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1 Introduction

One of the major functions of derivative markets is to enable participants to share risk. For

example financial institutions desiring to hedge their assets’risk can do so by purchasing

protection in derivative markets, such as the CDS market. The risk—sharing effectiveness of

such trades, however, can be significantly reduced by counterparty risk.1 To mitigate that

risk, margin deposits can be requested. Indeed, the immediate response of regulators and

law-makers to the financial crisis was to require a significant expansion of the use of margins

in derivative activity (Dodd-Frank Act in the US, EMIR in the EU). There is, however, a

growing awareness that margins can be pro-cyclical (BIS, 2010). Margins calls, which occur

when concerns about counterparty risk increase, can lead to assets sales that exert downward

pressure on market prices with further adverse consequences for market participants.

This paper evaluates the benefits and costs of margin requirements with optimal contracts

and endogenous asset prices. To do so, we extend Biais, Heider, Hoerova (2012a) to an

equilibrium setting, where asset prices are endogenous. In that setting we compare the

socially optimal allocation to its laissez—faire counterpart.

Risk-averse agents (protection buyers) want to insure against a common exposure to risk

and risk-neutral agents (protection sellers) offer insurance in a derivative market. Protection

sellers have limited liability. They can make insurance payments only to the extent that

their assets are suffi ciently valuable. To ensure that their assets remain valuable, they must

exert downward risk—prevention effort. The extent to which a financial institution exerts

such effort is unobserved by other market participants. Combined with limited liability,

this generates moral hazard. After market participants have entered derivative positions,

new information about the insured risk is observed, affecting the expected pay—offs of the

contracting parties. While protection sellers initially expect to (at least) break even, after

bad news their derivative position becomes loss—making in expectation. This liability creates

a debt—overhang problem, reducing their incentive to exert risk—prevention effort. As shown

in Biais, Heider, Hoerova (2012a), in this context the optimal contract relies on variation

margins to cope with moral hazard and reduce counterparty risk.

Now turn to the equilibrium implications of such contracts, which is the novel contribution

of this paper. To respond to margin calls, protection sellers must liquidate their assets. The

1For example, when Lehman Brothers filed for bankruptcy in September 2008, it froze the positions of
more than 900,000 derivative contracts (Fleming and Sarkar, 2014).
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larger the margins, the greater the fraction of assets that must be liquidated, the lower

the market clearing price for these assets. This gives rise to a fire-sale externality, as in

Gromb and Vayanos (2002). Because all players maximize expected utility and contracts are

optimal, welfare is well-defined, and we can conduct a normative analysis of the consequences

of this externality. We show it implies that the information constrained utilitarian optimum

differs from the market equilibrium.2 In equilibrium, market participants purchase too much

insurance, and correspondingly request excessive margins, because they do not internalize

the negative externality they generate. We show that the information constrained utilitarian

optimum can be restored by limiting positions and capping margins, which also reduces the

magnitude of fire—sales price discounts.

When participants are very risk averse, they are very eager to purchase protection. But

their eagerness to do so can be self—defeating. After a bad signal, the consumption of

protection sellers increases in the proceeds from margin calls: αp, where α is the fraction

of assets liquidated and p is the fire—sale price. For a given margin call (α), when the price

is very low, the proceeds are low, reducing the consumption of the protection seller. This

increases the marginal utility of the protection seller’s consumption in that state, particularly

so if she is very risk—averse. We show that, when protection sellers are very risk—averse, this

increase in the marginal utility of consumption leads to an larger margin calls (α) when price

(p) goes down. Since the supply of the asset in the marketplace stems from the liquidation

of protection sellers’assets induced by margin calls, when protection buyers are very risk

averse, supply can be decreasing in price. This can give rise to multiple equilibria: When

market participants anticipate low prices, they request large margins, which, if bad news

arrive, induce low prices, fulfilling the initial expectation. There also exists an optimistic

high—price equilibrium, which, from the point of view of the protection buyers and protection

sellers Pareto dominates the pessimistic equilibrium.

Key to our analysis is the interaction between optimal contracting and equilibrium pric-

ing. On the one hand, rationally anticipating equilibrium prices, market participants design

privately optimal contracts. On the other hand, the market—clearing price reflects the supply

of the asset, that is triggered by the margin calls specified in the optimal contract. Thus,

there is a rational expectations loop, of which the optimal contract and the equilibrium price

are the fixed point. Equilibrium multiplicity arises when there are multiple fixed points.

2This is in line with the seminal contribution of Greenwald and Stiglitz (1986).
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While the same pecuniary externality is key for equilibrium multiplicity and equilibrium

suboptimality, one must bear in mind that these two concepts are different. Even when equi-

librium is unique, it is suboptimal, and involves over—margining and fire—sales externalities.

When there are multiple equilibria, even the highest price equilibrium is suboptimal and,

again, involves over—margining and excessive fire—sales.

The empirical implications of our theoretical analysis reflect the interaction of optimal

contracting and equilibrium asset pricing.

• Without moral hazard, in our model, the prices of the protection sellers’and protection
buyers’assets are independent. With moral hazard, in contrast, they are positively

correlated. The arrival of bad news about the protection buyers’s assets triggers a

decline in the price of those assets and in the price of the protection sellers’assets,

because of fire—sales. Moreover, the greater the variance of the protection buyers’

assets value, the larger the margin calls, and, correspondingly, the greater the fire—

sales discount. That is, the larger the (exogenous) variance of the protection buyers’

assets, the larger the (endogenous) variance of the protection sellers’assets.

• When protection buyers are only moderately risk—averse, margins are small, and fire—
sales discounts and contagion are limited. As their risk—aversion increase, fire-sales and

contagion get larger and larger. At some point, one switches from a unique equilibrium

to multiple ones. If market participants are pessimistic and coordinate on the bad

equilibrium, this triggers a strong downward jump in price. In this context, a small

increase in risk—aversion can generate a large drop in price, which can be interpreted

as a crash.

• The greater the opacity, complexity and diffi culty of the risk—prevention task, the
more severe the moral hazard problem, the greater the need for margins, and the

corresponding fire—sales price drops. Thus at times when financial intermediaries’

risk—prevention becomes more complex and fraught with moral hazard, asset markets

become more unstable.

The next section surveys the related literature. Section 3 describes the model and presents

the first-best benchmark. Section 4 analyzes optimal margining under moral hazard. The

analysis in that section builds on the analysis in Biais, Heider and Hoerova (2012a). Section

5, which derives the market equilibrium and the utilitarian optimum, and compares the two,
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is the key contribution of the present paper. Section 6 discusses the empirical and policy

implications of our analysis. Proofs are in the appendix.

2 Literature

The analysis of the interaction between liquidation induced by financial constraints and

equilibrium prices goes back, at least, to Shleifer and Vishny (1992). In their 2011 survey,

Shleifer and Vishny write:

“a fire-sale is essentially a forced sale of an asset at a dislocated price... The

price is dislocated because ... assets are then bought by nonspecialists who ...

are only willing to buy at valuations that are much lower.”

