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Abstract

In this paper we update the traditional insurance economics framework to incorporate key

features of the credit default swap (CDS) market. First, we allow for insurer insolvency, with

asymmetric information as to its probability. We find that stable insurers become less stable because

they are forced to compete on price. When insurer type is known, increased competition among

insurers can create instability for the same reason. Second, we allow the insured party to have

heterogeneous motivations for purchasing CDS. For example, some may own the underlying asset

and purchase CDS for risk management, while others buy these contracts purely for speculation.

We show that speculators will choose to contract with less stable insurers, resulting in higher

counterparty risk in this market relative to that of traditional insurance; however, a regulatory

policy that disallows speculative trading can, perversely, cause market counterparty risk to increase.

Third, we relax the standard assumption of contract exclusivity, which does not apply to the CDS

market, by allowing the insured to purchase contracts from many insurers. In contrast to the

traditional insurance model, we show that separation of risk type among insured parties can be

achieved through insurer choice. We use our model to shed light on the debate over Central

Counterparties (CCP). We show that requiring CDS contracts to be negotiated through CCPs can

push stable insurers out of the market, mitigating the benefit of risk pooling.

∗We are grateful to Philip Bond, Neil Brisley, Alex Edmans, Mike Hoy, Thor Koeppl, Af Mirza, Jano Zabojnik
and seminar participants at the University of Toronto, Bank of Canada, 2011 Risk Theory Society, 2010 CEA and
University of Alberta for helpful comments.



1 Introduction

Credit Default Swaps (CDS) have received considerable media attention since the beginning of

the credit crisis in 2007.1 There was public outrage over the use of U.S. tax payer money to pay

(in full) the CDS claims that sellers, such as AIG, had sold to many major banks. In response to

this and other episodes, policy-makers have been under pressure to implement regulatory reforms.

For example, in 2008 the State of New York tabled legislation to have CDS sellers classified and

regulated as insurers.2 However, it is not clear whether sellers are an insurance provider, or simply

a party to a derivative contract as in any other options market. While these issues are of widespread

interest, the discourse on CDS is lacking in theoretical perspective. Our analysis provides a simple

framework which elucidates key differences between these contracts and traditional insurance, and

the consequences of these differences on market outcomes.

This paper updates the traditional insurance economics framework to account for features

unique to the CDS market. We capture the pervasiveness of insurer instability by allowing for

the possibility that sellers of CDS contracts become insolvent. We then incorporate three features

into a standard model of insurance: First, we introduce privately observed heterogeneity of insurer

quality to capture the opacity of the CDS market. With large sellers such as Ambac, MBIA and

AIG suddenly and repeatedly downgraded by rating agencies, it would seem prudent to allow for

this feature. Second, we consider insured parties who can differ on their motivation to insure. In

particular, unlike traditional insurance markets, the CDS market is characterized by buyers who

may or may not own the underlying risk. Furthermore, the number of buyers that use CDS purely

for speculative purposes is roughly equal to those who use them for risk management (Fitch 2009,

2010). Finally, we allow an insured party to purchase protection on the same risk from multiple

insurers. Similar to the market for life insurance, where an insured party can purchase policies

from multiple insurers, there are few if any actions that a CDS seller can take to prevent the buyer

from purchasing more protection elsewhere. We then apply the model to analyze the consequences

of creating a central counterparty. This is a particularly relevant issue given the Dodd-Frank bill

in the U.S., which requires a large portion of CDS trades to go through clearinghouses.3

We find that unstable insurers (i.e., those who are more likely to fail) can exist in equilibrium:

either they are able to offer a sufficiently discounted price for the protection the provide, or they

are able to camouflage themselves in an opaque market. We show that insurer specific and market

counterparty risk (which is defined as the expected probability of insurer default) can endogenously

1In a credit default swap, an insurer agrees to cover the losses of the insured if pre-defined credit events (e.g.,
default) happen to some debt instrument. In exchange, the insured agrees to pay an ongoing premium at fixed
intervals for the life of the contract. A CDS written on the debt of a single company is typically bought and sold
through a dealer. When the underlying debt is more complicated (and so requires a non-standard contract), the CDS
is completed directly between the two parties. For example, the CDS contracts that destabilized AIG were mainly
direct contracts with major banks, written on complex mortgage related securities. The estimated notional size of
the CDS market in 1998 was 180 billion dollars, by 2004 this number had grown to 6 trillion, and by the end of 2008
it was 41 trillion dollars (Stulz 2009). Note that this is a notional amount and no doubt overestimates the absolute
economic value of all contracts, but the relative growth has been rapid.

