Media Coverage and Investors' Attention to Earnings Announcements

> Paper by Joel Peress

Discussion by Simon Gervais

Background

- Known phenomenon around earnings announcement (Bernard & Thomas, 1989).
 - Announcement \gg consensus forecast \rightarrow Ex post price drifts \uparrow .
 - Announcement \ll consensus forecast \rightarrow Ex post price drifts ↓.

Background

- Known phenomenon around earnings announcement (Bernard & Thomas, 1989).
 - Announcement \gg consensus forecast \rightarrow Ex post price drifts \uparrow .
 - Announcement \ll consensus forecast \rightarrow Ex post price drifts \downarrow .

Figure 1 Cumulative Abnormal Returns (CAR) for SUE Portfolios (84,792 earnings announcements, 1974–1986)

Background

- Known phenomenon around earnings announcement (Bernard & Thomas, 1989).
 - Announcement \gg consensus forecast \rightarrow Ex post price drifts \uparrow .
 - Announcement \ll consensus forecast \rightarrow Ex post price drifts ↓.

Figure 1 Cumulative Abnormal Returns (CAR) for SUE Portfolios (84,792 earnings announcements, 1974–1986)

• Main idea.

- News coverage $\uparrow \rightarrow$ Investor attention \uparrow .
- Investor attention \uparrow → Trading volume \uparrow , price discovery \uparrow .
- Price discovery \uparrow → No/lesser trend upon (earnings) announcement.

• Main idea.

- News coverage $\uparrow \rightarrow$ Investor attention \uparrow .
- Investor attention \uparrow → Trading volume \uparrow , price discovery \uparrow .
- $\circ~$ Price discovery $\uparrow \rightarrow$ No/lesser trend upon (earnings) announcement.
- Three main hypotheses: News coverage at announcement should come with
 - larger trading activity at announcement;
 - larger price adjustment at announcement;
 - o no/smaller post-announcement drift.

- Main idea.
 - News coverage $\uparrow \rightarrow$ Investor attention \uparrow .
 - Investor attention \uparrow → Trading volume \uparrow , price discovery \uparrow .
 - $\circ~$ Price discovery $\uparrow \rightarrow$ No/lesser trend upon (earnings) announcement.
- Three main hypotheses: News coverage at announcement should come with
 - larger trading activity at announcement;
 - larger price adjustment at announcement;
 - o no/smaller post-announcement drift.
- Additional hypotheses: Effect of coverage larger
 - for firms with more individual investor ownership;
 - for firms whose trading is done with small trades;
 - for positive announcement surprises;
 - when announcement is more likely to grab attention.

- Main idea.
 - News coverage $\uparrow \rightarrow$ Investor attention \uparrow .
 - Investor attention \uparrow → Trading volume \uparrow , price discovery \uparrow .
 - $\circ~$ Price discovery $\uparrow \rightarrow$ No/lesser trend upon (earnings) announcement.
- Three main hypotheses: News coverage at announcement should come with
 - larger trading activity at announcement;
 - larger price adjustment at announcement;
 - o no/smaller post-announcement drift.
- Additional hypotheses: Effect of coverage larger
 - for firms with more individual investor ownership;
 - for firms whose trading is done with small trades;
 - for positive announcement surprises;
 - when announcement is more likely to grab attention.

- Two main variables.
 - Coverage dummy = 1 <> WSJ article on announcement day (day 0) or the day after (day 1).
 - Earnings surprise: announced earnings median analyst forecast, normalized, extreme deciles (1 and 10).

- Two main variables.
 - Coverage dummy = 1 <> WSJ article on announcement day (day 0) or the day after (day 1).
 - Earnings surprise: announced earnings median analyst forecast, normalized, extreme deciles (1 and 10).
- Full sample.
 - Coverage vs. no coverage: CAR[-30,-1], CAR[0,1], CAR[2,71], VOL[0,1].
 - Problem: Coverage may be related to stock characteristics.

- Two main variables.
 - Coverage dummy = 1 <> WSJ article on announcement day (day 0) or the day after (day 1).
 - Earnings surprise: announced earnings median analyst forecast, normalized, extreme deciles (1 and 10).
- Full sample.
 - Coverage vs. no coverage: CAR[-30,-1], CAR[0,1], CAR[2,71], VOL[0,1].
 - Problem: Coverage may be related to stock characteristics.
- Solution: matched announcements.
 - Same firm, same year, same surprise decile.
 - Different coverage.