The fire-sales and ineffi ciencies arising in our model are in line with this characterization.

Differences between our analysis and that of Shleifer and Vishny (1992) include our focus on

risk—sharing, margins, optimal contracting and welfare.

Gromb and Vayanos (2002) offer the first analysis of how margin/collateral constraints

depress prices in financial markets, giving rise to pecuniary externalities, and driving the

equilibrium away from information-constrained effi ciency.3 Suppose there is a liquidity shock

so that some investors must sell their holdings of an asset. This will generate a drop in

the price, unless arbitrageurs step in and buy. Arbitrageurs, however, can’t freely do so

because they are subject to margin/collateral constraints. More precisely, the amount each

can buy is limited by an upper bound, increasing in his own wealth. Now, this wealth

is evaluated at current prices. So, if the arbitrageur is long in the asset, the lower the

price, the tighter the constraint, the less the arbitrageur can buy. This generates pecuniary

externalities: If one arbitrageur is constrained and cannot buy, this depresses the price. This

depressed price tightens the margin/collateral constraint of the other arbitrageurs. Because

of these pecuniary externalities, equilibrium is not effi cient. The major difference between

this analysis and ours is that, in Gromb and Vayanos (2002), margin/collateral constraints

are exogenous, while in our model they are endogenous and emerge as features of the optimal

3Gromb and Vayanos (2010) is a very interesting survey of the literature on limits to arbitrage, including
an illuminating presentation of a simplified version of Gromb and Vayanos (2002). Gromb and Vayanos
(2015) extend these analyses to a dynamic context, with several assets. They show how price discounts are
self—correcting, and also how constraints can generate contagion that would not arise in a frictionless market.
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contract in the presence of moral hazard. This enables us to study privately and socially

optimal margins and the tradeoff between the costs and benefits of margins.

This comment also applies to Brunnermeier Pedersen (2009) where, similarly to Gromb

and Vayanos (2002), margin constraints are exogenous. In addition, the economic mechanism

linking margins and equilibrium price is different in Brunnermeier and Pedersen (2009) and

in our paper. In their analysis, market participants are learning about volatility. When they

observe a large price drop, they increase their estimate of the volatility. Because volatility is

higher, margins are raised. This triggers fire-sales amplifying the initial price drop. Because

our economic mechanism is different, we get different implications: From a normative point

of view, modelling private and social costs and benefits of margins yields our implication on

over-margining. From a positive point of view, our implication that larger protection buyers’

risk aversion or protection sellers’moral hazard increase margins, fire-sales and the scope for

equilibrium multiplicity differs from the implications of Brunnermeier and Pedersen (2009).

Lorenzoni (2008) and Hombert (2009) also study pecuniary externalities associated with

collateral, but in a different context. In Lorenzoni (2008), entrepreneurs raise funds to

invest. Then, if there is a bad aggregate shock, all entrepreneurs need more cash to salvage

their projects. Because of limited commitment, entrepreneurs cannot raise new debt at

this point, while outside investors cannot credibly promise to insure entrepreneurs against

the negative shock. Hence, when the negative shock hits, entrepreneurs must sell assets to

raise money to salvage their project. These fire-sales depress the price and are ineffi cient

because they allocate the asset to outside agents who value it less than entrepreneurs. As in

Gromb and Vayanos (2002), this gives rise to pecuniary externalities. When one entrepreneur

invests a lot initially, this implies he must sell a lot after the bad shock, which depresses

the price. This depressed price is costly for the other entrepreneurs, because it forces them

to sell more assets to raise the same amount of cash. Because of this negative externality,

equilibrium is not effi cient, more precisely, equilibrium prices are too low. In contrast,

Hombert (2009) show that equilibrium prices can be too high relative to the second-best. He

identifies two possible sources of externalities: On the one hand, when firms liquidate their

assets, they reduce the pledgeable income of other firms. This collateral effect is similar to

that in Lorenzoni (2008). On the other hand, depressed prices offer attractive investment

opportunities to entrepreneurs who exerted high effort initially and succeeded. This incentive

effect, which differs from that in Lorenzoni, can outweigh the collateral effect, implying that
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low prices increase welfare. The major difference between the analyses of Lorenzoni (2008)

and Hombert (2009) and ours is that they consider real-economy firms borrowing funds

against initial collateral. This differs from our analysis of risk-sharing in financial markets

with variation margins.

Acharya and Viswanathan (2011) and Kuong (2014) offer interesting analyses of the

interaction between equilibrium prices and optimal contracts, to which our own analysis is

related. Acharya and Viswanathan (2011) study the equilibrium price at which borrowers

resell their assets to overcome credit rationing, and analyze the negative externality induced

by fire-sales. Margin calls in our paper play a similar role to asset resales in Acharya and

Viswanathan (2011), and the incentive compatibility condition in our analysis is similar to

theirs. Moreover, in Acharya and Viswanathan (2011) and Kuong (2014) asset sales depress

prices, as in our analysis.

A major difference between our analysis and those of Acharya and Viswanathan (2011)

and Kuong (2014) is that, while they analyze corporate financing in a risk neutral world,

we analyze risk—sharing between participants with different preferences towards risk. Risk

aversion thus plays a major role in our analysis, especially when it’s large. In particular, it

is large risk—aversion which, by raising the marginal utility of consumption after bad news,

leads to downward sloping supply, and thus equilibrium multiplicity.

Another major difference between our paper and those of Acharya and Viswanathan

(2011) and Kuong (2014) is that we conduct a normative analysis of welfare and derive its

policy implications. Thus we show that margins are larger (and prices lower) with laissez faire

than in the utilitarian optimum (irrespective of whether there is equilibrium uniqueness or

multiplicity.) The policy implication is that the regulator should limit positions and margin

calls.

3 Model and First-Best Benchmark

3.1 The model

There are three dates, t = 0, 1, 2, a mass-one continuum of protection buyers, a mass-one

continuum of protection sellers, a mass-one of arbitrageurs. At t = 0, each protection buyer

is matched with a protection seller and they contract. At t = 1, margining and trading

decisions are made. At t = 2, payoffs are received.

Players and assets. Protection buyers are identical, with twice differentiable concave
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utility function u, and are endowed with one unit of an asset with random return θ̃ at t = 2.4

For simplicity, we assume θ̃ can only take on two values: θ̄ with probability π and θ with

probability 1 − π, and we denote ∆θ = θ̄ − θ. The risk θ̃ is the same for all protection

buyers.5

Protection buyers seek insurance against the risk θ̃ from protection sellers who are risk-

neutral and have limited liability. Each protection seller j has an initial endowment of one

unit of a risky asset returning R̃j at t = 2. This payoff is affected by a protection seller’s

risk-management decision at t = 1. To model risk-management in the simplest possible way,

we assume that each seller j can undertake a costly effort to make her assets safer. If she

undertakes such risk-prevention effort, the per unit return R̃j is R with probability one. If

she does not exert the risk-prevention effort, then the return is R with probability µ < 1

and zero with probability 1 − µ. The risk-management process reflects the unique skills

of the protection seller and is therefore diffi cult to observe and monitor by outside parties.