2http://ins.state.ny.us/circltr/2008/cl08 19.htm
3Europe appears to be moving in a similar direction with the European Market Infrastructure Regulation (EMIR).
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increase as competition increases among insurers, or when insurer quality is unknown. In addition,

we show that when the proportion of buyers that use CDS for trading purposes increases, relative

to those using them for risk management, more contracts will be written with unstable insurers.

However, removing speculators from the market can decrease, or perversely increase market coun-

terparty risk, depending on the nature of competition between insurers. When insured parties can

differ according to their privately known risk type, we show that they may choose to separate on

the choice of insurer, even when they can divide their contract among as many insurers as they

wish. This is in contrast to a standard result in traditional insurance economics, which proposes

that when insurers cannot preclude insured parties from purchasing insurance elsewhere, separation

through a market mechanism cannot be achieved.4 This separation however, does not occur when

contracts must flow through a central counterparty (CCP). More importantly, we show that a CCP

can force stable insurers out of the market.

The intuition behind our results is as follows. The insured party can choose to contract with a

stable (‘good’) insurer, or with an unstable (‘bad’) insurer. The choice of insurer boils down to a

tradeoff between the price (premium) and the degree of exposure to counterparty risk (probability

of insurer insolvency). In our model, the bad insurer makes an investment that earns high returns

but is illiquid and so cannot be used to help pay claims. The good insurer makes an investment

that earns a lower return, but is a liquid asset, and so can improve its chances of being solvent

when a claim is made. We assume that the return on the bad insurer’s investment is sufficiently

high that they are able to charge lower premia than the good insurer. In Section 3, we show that

the resulting equilibrium can have good or bad insurers dominate the market. When the insured

party is sufficiently averse to counterparty risk, the bad insurer will not be able to cut its premium

enough to attract the insured party. In this case, only the good insurer exists, and it can extract

positive profits. When the insured party has little aversion to counterparty risk, the bad insurer

will control the market as insured parties become premium driven, rather than counterparty risk

driven. In Section 3.2, we show that as insurer competition increases, the good insurer may be

forced to compete on premium against new entrants, driving profits down and counterparty risk up.

This result is similar in spirit to the banking literature that shows that when competition among

banks increases, stability of the system can decrease. One mechanism that drives this result is a

bank taking on a riskier portfolio as competition increases (see Boyd and De Nicoló (2005) or Vives

(2010) for a summary of this literature). In contrast, our insurer’s investment selection may remain

the same, however competition gives them less resources to invest. Returning to the case of two

insurers, we show in Section 3.3 how the equilibrium changes when the insured party does not know

4One exception is Rothschild (2009), who uses insurance on multiple contingencies to achieve separation. It is
possible that a CDS contract specifies more than one contingency (e.g., default or restructuring); however, Rothschild
(2009) requires that the insured parties have relative risks on contingencies that reverse (e.g., type 1 is more likely
to default, whereas type 2 is more likely to restructure). Further, when markets are voluntary (as we consider), the
results of that paper depend on the insured having a CRRA utility function. Since contingencies contained in a CDS
contract are typically related to poor performance of the underlying, we cannot assume that relative risks of such
triggers reverse depending on the insured party. Instead, we make the usual assumption that there is just one risk
insured, and we do not require a CRRA utility function.
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the insurer’s quality. In particular, the good insurer can no longer drive out the bad insurer. This is

because the bad insurer can simply charge the same premium as the good insurer and the insured

cannot distinguish between the two. Competition between insurers then drives the equilibrium

premium down to where the good insurer earns zero profit, thereby increasing counterparty risk.