- Two main variables.
 - Coverage dummy = 1 <> WSJ article on announcement day (day 0) or the day after (day 1).
 - Earnings surprise: announced earnings median analyst forecast, normalized, extreme deciles (1 and 10).
- Full sample.
 - Coverage vs. no coverage: CAR[-30,-1], CAR[0,1], CAR[2,71], VOL[0,1].
 - Problem: Coverage may be related to stock characteristics.
- Solution: matched announcements.
 - Same firm, same year, same surprise decile.
 - Different coverage.

Results

- Coverage vs. no coverage.
 - No/smaller post-announcement drift with coverage.
 - Larger adjustment pre-announcement for positive surprise.
 - Larger adjustment at announcement for negative surprise.

Timing Issues

- Negative surprises: Coverage dummy = 1, large volume, and large negative return are all measured over days 0,1.
 - Which came first? Is the coverage a reaction to these quantities?
 - o Latent variable?
 - Suggestion for endogeneity problems (not just this one).

 - Compare $\frac{\sum \text{MEDIA}_1}{\sum \text{MEDIA}_0}$ across surprise deciles.
 - If no pattern, then there is no news reaction to surprise.

Timing Issues

- Negative surprises: Coverage dummy = 1, large volume, and large negative return are all measured over days 0,1.
 - Which came first? Is the coverage a reaction to these quantities?
 - Latent variable?
 - Suggestion for endogeneity problems (not just this one).
 - Compare $\frac{\sum \text{MEDIA}_1}{\sum \text{MEDIA}_0}$ across surprise deciles.
 - If no pattern, then there is no news reaction to surprise.
- Positive surprises: Coverage dummy = 1 follows the price run-up.
 - Why? From Table 6, Coverage in [0,1] $\uparrow \rightarrow$ Coverage in [-30,-1] \uparrow .
 - So it is *news flow* that generates the price adjustment.
 - Puzzle: News flow is the same for all stocks following announcement, and yet price patterns differ.

Timing Issues

- Negative surprises: Coverage dummy = 1, large volume, and large negative return are all measured over days 0,1.
 - Which came first? Is the coverage a reaction to these quantities?
 - Latent variable?
 - Suggestion for endogeneity problems (not just this one).

 - Compare $\frac{\sum \text{MEDIA}_1}{\sum \text{MEDIA}_0}$ across surprise deciles.
 - If no pattern, then there is no news reaction to surprise.
- Positive surprises: Coverage dummy = 1 follows the price run-up.
 - Why? From Table 6, Coverage in [0,1] $\uparrow \rightarrow$ Coverage in [-30,-1] \uparrow .
 - So it is *news flow* that generates the price adjustment.
 - Puzzle: News flow is the same for all stocks following announcement, and yet price patterns differ.

Coverage, Trading Volume and Returns

- Table 7: Media coverage affects VOL[0,1] for negative surprises, but not for positive surprises.
 - Adjustment is at announcement for negative surprises, but prior to it for positive surprises.
 - Questions.
 - Is trading volume abnormally high in [-30,-1] for positive surprises?
 - Are attention, volume and price discovery related?

Coverage, Trading Volume and Returns

- Table 7: Media coverage affects VOL[0,1] for negative surprises, but not for positive surprises.
 - Adjustment is at announcement for negative surprises, but prior to it for positive surprises.
 - Questions.
 - Is trading volume abnormally high in [-30,-1] for positive surprises?
 - Are attention, volume and price discovery related?
- Regressions of $\triangle CAR[0,1]$ and $\triangle VOL[0,1]$.
 - Include \triangle CAR[-30,-1] and \triangle CAR[-30,-1] as independent variables.
 - Barber & Odean (RFS, forth.): these variables predict attention.

Coverage, Trading Volume and Returns

- Table 7: Media coverage affects VOL[0,1] for negative surprises, but not for positive surprises.
 - Adjustment is at announcement for negative surprises, but prior to it for positive surprises.
 - Questions.
 - Is trading volume abnormally high in [-30,-1] for positive surprises?
 - Are attention, volume and price discovery related?
- Regressions of \triangle CAR[0,1] and \triangle VOL[0,1].
 - Include \triangle CAR[-30,-1] and \triangle CAR[-30,-1] as independent variables.
 - Barber & Odean (RFS, forth.): these variables predict attention.