Combined with limited liability, effort unobservability generates moral hazard.

Exerting the risk-prevention effort costs C per unit of assets under management at t = 1.6

Because protection seller assets are riskier without costly effort, we also refer to the decision

not to exert effort as “risk-taking”.7 Undertaking effort is effi cient,

R− C > µR, (1)

i.e., the expected net return is larger with effort than without it. We also assume that when a

protection seller exerts risk-prevention effort, return on her assets is higher than one (return

on cash),

R− C > 1. (2)

For simplicity, conditional on effort, R̃j is independent across sellers and independent of

protection buyers’risk θ̃. To allow protection sellers who exert effort to fully insure buyers,

4The concavity of the objective function of the protection buyer can reflect institutional, financial or
regulatory constraints, such as leverage constraints or risk-weighted capital requirements. For an explicit
modeling of hedging motives see Froot, Scharfstein and Stein (1993).

5At the cost of unnecessarily complicating the analysis, we could also assume that the risk has an idio-
syncratic component. This component would not be important as protection buyers could hedge this risk
among themselves, without seeking insurance from protection sellers.

6We show in Biais, Heider and Hoerova (2012a) that the qualitative results are unchanged when C is
convex in the amount of assets under management.

7Here effort improves returns in the sense of first-order stochastic dominance. We have checked that our
results are robust when effort improves returns in the sense of second-order stochastic dominance, so that
lack of effort corresponds to risk-shifting.
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we assume

R > π∆θ. (3)

Each arbitrageur k values one unit of the risky asset at vk < R−C. We assume vk is dis-
tributed over [x, 1].8 Arbitrageurs have a lower valuation for the asset than protection sellers

either because they are worse in managing the asset (e.g., their cost of risk-management

effort C is higher) or because they are financially constrained. Arbitrageurs do not have a

positive valuation for buyers’asset nor do they insure protection buyers (e.g., because they

are infinitely risk averse or because they do not have the information and trading technology

to do so). For simplicity, we assume all protection buyers value the asset at x, so that it is

not optimal that they buy it or obtain it from the protection sellers and then hold it.

Advance information. At the beginning of t = 1, before investment and effort decisions

are made, a public signal s̃ about protection buyers’risk θ̃ is observed. For example, when

θ̃ is the credit risk of real-estate portfolios, s̃ can be the real-estate price index. Denote the

conditional probability of a correct signal by

λ = prob[s̄|θ̄] = prob[s|θ].

The probability π of a good outcome θ̄ for protection buyers’ risk is updated to π̄ upon

observing a good signal s̄ and to π upon observing a bad signal s, where by Bayes’law,

π̄ = prob[θ̄|s̄] =
λπ

λπ + (1− λ)(1− π)
and π = prob[θ̄|s] =

(1− λ)π

(1− λ)π + λ(1− π)
.

We assume that λ ≥ 1
2
. If λ = 1

2
, then π̄ = π = π and the signal is completely

uninformative. If λ > 1
2
, then π̄ > π > π, i.e., observing a good signal s̄ increases the

probability of a good outcome θ̄ whereas observing a bad signal s decreases the probability

of a good outcome θ̄. If λ = 1, the signal is perfectly informative.

Contracts and margins. At time 0, the protection buyer makes a take—it—or—leave—it

contract offer to the protection seller. Similar results would hold if, instead, we assumed the

protection seller had (some or all the) bargaining power. The contract specifies a transfer τ

at time 2 between the protection seller and the protection buyer. When τ > 0 the protection

seller pays the protection buyer and vice versa when τ < 0. The transfer τ can be conditional

on all observable information: the realization of the risk θ̃, the return on the seller’s assets

R̃ and the advance signal s̃. Hence, transfers are denoted by τ(θ̃, s̃, R̃).

8Alternatively, we could assume the upper bound of the support of vk is R − C. The reason we assume
the upper bound is 1 is that this setting nests Biais, Heider, Hoerova (2012a).

8



The contract also specifies margin requirements. At the beginning of t = 1, after the

advance signal s̃ was observed, a variation margin can be called. To satisfy the margin call,

a protection seller can liquidate a fraction α(s̃) ∈ [0, 1] of her assets by selling them at price

p per unit and deposit the resulting cash on a margin account. The cost of such deposits is

that their liquidation value is lower than what it could have been had the assets remained

under the management of the protection seller R−C > 1 > p. In Biais, Heider and Hoerova

(2012a), the price was exogenous and normalized to one. The analysis in the present paper

considers endogenous prices, set by market clearing conditions.

Yet margins also have advantages. Our key assumption is that the cash deposited in the

margin account is safe and no longer under the discretion of the protection seller, i.e., it is

ring-fenced from moral hazard. Furthermore, if the protection seller defaults, the cash on

the margin account can be used to pay the protection buyer.

Margin accounts can be implemented as escrow accounts set up by the protection buyer

or via a market infrastructure such as a central counterparty (CCP). Importantly, we assume

that margin deposits are observable and contractible, and that contractual provisions calling

for margin deposits are enforceable. It is one of the roles of market infrastructures to ensure

such contractibility and enforceability.

Transfers from protection sellers are constrained by limited liability,

τ(θ̃, s̃, R̃) ≤ α(s)p+ (1− α(s))R, ∀(θ, s, R). (4)

A protection seller cannot make transfers larger than what is returned by the fraction (1−
α(s)) of assets under her management and by the fraction α(s) of assets she deposited on

the margin account.

Asset market. The supply of the asset, denoted by S, is given by the asset liquidations

of protection sellers due to margin calls:

S = α (s) . (5)

The demand for the asset, denoted byD (p), comes from amass of arbitrageurs with valuation

vk ≥ p:

D (p) = 1− F (p) (6)

Market clearing at t = 1 requires that the supply of the asset is equal to the demand for

the asset at price p:

p = F−1 (1− α (s)) . (7)
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Note that the price p ≤ 1 since vk ≤ 1. In the special case of the uniform distribution of vk

over [x, 1], we have D (p) = 1−p
1−x so that

p = 1− (1− x)α (s) .

The case where p = 1, analyzed in Biais, Heider and Hoerova (2012a) arises in the limit when

x goes to 1. If there were only protection sellers and arbitrageurs, protection sellers would

always keep the asset, since their value for the asset would exceed that of the arbitrageurs,

as R− C > 1. The sequence of events is summarized in Figure 1.

Insert Figure 1 here

3.2 First-best: observable effort

In this subsection we consider the case in which protection sellers’risk-prevention effort is

observable so that there is no moral hazard and the first-best is achieved. While implausible,

this case offers a benchmark against which we will identify the ineffi ciencies that arise when

protection seller’s risk-prevention effort is not observable.