In Section 4, we let there be insured parties who differ only on their aversion to counterparty

risk, which we associate with having different motivations for using CDS. Recall that the two key

factors in the choice of insurer are counterparty risk and premium. Those insured parties who use

CDS purely for trading purposes, and perhaps do not even own the underlying asset (i.e., have no

insurable interest), are more likely premium driven. On the other hand, buyers who use CDS for risk

management would internalize the counterparty risk more, and would be willing to pay relatively

more for stable protection. Traditional insurance markets are usually viewed as having risk averse

insured parties. The analogue to CDS would be a market composed entirely of buyers using the

contracts for risk management purposes. As more participants use CDS purely for speculation, we

find that the market will be serviced more by unstable insurers. This is because the speculators

prefer the lower premium that unstable insurers can offer. Simply removing speculators from the

market may not solve the problem. Although such a policy can reduce the number of unstable

insurers in the market, it can also have the perverse effect of making the otherwise stable insurers

riskier. This is because removing buyers from the market creates more competition among the

sellers. As in the competition result described above, this can drive down premia and increase

counterparty risk.

In Section 5, we extend the model to allow for heterogeneity in the risk of insured parties

(i.e., the risk of the underlying asset), as is standard in the insurance economics literature. We

characterize an equilibrium in which the choice of insurer can separate the insured party types.

Specifically, a relatively safe insured party contracts with a bad insurer to economize on premiums

paid, whereas a riskier insured party contracts with a good insurer, at a higher premium, for fear

of counterparty risk. In Appendix B, we show that this result is robust to a relaxation of the

assumption of exclusivity, i.e., it holds even when insured parties can contract with more than one

insurer. We permit a large number of insurers, split between good and bad types. Further, we

assume that both insurer types are subject to idiosyncratic default risk; however, bad insurers are

also subject to aggregate risk, such as an extreme market downturn that affects all these insurers at

once. We show that there exists an equilibrium in which the safe insured party divides its contract

over all of the bad insurers, whereas the risky insured party divides over the good insurers. The

intuition for this result is the same for the two insurer case described above. The nature of the

aggregate risk allows us to achieve separation without the assumption of exclusivity, because the

safety of good insurers cannot be replicated by bad ones.

Finally, in Section 6 we consider the consequences of a central counterparty. A CCP acts as the

buyer to every seller and the seller to every buyer. Participants in this market contribute to a fund

designed to shelter each other from counterparty risk. Pirrong (2009) reports that few CCPs penal-

ize sellers based on their counterparty risk. Given that the counterparty risk to which an insured

3



party is exposed is now that of the entire pool of insurers (through co-insurance), differential premia

based on insurer quality are not feasible. We consider the case in which there are a large number

of insured parties and insurers. Given a CCP arrangement, counterparty risk is effectively pooled

so that non-failing participants can absorb the losses of the failed ones. Therefore, insuring with a

good insurer has little effect on the exposure of the insured to counterparty risk. Consequently, the

insured party will contract with the bad insurer to obtain a better premium. Thus, the separating

equilibrium described above ceases to exist. More importantly, insured parties will choose to insure

solely with bad insurers so that in equilibrium, good insurers are pushed out of the market. This

occurs because each individual insured party does not internalize the amount that their contract

adds to the pooled counterparty risk, yielding an outcome similar in spirit to the problem of the

commons. It is interesting to note that in this case, central organization is the cause and not the

cure for this outcome. This result can also be interpreted as an example of the Lucas Critique, in

that policy makers implementing a CCP should consider the reaction of market participants.

Literature Review

This paper contributes to the literature on counterparty risk, credit default swaps and insurance.

