr 1975 \sim	4.579	4.557	0.010	2.09**	2.19**	6.66**
\sim Sep 1970 Oct 1970 \sim	4.664	4.630	0.015	2.51**	2.71**	8.60**
\sim Apr 1966 May 1967 \sim	4.649	4.618	0.013	2.50**	2.71**	8.73**

Introduc 000000	tion ວ	Model oooooo	E	stimation	Forecasta ooooo●	ability	Summary o
Pre	dictabi	lity for	Subsan	nples			
_							
	sample periods	$\begin{matrix} \text{All} \\ 1928 \sim 2010 \end{matrix}$	$\begin{array}{l} \text{Pre-WW2} \\ \text{1928} \sim 1945 \end{array}$	Post-WW2 1946 \sim 2010	Bretten Woods 1946 \sim 1970	$\begin{array}{l} \text{Pre-Volcker} \\ \text{1971} \sim \text{1985} \end{array}$	Post-Volcker 1986 \sim 2010
-			Panel A. Regr	ession on Two R	olling Correlations		
	$ ho_{\rm small}$	2.691** (2.415)	2.532 (0.686)	3.268*** (3.720)	2.562* (1.686)	4.329*** (2.991)	4.598*** (3.304)
	ρ_{large}	-1.181 (-1.024)	-3.011 (-0.667)	-2.431*** (-2.874)	-2.172 (-1.345)	-1.980 (-1.038)	-1.519 (-1.274)
	log(CAPE)	-1.366** (-2.441)	-6.283*** (-2.752)	-0.469 (-1.145)	-1.875** (-2.450)	-2.174 (-1.587)	-1.701** (-2.378)
	obs R ²	984 0.018	205 0.053	779 0.020	300 0.024	180 0.046	299 0.034
		Panel	B. Regression o	n the Difference of	of Two Rolling Corr	relations	
	$ ho_{ m large} - ho_{ m small}$	-2.042* (-1.918)	-2.610 (-0.708)	-2.931*** (-3.926)	-2.423* (-1.688)	-3.639*** (-2.841)	-3.193*** (-3.019)
	log(CAPE)	-1.348** (-2.387)	-6.184*** (-2.944)	-0.419 (-1.073)	-1.807** (-2.501)	-2.269 (-1.608)	-0.943 (-1.392)
	obs R ²	984 0.016	205 0.053	779 0.019	300 0.023	180 0.041	299 0.026

Introduction	Model 000000	Estimation 0000000	Forecastability	Summary ●
Summary				

- A model is derived to explain why speculators first withdraw from small stocks and then from large stocks during a liquidity crisis
- The estimated funding liquidity appears correlated
 - positively to aggregate hedge fund leverage ratios, stock market sentiments, and the total number of M&A activities
 - negatively to bond liquidity premiums, Moody's Baa-Aaa corporate bond spreads, and the relative prevalence of liquidity mergers
- The estimated funding liquidity forecasts stock market returns with strong significance

References

BACK-UP SLIDES

BACK-UP SLIDES

Expected Returns over Speculator's Initial Wealth

Small- and Large-Stock Illiquidity

References

Rolling Correlations of Market Returns with Small- and Large-Stock Illiquidity

References

Difference of the Two Rolling Correlations

Stock Market Confidence Index

Survey by the Yale School of Management

Baker and Wurgler (2007)'s Sentiment Index

 Baker and Wurgler (2007)'s sentiment index is estimated as the first principal component of the following six variables: closed-end fund discount, detrended log turnover, number of IPOs, first-day return on IPOs, dividend premium, and equity share in new issues.

Trading Strategies

- The portfolio consists of two assets
 - : riskfree assets and stock market mutual funds
- Estimate the percentile of Δρ_t from its previous history

$$x_{t} = p(\Delta \rho \leq \Delta \rho_{t} | \rho_{1}, \cdots, \rho_{t-1})$$
$$= \frac{1}{t-1} \sum_{s=1}^{t-1} \mathcal{I} \{\Delta \rho_{s} \leq \Delta \rho_{t}\}$$

Use the percentile to decide the weight of stocks

$$\theta_{t} = \bar{\theta} - \mathbf{x}_{t} \left(\bar{\theta} - \underline{\theta} \right) \in \left[\underline{\theta}, \bar{\theta} \right]$$

Portfolio return is given by

$$R_{p,t+1} = \theta_t \left(R_{m,t+1} - R_{f,t} \right) + R_{f,t}$$

Trading Strategies: Sharpe Ratio

	Stocks Only $\theta = 1$	Riskfree Only $\theta = 0$	Strategy 1 $\theta \in [0, 1]$	Strategy 2 $\theta \in [0, 2]$	Strategy 3 $\theta \in [-1, 2]$
	Panel A	A. Portfolio Hold	ing Returns ($(R_{p,t+1})$	
average	0.908	0.452	0.856	1.259	1.206
stdev	4.685	0.253	2.272	4.545	4.431
	Panel B. F	ortfolio Excess	Returns (R _{p,}	$_{t+1} - R_{f,t}$)	
average	0.456	0	0.404	0.807	0.754
stdev	4.696	0	2.279	4.559	4.437
Sharpe Ratio	o 0.097		0.177	0.177	0.170