In the first-best, protection sellers are requested to exert risk-prevention effort when

offering protection since doing so increases the resources available for risk-sharing (see (1)).

Margins are not used because they are costly (see (2)) and offer no benefit when risk-

prevention effort is observable. The transfers are chosen to maximize buyers’utility

E[u(θ̃ + τ(θ̃, s̃, R̃)] (8)

subject to the limited liability constraints (4), as well as the constraint that protection sellers

accept the contract. By accepting (and exerting effort) sellers obtain R−C−E[τ(θ̃, s̃, R̃)]. If

they do not sell protection, they obtain R−C.9 Therefore, a protection seller’s participation
constraint in the first-best is

E[τ(θ̃, s̃, R̃)] ≤ 0. (9)

In the first-best, protection sellers exert risk-prevention effort. In this context, the return

R̃ is always equal to R and we drop the reference to the return in the transfers τ for ease

of notation. As shown in Biais, Heider and Hoerova (2012a), the optimal contract provides

9Without derivative trading, protection sellers always exert effort since it is effi cient to do so (see condition
(1)).
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full insurance, is actuarially fair and does not react to the signal. Margins are not used and

the transfers are given by

τ(θ̄, s̄) = τ(θ̄, s) = E[θ̃]− θ̄ = − (1− π) ∆θ < 0

τ(θ, s̄) = τ(θ, s) = E[θ̃]− θ = π∆θ > 0.

The first-best insurance contract is actuarially fair since the expected transfer from protection

sellers is zero, E[τ(θ̃, s̃)] = 0.

4 Optimal margins under moral hazard

If protection buyers want protection sellers to exert risk-prevention effort, then it must be in

sellers’own interest to do so after observing the signal s about buyers’risk θ̃. The incentive

compatibility constraint under which a protection seller exerts effort after observing s is:

E[α(s̃)p+ (1− α(s̃))(R̃− C)− τ(θ̃, s̃, R̃)|e = 1, s̃ = s]

≥ E[α(s̃)p+ (1− α(s̃))R̃− τ(θ̃, s̃, R̃)|e = 0, s̃ = s].

The left-hand side is a protection seller’s expected payoff if she exerts risk-prevention effort.

The effort costs C per unit of assets she still controls, 1 − α(s). The right-hand side is her

(out-of-equilibrium) expected payoff if she does not exert effort and therefore does not incur

the cost C. We hereafter focus on contracts for which this incentive compatibility condition

always holds. This is optimal if lack of effort generates very low expected output.

Without effort, her assets under management return R with probability µ and zero with

probability 1−µ. In order to relax the incentive constraint, the contract requests the largest
possible transfer from a protection seller when R̃ = 0: τ(θ̃, s̃, 0) = α(s̃)p. This rationalizes

the stylized fact that, in case of default of a protection seller, margin deposits are ceized and

used to pay protection buyers.

With effort, protection seller assets are safe, R̃ = R. For brevity, we write τS(θ̃, s̃, R) as

τS(θ̃, s̃). The incentive constraint after observing s then is

α(s)p+ (1− α(s))(R− C)− E[τS(θ̃, s̃)|s̃ = s]

≥ µ
(
α(s)p+ (1− α(s))R− E[τS(θ̃, s̃)|s̃ = s]

)
,

or, using the notion of “pledgeable return”P (see Holmström and Tirole, 1997),

P ≡ R− C

1− µ, (10)
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the incentive compatibility constraint rewrites as

α(s)p+ (1− α(s))P ≥ E[τ(θ̃, s̃)|s̃ = s]. (11)

The left-hand side is the amount that protection sellers’can pay (or pledge) without under-

mining their incentive to exert risk-prevention effort. Crucially, the price at which assets are

liquidated when margins are called, p, enters the incentive constraint directly. Higher price

p relaxes the constraint. Moreover, as long as the liquidation price is higher than pledgeable

income, p > P, higher margin call α makes it easier to induce protection seller’s effort. The
right-hand side is what protection sellers expect to pay to buyers after seeing the signal

about buyers’risk. It is positive when conditional on the signal, a protection seller expects,

on average, to make transfers to the buyer. It is negative if the seller expects, on average, to

receive transfers from the buyer. These are important observations to which we return later.

For suffi ciently high levels of P, the incentive-compatibility constraints are not binding
at the first-best allocation. As shown in Biais, Heider and Hoerova (2012a), even if effort

is not observable, the first-best can be achieved if and only if the pledgeable income is high

enough, in the sense that

P ≥ (π − π)∆θ = E[θ̃]− E[θ̃|s]. (12)

In what follows, we will focus on the case when the first-best cannot be reached, i.e., when

P < (π − π)∆θ = E[θ̃]− E[θ̃|s̃ = s]. (13)

The participation constraint of the protection seller is

E[α(s̃)p+ (1− α(s̃))(R̃− C)− τ(θ̃, s̃, R̃)|e = 1] ≥ R− C.

Because protection sellers exert effort on the equilibrium path, we have R̃ = R and again,

for brevity, we write τ(θ̃, s̃, R̃) as τ(θ̃, s̃). Collecting terms, the participation constraint is

−E[τ(θ̃, s̃)] ≥ E [α(s̃)(R− C − p)] , (14)

The expected transfers to a protection seller (left-hand-side) must be high enough to com-

pensate her for the opportunity cost of the expected use of margins (right-hand-side). The

opportunity cost of margins depend on the price at which assets are liquidated when mar-

gins are called, p. Higher price p reduces the opportunity cost and, therefore, relaxes the

12



participation constraint. Still, since R − C > 1 ≥ p (by assumptions (2) and vk ≤ 1), the

right-hand side of (14) is positive so that, if margins are used, the contract is not actuarially

fair.

To keep the next steps of the analysis tractable, we make the following two simplifying

assumptions:

R > π̄∆θ − prob[s]

prob[s̄]
P (15)

1− π∆θ

R− P >
(1− π)R− P

π + (1− π)R− P (16)

These assumptions guarantee that limited liability conditions are slack in states (θ, s̄) and

(θ, s) (see Biais, Heider and Hoerova, 2012a, for details).