- Only (the median) used to measure earnings announcement surprise.
- Two suggestions.
 - Use the number of changes in analysts' forecasts in [-30,-1] to proxy for attention.
 - Large ↔ Something is going on.
 - Probably correlated with WSJ coverage in [-30,-1].

- Only (the median) used to measure earnings announcement surprise.
- Two suggestions.
 - Use the number of changes in analysts' forecasts in [-30,-1] to proxy for attention.
 - Large ↔ Something is going on.
 - Probably correlated with WSJ coverage in [-30,-1].
 - Disagreement across analysts (i.e., dispersion of forecasts).
 - Large \leftrightarrow More to be resolved.
 - Does this predict coverage (again, endogeneity issue)?

- Only (the median) used to measure earnings announcement surprise.
- Two suggestions.
 - Use the number of changes in analysts' forecasts in [-30,-1] to proxy for attention.
 - Large ↔ Something is going on.
 - Probably correlated with WSJ coverage in [-30,-1].
 - Disagreement across analysts (i.e., dispersion of forecasts).
 - Large \leftrightarrow More to be resolved.
 - Does this predict coverage (again, endogeneity issue)?
- Should we control for these in regression analysis?

- Only (the median) used to measure earnings announcement surprise.
- Two suggestions.
 - Use the number of changes in analysts' forecasts in [-30,-1] to proxy for attention.
 - Large ↔ Something is going on.
 - Probably correlated with WSJ coverage in [-30,-1].
 - Disagreement across analysts (i.e., dispersion of forecasts).
 - Large \leftrightarrow More to be resolved.
 - Does this predict coverage (again, endogeneity issue)?
- Should we control for these in regression analysis?

• Gervais, Mingelgrin & Kaniel (JF, 2001).

- Positive volume shock \rightarrow "attention" $\uparrow \rightarrow$ price \uparrow .
- Why excess returns? Why slow adjustment?

• Gervais, Mingelgrin & Kaniel (JF, 2001).

- Positive volume shock \rightarrow "attention" $\uparrow \rightarrow$ price \uparrow .
- Why excess returns? Why slow adjustment?

Barber & Odean (RFS, forth.): Past news, volume and extreme returns
 → attention ↑, individual trading ↑ → trading costs ↑.

• Gervais, Mingelgrin & Kaniel (JF, 2001).

- Positive volume shock \rightarrow "attention" $\uparrow \rightarrow$ price \uparrow .
- Why excess returns? Why slow adjustment?

- Barber & Odean (RFS, forth.): Past news, volume and extreme returns
 → attention ↑, individual trading ↑ → trading costs ↑.
- This paper: Coverage and attention have a positive side (Merton 87).
 - They accelerate price discovery.
 - They prevent mispricing.

• Gervais, Mingelgrin & Kaniel (JF, 2001).

- Positive volume shock \rightarrow "attention" $\uparrow \rightarrow$ price \uparrow .
- Why excess returns? Why slow adjustment?

- Barber & Odean (RFS, forth.): Past news, volume and extreme returns
 → attention ↑, individual trading ↑ → trading costs ↑.
- This paper: Coverage and attention have a positive side (Merton 87).
 - They accelerate price discovery.
 - They prevent mispricing.

Minor Remarks

- Not clear that we should expect effect of coverage to be larger for positive announcement surprises.
 - Idea: Short-selling constraints slow down trading on the downside.
 - Geczy, Musto & Reed (JFE, 2002): Short-selling constraints are rarely binding.

Minor Remarks

- Not clear that we should expect effect of coverage to be larger for positive announcement surprises.
 - Idea: Short-selling constraints slow down trading on the downside.
 - Geczy, Musto & Reed (JFE, 2002): Short-selling constraints are rarely binding.
- Not clear that we should expect effect of coverage to be larger for firms whose trading is done with small trades.
 - Idea: Individual investors, who are more likely to be affected by coverage, transact in smaller trade sizes.
 - Be careful: To reduce their price impact, very sophisticated investors break up their trades into small trades.

Minor Remarks

- Not clear that we should expect effect of coverage to be larger for positive announcement surprises.
 - Idea: Short-selling constraints slow down trading on the downside.
 - Geczy, Musto & Reed (JFE, 2002): Short-selling constraints are rarely binding.
- Not clear that we should expect effect of coverage to be larger for firms whose trading is done with small trades.
 - Idea: Individual investors, who are more likely to be affected by coverage, transact in smaller trade sizes.
 - Be careful: To reduce their price impact, very sophisticated investors break up their trades into small trades.