Different Rolling Window Horizons: Estimation

Different Rolling Window Horizons: Predictability

horizon	12 months	18 months	24 months	30 months	36 months	42 months				
	Panel A. Regression on Two Rolling Correlations									
$ ho_{ m small}$	1.301**	1.516**	2.653***	3.385***	3.483***	4.029***				
	(2.389)	(1.991)	(3.158)	(3.811)	(3.246)	(3.575)				
holarge	-0.083	0.083	-1.962**	-2.606***	-2.836***	-3.401***				
	(-0.115)	(0.089)	(-2.344)	(-3.107)	(-3.141)	(-3.803)				
log(CAPE)	-0.656	-0.691	-0.500	-0.455	-0.527	-0.551				
	(-1.515)	(-1.588)	(-1.184)	(-1.087)	(-1.299)	(-1.356)				
obs	768	762	756	750	744	738				
<i>R</i> ²	0.011	0.011	0.017	0.022	0.022	0.025				
	Panel B. F	Regression on t	he Difference of	Two Rolling Co	rrelations					
$ ho_{ m large} - ho_{ m small}$	-0.830	-0.948	-2.397***	-3.071***	-3.188***	-3.715***				
	(-1.552)	(-1.314)	(-3.385)	(-4.124)	(-3.659)	(-4.261)				
log(CAPE)	-0.614	-0.618	-0.463	-0.415	-0.500	-0.530				
	(-1.431)	(-1.469)	(-1.135)	(-1.033)	(-1.279)	(-1.338)				
obs	768	762	756	750	744	738				
R ²	0.007	0.007	0.016	0.021	0.021	0.025				

Reference

- Adrian, Tobias, and Hyun Song Shin, 2009, Money, Liquidity, and Monetary Policy, *American Economic Review* 99, 600–605.
- Almeida, Heitor, Murillo Campello, and Dirk Hackbarth, 2011, Liquidity mergers, *Journal of Financial Economics* 102, 558–526.
- Amihud, Yakov, 2002, Illiquidity and stock returns: cross-section and time-series effects, Journal of Financial Markets 5, 31–56.
- Anand, Amber, Paul J. Irvine, Andy Puckett, and Kumar Venkataraman, 2011, Market Crashes and Institutional Trading, *working paper*.
- Ang, Andrew, and Geert Bekaert, 2007, Stock Return Predictability: Is it There?, *Review of Financial Studies* 20, 651–707.
- Ang, Andrew, Sergiy Gorovyy, and Gregory B. van Inwegen, 2011, Hedge fund leverage, *Journal of Financial Economics* 102, 102–126.
- Baker, Malcolm, and Jeffrey Wurgler, 2007, Investor Sentiment in the Stock Market, The Journal of Economic Perspectives 21, 129–151.
- Ben-David, Itzhak, Francesco Franzoni, and Rabih Moussawi, 2011, Hedge Fund Stock Trading in the Financial Crisis of 2007-2009, *Review of Financial Studies* 25, 1–54.
- Boudoukh, Jacob, Roni Michaely, Matthew Richardson, and Michael R. Roberts, 2007, On the Importance of Measuring Payout Yield: Implications for Empirical Asset Pricing, *The Journal of Finance* 62, 877–915.
- Brunnermeier, Markus K., and Lasse Heje Pedersen, 2009, Market Liquidity and Funding Liquidity, *Review of Financial Studies* 22, 2201–2238.
- Campbell, John Y., and Tuomo Vuolteenaho, 2004, Bad Beta, Good Beta, *The American Economic Review* 94, 1249–1275.
- Chen, Nai-Fu, Richard Roll, and Stephen A. Ross, 1986, Economic Forces and the Stock Market, *The Journal of Business* 59, 383–403.
- Comerton-Forde, Carole, Terrence Hendershott, Charles M. Jones, Pamela C. Moulton, and Mark S. Seasholes, 2010, Time Variation in Liquidity : The Role of Market-Maker Inventories and Revenues, *The Journal of Finance* 65, 295–331.
- Fontaine, Jean-Sébastien, and René Garcia, 2012, Bond Liquidity Premia, *Review of Financial Studies* 25, 1207–1254.
- Goyal, Amit, and Pedro Santa-Clara, 2003, Idiosyncratic Risk Matters!, *The Journal of Finance* 58, 975–1008. 39 / 27 Gromb, Denis, and Dimitri Vayanos, 2002, Equilibrium and welfare in markets with financially constrained arbitraceurs. *Journal of Financial Economics* 66, 361–407.