As shown in Biais, Heider and Hoerova (2012a), margins are not used after a good signal,

α(s̄) = 0, or if the moral hazard is not severe, i.e., P ≥ p. Furthermore, the participation

constraint and the incentive constraint after a bad signal are binding, which gives expected

transfers conditional on the signal (as a function of α(s) and p):

E[τ(θ̃, s̃)|s̃ = s] = α(s)p+ (1− α(s))P > 0 (17)

E[τ(θ̃, s̃)|s̃ = s̄] = −prob[s]

prob[s̄]
[α(s) (R− C) + (1− α(s))P ] < 0. (18)

Finally, as also shown in Biais, Heider and Hoerova (2012a), the optimal contract provides

full insurance conditional on the signal: Given the signal, the consumption of the protection

buyer at time 2 is independent of the realization of θ. Across signals, however, the con-

sumption of the protection seller is different, unlike in the first-best. This is because after a

bad signal, risk-sharing is limited by the binding incentive constraint. Hence, the protection

buyer bears signal risk: he consumes less after a bad signal than after a good signal. In what

follows, it will be useful to have a short-hand notation for consumption after a bad signal,

denoted by c, and consumption after a good signal, denoted by c̄:

c ≡ E[θ|s] + E[τ(θ̃, s̃)|s̃ = s] = E[θ|s] + α(s)p+ (1− α(s))P

c̄ ≡ E[θ|s̄] + E[τ(θ̃, s̃)|s̃ = s̄] = E[θ|s̄]− prob[s]

prob[s̄]
[α(s) (R− C) + (1− α(s))P ] .

Note that for p > P, higher margin calls α(s) increase consumption after a bad signal and

enable to achieve more incentive-compatible risk-sharing.

With this intuition in mind, we now turn to the determination of the optimal margin

call after a bad signal, taking price p as given. To analyze the amount of margin calls, it is
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useful to consider the ratio of the marginal utility of a protection buyer after a bad and a

good signal. Denoting this ratio by ϕ, we have

ϕ(α(s), p) ≡ u′(c)

u′(c̄)
=

u′ (E[θ|s] + α(s)p+ (1− α(s))P)

u′
(
E[θ|s̄]− prob[s]

prob[s̄]
[α(s) (R− C) + (1− α(s))P ]

) . (19)

In the first-best, there is full insurance, margins are not used and ϕ is equal to 1. With

moral hazard, protection buyers are exposed to signal risk. This makes insurance imperfect

and drives ϕ above one. For a given price p, p > P, ϕ is decreasing in α(s). This is because

higher margins reduce the wedge between consumption after a good and a bad signal, i.e.,

they improve insurance against signal risk.

Since there is full insurance conditional on the signal, we can rewrite the objective of the

risk-averse protection buyer as

prob[s̄]u(c̄) + prob[s]u(c). (20)

Maximizing (20) with respect to α(s) and using (17) and (18), while taking the price p as

given, the optimal margin after bad news (if it is interior) is implicitly given by the following

condition:

ϕ(α∗(s), p) =
R− C − P
p− P (21)

or, equivalently,

ϕ(α∗(s), p)− 1 =
R− C − p
p− P . (22)

The optimal margin trades-off the benefit of margins in terms of better risk-sharing (lower

risk-sharing wedge ϕ(α∗(s), p) − 1) and more relaxed incentives (given by p − P), with the
opportunity cost of margins (given by R− C − p). Equation (22) is illustrated in Figure 2.

Insert Figure 2 here

In the next section, we will combine optimal margins with the equilibrium determination

of the price p. Note that the price at which assets are liquidated, p, appears in three terms

of equation (22). Starting with the right-hand side, higher p reduces the opportunity cost of

margins, R−C − p. Higher p also increases the extent to which margins relax the incentive
constraint, p − P. Thus, higher p lowers the right-hand side of (22) and, ceteris paribus,
makes margins more attractive. On the left-hand side, higher price decreases the risk-sharing

wedge ϕ(α∗(s), p)− 1. Ceteris paribus, this implies that margins are needed less. Therefore,

as price p increases, optimal margin can either increase or decrease, depending on which

effect prevails. We investigate this equilibrium mechanism next.
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5 Equilibrium and optimality

We first study the market equilibrium with optimal margins. We then derive the information-

constrained optimum with margins, and compare it with the market equilibrium.

5.1 Market equilibrium

5.1.1 Existence

The supply of the asset at time 1 is zero after a good signal, and the equilibrium price is

p∗ = 1. After a bad signal, the supply is the amount of margin calls α∗(s). While, at t = 1,

the supply is a fixed number, at t = 0, margin calls are optimally set by contracting parties

rationally anticipating the equilibrium price. For each possible anticipated price p, there is

an optimal amount of margin calls after a bad signal, α∗(s). This is the supply function,

S(p) = α∗(s).

When parties anticipate a price lower than the pledgeable income, they choose not to use

margins. Thus, for any p < P, S(p) = 0. Denote by p̂ the price such that ϕ(0) = R−C−P
p−P ,

p̂ ≡ P +
R− C − P

u′(c)
u′(c̄)

. (23)

Now, α∗(s) = 0 whenever

ϕ(0) ≤ R− C − P
p− P (24)

because and the right-hand side of (24) is decreasing in p. Hence, for any p < p̂, we still

have S(p) = 0. For p ≥ p̂, α∗(s) > 0, with α∗(s) given by (21). As shown in the appendix,

building on this analysis, one obtains the following characterization of the equilibrium.

Proposition 1 (Existence) Equilibrium exists. If D (p̂) > 0, the optimal margin is inte-

rior, and given by

α∗(s) = ϕ−1

(
R− C − P
p− P

)
(25)

while the market clearing price is

p∗ = F−1 (1− α∗(s)) > p̂. (26)

5.1.2 Uniqueness

We now investigate if equilibrium is unique. The demand curve is decreasing, but, as shown

below, the supply curve can be non—monotonic. This can generate multiplicity, and we

discuss its economic interpretation.
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Using equation (25) and using the implicit function theorem we show in appendix (see

(31)) that the supply function S (p) is increasing if and only if:

R− C − P
(p− P)2 > α∗(s)ρ (c)ϕ(α∗(s), p). (27)

where ρ (c) denotes the coeffi cient of the absolute risk aversion. Using (21), (27) is equivalent

to

α∗(s) = S(p) <
1

ρ (c) (p− P)
. (28)

Thus, if (28) holds, then higher price p leads to an increase in the supply of the asset α (p).

Conversely, if

α∗(s) = S(p) ≥ 1

ρ (c) (p− P)
(29)

holds, then higher price p leads to a decrease in the supply of the asset α (p). These two

cases are illustrated in Figure 3. In Panel A, (28) holds for all p ∈ [p̂, 1]. In Panel B, (28)

initially holds for relatively low values of p, but then, for larger values of p, (29) holds and

supply decreases.

Insert Figure 3 here

To offer an example where supply can be increasing or non-monotonic, consider the case

of the exponential utility with absolute risk—aversion parameter ρ. In that case ϕ(α∗(s), p)

is given by

exp

[
ρ

{
E[θ|s̄]− E[θ|s]− prob[s]

prob[s̄]
[α(s) (R− C) + (1− α(s))P ]− [α(s)p+ (1− α(s))P ]

}]
and we state, in the following propositions, that if ρ is low supply is increasing and equilibrium

unique, while if ρ is large supply can be non—monotonic, giving rise to multiple equilibria.

Proposition 2 (Suffi cient condition for uniqueness) Suppose utility is exponential. If

the coeffi cient of the absolute risk aversion of protection buyers is suffi ciently small, ρ < 1
1−P ,

then the supply is non-decreasing and the market equilibrium is unique.

Proposition 3 (Necessary condition for multiplicity) Suppose utility is exponential.

For each price p, there exists a threshold value of the coeffi cient of the absolute risk aversion

of protection buyers ρ, ρ∗, such that if ρ > ρ∗, then α∗(s) ≥ 1
ρ(p−P)

and the supply of the

asset is decreasing in p, ∂α
∂p
< 0.
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The intuition is as follows. When protection buyers are very risk-averse, they care a

lot about their consumption after bad news, c, which is determined by margins. Although

margins carry an opportunity cost, this cost is paid with consumption after good news, c̄,

which is less important for risk-averse protection buyers. When the price p goes down, α(s)p

decreases, and so does consumption after bad news (17). Therefore, if the protection buyer is

very risk—averse, she finds it optimal to increase α∗(s) to counter the impact of the decrease

in the price p. This gives rise to non—monotonic supply. In addition, with exponential utility,

we can pin down the impact of risk aversion on supply.

Proposition 4 Suppose utility is exponential. If ρ increases, supply increases.

Thus, there can be two regimes in the market, depending on risk aversion. When risk

aversion is low, supply is relatively low and upward-sloping, and equilibrium is unique, with

a relatively high price and low margins. When risk aversion gets higher, however, supply

increases, which lowers the price. In addition, supply can become non—monotonic. Corre-

spondingly there may be multiple equilibria. With multiple equilibria, if market participants

expect the price to be reasonably high, they don’t need to request large margins to generate

enough pledgeable income after bad news. Because margins are small, prices are not severely

depressed after bad news, confirming the initial expectation. In contrast, if market partici-

pants expect very low prices, they request large margins, which depress prices via fire-sales,

again confirming the initial expectation. These two regimes, and the possibility of multiple

equilibria, are illustrated in Figure 4.

Insert Figure 4 here

The next proposition states that, when there are multiple equilibria, they are welfare-

ranked.

Proposition 5 If there are multiple equilibria, they are Pareto-ranked from the point of view

of protection buyer-protection seller pair, with the high price-low margin equilibrium being

the preferred one.

A lower price is preferred from the point of view of arbitrageurs as a higher price decreases

their payoff. The welfare of arbitrageurs is given by (1− F (p)) (E [v | v > p]− p), with the
underlying utility of arbitrageurs given by max[0, v − p]. Yet, the equilibrium with the
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highest price dominates the other equilibria in terms of utilitarian welfare. This is because

while arbitrageurs make profits thanks to low prices, these profits are lower than the utility

cost to the other market participants because it is ineffi cient to have arbitrageurs buy the

asset.

5.2 Utilitarian optimum

In this section, we compare the laissez—faire regime to the allocation chosen by a benevolent

central planner who puts all the weight on the protection buyers, to which we hereafter refer

as the utilitarian optimum.

In the market equilibrium, protection buyers maximize their objective, (20) at time 0, to

determine margins. Margins, in turn, determine supply, and therefore the equilibrium price,

at time 1. Because they are competitive, individual protection buyers don’t take into account

the aggregate effect of their individual margins on the market clearing price. Yet, when one

protection buyer increases the margin she requests, she exerts a negative externality on the

others, by pushing the price down. Under symmetric information, this pecuniary externality

would not reduce welfare, but under information asymmetry it does, as in Greenwald and

Stiglitz (1986). Thus, as we’ll show below, the market equilibrium differs from the utilitarian

optimum which internalizes pecuniary externalities.

More precisely, the utilitarian optimum is obtained by maximizing (20) with respect to

α(s), substituting the optimal transfers (17), (18), and the market clearing price (7). When

the optimal margin is interior, it is pinned down by the following optimality condition:

ϕ(αU(s)) =
R− C − P

pU − P + αU(s)∂p
U

∂α

(30)

where pU = F−1
(
1− αU

)
. (30) is very similar to (21). The difference is that, in (30), there

is an additional term: ∂pU

∂α
, capturing the external effect of margins on prices.

We can now state our key result that compares the utilitarian optimum with the market

equilibrium.

Proposition 6 (Over-margining) In the market equilibrium with α∗(s) > 0, margining is

excessive compared to the utilitarian optimum, α∗(s) > αU(s).

What leads to excessive margining is the contractual externality: When one protection

buyer wants to obtain more insurance, he raises the margin in his optimal contract. By do-

ing so, he increases supply. This lowers the equilibrium price, which makes other protection
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buyers worse off. This negative externality implies that the market equilibrium differs from

the utilitarian optimum. Importantly, over-margining arises even when the market equilib-

rium is unique. When there are multiple equilibria, they are all different from the utilitarian

optimum, and all involve over-margining.

6 Empirical and policy implications

Empirical implications. The empirical implications of our theoretical analysis reflect the

interaction between optimal contracting driven by the demand for risk-sharing and equilib-

rium pricing.

When risk aversion of protection buyers is high or when the agency problems of protection

sellers are more severe, margin calls are larger. This implies a larger drop in the price of

the protection seller’s asset. As risk aversion increases, there can even be a switch from

increasing supply and equilibrium uniqueness, to non-monotonic supply curve and multiple

equilibria, as illustrated in Figure 5.

Insert Figure 5 here.

Indeed, a small change in risk aversion can cause such a switch and can lead to a large

jump in the market price. This happens when, upon the switch to multiple equilibria, the

worst-price equilibrium is chosen, as in Figure 6.

Insert Figure 6 here.

Similar effects can obtain when there is a drop in the demand for protection seller assets

due to, e.g., a few high valuation arbitrageurs leaving the market. This can be the case

when financial constraints of arbitrageurs tighten or when their valuation for the protection

seller assets drop due to better alternative investment opportunities or an increase in the

risk-management costs.

Our model generates contagion from the market for the protection buyer’s asset towards

the market for the protection seller’s asset, two asset classes that are independent ex ante

(before derivatives contracting takes place). The arrival of bad news about protection buyer’s

assets worsens seller’s incentives, margins are called to restore incentives, and this affects the
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(market) value of protection seller’s assets.10 Indeed, we can interpret signal s as determining

the market clearing price of the protection buyer’s asset, pB, whereby pB = E (θ | s). At
this price, there is no trade. This is because protection buyers are already fully hedged

conditional on the signal while protection sellers have no interest to liquidate their asset at

a discount to buy an asset with zero expected return. Similarly, arbitrageurs don’t want to

trade as their valuation for the buyer’s asset is zero.11 Our model implies that covariance

between pB and p is positive.

Such contagion effects are more pronounced the higher the informativeness of signal s, λ.

Higher λ increases the variance in the market for protection buyer’s asset. It also worsens the

incentive problem of the protection seller, leading to larger margin calls and a larger price

drop in the market for protection seller’s asset. Similarly, higher volatility in the protection

buyer’s risk θ, ∆θ, leads to higher margins and larger price drops in the value of protection

seller’s asset. An increase in the risk aversion of protection buyers or in the severity of the

moral hazard problem of protection sellers also deepens contagion effects.

Policy implications. Our welfare analysis shows that in equilibrium too much insur-

ance is sold by protection sellers, implying that aggregate margin calls are too large. The

utilitarian optimum can be achieved by imposing a cap on margins.

A cap on margins also solves the market instability problem caused by multiplicity: when

the regulator/central bank caps margins, equilibrium in the protection seller’s asset market

is unique.

Margins caps are a form of macro-prudential policy. Since the scope for multiplicity and

market instability is higher when risk aversion increases, regulators must impose margin caps

in this case. This implies that margins should be countercyclical.

Our analysis also highlights that phasing-in of the margin-cap policy must be carefully

designed; otherwise margin caps can lead to suboptimal outcomes. For example, suppose

some market participants have already contracted, before the cap is introduced. In these con-

tracts, protection sellers have promised large insurance payments, made incentive-compatible

by large margins. Now suppose the regulator caps margins, as we suggested above. Clearly,

10This is a different form of contagion than in Biais, Heider and Hoerova (2012). In that paper, contagion
arises in case protection sellers don’t do effort after bad news. Here, contagion arises even when protection
sellers always do effort.
11Note that zero trading volume in the protection buyers’ asset and contracting in derivatives on the

protection buyers’asset is consistent with the empirical observation of high liquidity in CDS markets and
low liquidity in the underlying bond market.
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the cap should be applied to new contracts, but should it also be applied to the old contracts?

If it is, while keeping transfers promised in the old contracts, then effort may no longer be

incentive-compatible, and many protection sellers end up defaulting. So, if a margin cap is

introduced, either old contracts should keep high margins and be exempt from the cap, or

their transfers should be revised downwards.

Our model implies that, in the presence of moral hazard, margining can be excessive.

However, we are not arguing that in reality markets always choose excessively large margins.

In practice other forces are at play which, for simplicity and clarity, we don’t include in the

present model. For example, if protection buyers are insured against counterparty default

by a central clearing counterparty, then they prefer not to use margins, which undermines

incentives (see Biais, Heider and Hoerova, 2012b). To avoid this, the regulator can impose a

floor on margins. In sum, when agency problems lead to margining practices which are not

in line with information-constrained effi ciency, a regulatory intervention may be needed, for

example via caps and floors on margins.
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Appendix

Proof of Proposition 1 The first step is to show that the supply function S (p) =

α∗(s) is continuous in p and increasing in p on a non-empty interval (p̂, p̃), p̃ ≤ 1. We

first investigate how the optimal interior margin α∗(s) > 0 changes as the price p changes.

Denoting the left-hand side of (22) by F , we have by the implicit function theorem that
∂α
∂p

= −∂F
∂p
/∂F
∂α
. Then,

∂F

∂p
=

u′′ (c)α(s)

u′(c̄)
+
R− C − P

(p− P)2 =

(
−α(s)u′(c)

u′(c̄)

)(
−u

′′ (c)

u′(c)

)
+
R− C − P

(p− P)2

= −α(s)ρ (c)ϕ(α∗(s), p) +
R− C − P

(p− P)2

where ρ (c) denotes the coeffi cient of the absolute risk aversion. Also,

∂F

∂α
=

u′′ (c) (p− P)u′(c) + u′(c)u′′(c̄)prob[s]
prob[s̄]

(R− C − P)

[u′(c̄)]2

=
u′′ (c)

u′(c̄)
(p− P) +

prob[s]

prob[s̄]

u′(c)

u′(c̄)

u′′(c̄)

u′(c̄)
(R− C − P)

= −
[
−u

′′ (c)

u′(c)

]
u′(c)

u′(c̄)
(p− P)− prob[s]

prob[s̄]

u′(c)

u′(c̄)

[
−u

′′(c̄)

u′(c̄)

]
(R− C − P)

= −ϕ(α∗(s), p)

[
ρ (c) (p− P) +

prob[s]

prob[s̄]
ρ (c̄) (R− C − P)

]
Hence,

∂α

∂p
= −∂F

∂p
/
∂F

∂α
=

−α(s)ρ (c)ϕ(α∗(s), p) + R−C−P
(p−P)2

ϕ(α∗(s), p)
[
ρ (c) (p− P) + prob[s]

prob[s̄]
ρ (c̄) (R− C − P)

]
It follows that ∂α

∂p
> 0 if and only if

R− C − P
(p− P)2 > α∗(s)ρ (c)ϕ(α∗(s), p). (31)

Using (21) in (31), we get that if

α∗(s) <
1

ρ (c) (p− P)
(32)

holds, then higher price p leads to an increase in the supply of the asset S (p). Conversely, if

α∗(s) ≥ 1

ρ (c) (p− P)
(33)
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holds, then higher price p leads to a decrease in the supply of the asset S (p).

For any p ≤ p̂, the supply function is continuous (and equal to zero). By construction,

at p = p̂, the supply is given by α∗(s) = ϕ−1
(
R−C−P
p̂−P

)
= 0. The supply is continuous at

p = p̂. This is because limit from the left is zero since we have shown that α∗(s) = 0 for any

p ≤ p̂. Limit from the right is also zero as ϕ−1
(
R−C−P
p−P

)
is continuous and equal to zero at

p = p̂. Using (31), we also have that ∂α
∂p
> 0 at α∗(s) = ϕ−1

(
R−C−P
p̂−P

)
. Any interior α∗(s) is

determined by (21) where function ϕ is continuous in p.

The second step is to show that the demand for the asset lies above the supply at p = P,
while it lies below the supply at p = 1. At p = P, S (p) = α∗(s) = 0 whileD (p) = 1−F (P) >

0. At p = 1, D (p) = 0. As for the supply, there are two possibilities. Either the supply

function is increasing for any p > p̂, implying that S (p = 1) > 0. Or the supply is decreasing

over some range of p > p̂ but then we have that S (p) = α∗(s) ≥ 1
ρ(c)(p−P)

> 1
ρ(c)(1−P)

> 0 (by

(33)). Therefore, at p = 1, D (p = 1) = 0 < S (p = 1) > 0.

In sum, both the demand for and the supply of the asset are continuous in p. The demand

is decreasing in p, and lies above the supply at p = P, while it lies below the supply at p = 1.

It follows that the equilibrium exists.

Proof of Proposition 2

ϕ(α∗(s), p) = exp

[
ρ

{
E[θ|s̄]− E[θ|s]− P

prob[s̄]
+

α(s)

prob[s̄]
[P − prob[s̄]p− prob[s] (R− C)]

}]
Taking logs and using (21), we get

α∗(s) =
prob[s̄]

P − prob[s̄]p− prob[s] (R− C)

[
1

ρ
ln

(
R− C − P
p− P

)
+

P
prob[s̄]

− (E[θ|s̄]− E[θ|s])
]

=
prob[s̄]

−prob[s̄] (p− P)− prob[s] (R− C − P)

[
1

ρ
ln

(
R− C − P
p− P

)
+
P− (π − π) ∆θ

prob[s̄]

]
(34)

where the last term follows from:

prob[s̄] (π̄ − π) ∆θ = [prob[s̄]π̄ − (1− prob[s])π] ∆θ

= [prob[s̄]π̄ − (1− prob[s])π] ∆θ = [πλ+ π (1− λ)− π] ∆θ = (π − π) ∆θ.

Note that P < (π − π) ∆θ holds since we are not in the first-best. Moreover, the denominator

of the first fraction in (34) is negative.
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Suppose, contrary to the claim in the proposition, that ρ < 1
1−P and the supply is

decreasing in p. Since ρ < 1
1−P , we have

1 <
1

ρ (1− P)
<

1

ρ (p− P)

where the last inequality follows from 1
ρ(p−P)

being decreasing in p and p ≤ 1.

Since α∗(s) < 1, it follows that

α∗(s) <
1

ρ (p− P)

so that (32) holds. But then, the supply is increasing in p, a contradiction.

By Proposition 1, equilibrium exists so that the supply and demand cross. Since the

supply is non-decreasing while the demand is decreasing, they cross exactly once.

Proof of Proposition 3 The optimal α∗(s) ∈ [0, 1]. For α∗(s) = 1, the claim in the

proposition is straightforward. An interior α∗(s) is given by equation (34). Therefore, we

need to show that

prob[s̄]

−prob[s̄] (p− P)− prob[s] (R− C − P)

[
1

ρ
ln

(
R− C − P
p− P

)
+
P− (π − π) ∆θ

prob[s̄]

]
≥ 1

ρ (p− P)
.

(35)

Consider ρ → ∞. We have 1
ρ

ln
(
R−C−P
p−P

)
→ 0 in (35) and, therefore, α∗(s) > 0. The

right-hand side of (35), 1
ρ(p−P)

→ 0. Now consider ρ → 0. We have that the left-hand side

of (35) → −∞, while the right-hand side →∞.
Hence, at ρ→ 0, the left-hand side of (35) is below the right-hand side of (35), while at

ρ→∞, it is the other way around. Since the left-hand side of (35) is increasing in ρ, while
the right-hand side of (35) is decreasing in ρ, the claim in the proposition follows.

Proof of Proposition 4 By (34), ∂α
∗(s)
∂ρ

> 0 for all p. Higher risk aversion ρ leads to

a higher supply.

Proof of Proposition 5 We claim that an equilibrium with a higher price is preferred

to an equilibrium with a lower price from the point of view of protection buyers (protection

sellers are held at their participation constraints). Let p̄ denote a higher and p
¯
a lower price,

respectively, p̄ >p
¯
. Let EU (p, α (p)) denote the value of the expected utility of a protection
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buyer at an equilibrium with the price p and the corresponding margin α (p). Then, we have

that

EU (p̄, α∗ (p̄)) > EU
(
p̄, α∗

(
p
¯

))
> EU

(
p
¯
, α∗

(
p
¯

))
where the first inequality follows from the fact that α∗

(
p
¯

)
was not chosen for p̄ and the

second inequality follows from the fact that, given the same α, a protection buyer always

prefers to get a higher price for the asset.

Proof of Proposition 6 In the market equilibrium,

ϕ(α∗(s), p∗) [p∗ − P ] = R− C − P

while in the utilitarian optimum

ϕ(αU(s), pU)

[
pU − P + αU(s)

∂pU

∂α

]
= R− C − P .

Therefore, we have
ϕ(α∗(s), p∗)

ϕ(αU(s), pU)
=
pU − P + αU(s)∂p

U

∂α

p∗ − P . (36)

First, we show that α∗(s) 6= αU(s) whenever α∗(s) > 0. We prove the claim by contra-

diction. Suppose that α∗(s) = αU(s) > 0. Since α∗(s) = αU(s), we also have that p∗ = pU

so that ϕ(α∗(s), p∗) = ϕ(αU(s), pU). Hence, the left-hand side of (36) is equal to 1 implying

that

αU(s)
∂pU

∂α
= 0

must hold. However, αU(s) > 0 while ∂pU

∂α
< 0. A contradiction.

Second, we show that α∗(s) > αU(s). We prove the claim by contradiction. Suppose that

αU(s) > α∗(s). Then, pU < p∗ (since the equilibrium price is decreasing in the supply of

the asset). Also, expected utility in the utilitarian optimum is necessarily higher than in the

market equilibrium (the market allocation is feasible for the planner but it is not chosen),

i.e.:

pr[s̄]u
(
E[θ|s̄]− prob[s]

prob[s̄]

[
αU(s) (R− C) + (1− αU(s))P

])
+

+ pr[s]u
(
E[θ|s] + αU(s)pU + (1− αU(s))P

)
> pr[s̄]u

(
E[θ|s̄]− prob[s]

prob[s̄]
[α∗(s) (R− C) + (1− α∗(s))P ]

)
+ pr[s]u (E[θ|s] + α∗(s)p∗ + (1− α∗(s))P)
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implying that

pr[s̄]
[
u
(
c̄
(
αU(s), pU

))
− u (c̄ (α∗(s), p∗))

]
> pr[s]

[
u (c (α∗(s), p∗))− u

(
c
(
αU(s), pU

))]
(37)

where we used our short-hand notation for consumption after good and bad news, c̄ and c.

Note that

c̄
(
αU(s), pU

)
< c̄ (α∗(s), p∗) (38)

since αU(s) > α∗(s). Since u is increasing, the left-hand side of (37) is negative, implying

that the right-hand side is negative and

c (α∗(s), p∗) < c
(
αU(s), pU

)
. (39)

By (38), u′(c̄
(
αU(s), pU

)
) > u′ (c̄ (α∗(s), p∗)). By (39), u′(c (α∗(s), p∗)) > u′

(
c
(
αU(s), pU

))
.

Therefore,

ϕ(α∗(s), p∗) =
u′ (c (α∗(s), p∗))

u′ (c̄ (α∗(s), p∗))
>
u′
(
c
(
αU(s), pU

))
u′ (c̄ (αU(s), pU))

= ϕ(αU(s), pU) (40)

or, equivalently,
ϕ(α∗(s), p∗)

ϕ(αU(s), pU)
> 1.

Using (36), it follows that

αU(s)
∂pU

∂α
> p∗ − pU (41)

must hold. Since αU(s) > α∗(s), pU < p∗ so that the right-hand side of (41) is positive.

However, αU(s) > 0 while ∂pU

∂α
< 0, a contradiction.

27



Figure 1: Timing
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Figure 3, Panel A: Increasing supply curve
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Figure 3, Panel B: Non-monotonic supply curve
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Figure 4, Panel A: Unique equilibrium
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Figure 5: Demand and supply (with different risk aversion ρ)
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Figure 6: Equilibrium price as a function of risk aversion ρ
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