Thompson (2010) considers a case with endogenous counterparty risk in financial insurance. It is

shown that an insurer has a moral hazard problem and may not invest in the best interest of the

insured party. Furthermore, it is shown that truthful revelation of insured type can be attained

because revelation affects the investment decision of the insurer, and consequently, the counterparty

risk to which the insured is exposed. In contrast to this paper, we explicitly model multiple insurers

and so can analyze the composition of insurers in the market. In another related paper, Acharya

and Bisin (2010) show that due to the opacity of over-the-counter markets (where many CDS trade),

counterparty risk can occur because insurers may take positions which increase their likelihood of

default. In contrast, we model a situation in which insurers have varying degrees of stability and

show that, regardless of whether CDS markets are opaque, unstable insurance can be a feature of

the equilibrium. Neither Thompson (2010) nor Acharya and Bisin (2010) analyze the affects of

competition among insurers, the motivation to purchase CDS, the affects of mutual exclusion of

contracts, or the commons problem that arises with a CCP, as is done in this paper.

In the insurance economics literature, Ligon and Thistle (2009) provide a model in which mutual

and stock insurers can co-exist. They show that mutual insurers may exist as a means for low-risk

individuals to separate themselves. This parallels one of our results, wherein unstable insurers may

exist to separate the market. Separation exists in their model because low-risk individuals can

form a sufficiently small mutual wherein lower expected coverage relative to a stock insurer keeps

the high-risk individuals out. In contrast, we consider two stock insurers with different levels of

counterparty risk. Cummins and Mahul (2003) determine the optimal indemnity (contract size) in

the case where the insurer and insured party have different beliefs about the probability that the

insurer will fail. In contrast, we assume that the insurer has better information about its portfolio
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and so an asymmetric information problem arises. Further, the analysis of optimal indemnity is

not relevant in our context due to the inability of insured parties in the CDS market to separate

on ex-ante contract size (due to the non-exclusivity of contracts).

The paper proceeds as follows: Section 2 outlines the model. Section 3 considers the case when

insurers are known, when there is increased competition among them, and when they are unknown.

Section 4 allows insured parties to differ based on their motivation to purchase CDS. Section 5

analyzes the case in which there are multiple insurers, and in which the risk that is being insured

is unknown to those insurers. Section 6 explores the consequences of a central counterparty and

Section 7 concludes. Robustness Section 8 provides a discussion of a number of our assumptions

and nontrivial proofs can be found in Appendix A.

2 Model: CDS as insurance

This section describes the market for insurance and its participants. The purchaser, whom we

refer to as a bank, owns a risky asset which it wishes to insure. We refer to this asset as a loan.

We will not model anything unique to a bank, however as banks are the largest purchasers of these

types of contracts, we use this terminology for ease of exposition. The providers of insurance are

simply referred to as insurers.

2.1 Banks

The fundamental characteristic of a bank is the desire to reduce risk. As in Thompson (2010),

if the bank incurs a loss and has not insured this risk, it suffers the cost Z ≥ 0.5 If the bank has a

loss for which it is insured, but the insurer cannot pay, it also suffers the cost Z. This cost could

represent a regulatory penalty for exceeding some risk level, or an endogenous reaction to a shock

to the bank’s portfolio; however, we will not model this here. It is this cost that makes the bank

averse to holding risk.

The bank’s loan yields return RB with probability p, otherwise it defaults with probability 1−p
and returns nothing. The size of the loan is normalized to 1 and we assume that the bank must

insure the full loan.6 Therefore, in the event of a claim that is fulfilled, the bank will receive 1. In

the event that a claim cannot be fulfilled, the bank is penalized Z. Denoting the premium (price)

5See robustness Section 8.2 for a more formal discussion about Z.
6This is done for simplicity. One could imagine that the bank chooses different amounts of insurance depending on

the insurer type (note that different insurer types will be discussed in the next subsection). An endogenous contract
size will not affect the qualitative results to be presented. Note also that we are ignoring a potential moral hazard,
wherein the bank may lose the incentive to monitor its loan when it completely insures. We assume full insurance
for simplicity, but all the results of the paper would go through if we assumed the bank insured only a fraction of its
loan. That fraction could then be set such that moral hazard is eliminated. Even in the presence of a moral hazard
problem, the only difference in our model would be that either p would decrease, RB would decrease, or both. The
insurer would simply alter its beliefs about the expected cost of a claim and the results of the model would follow
through. For a more formal treatment of this moral hazard problem, see Bolton and Oehmke (2010), Parlour and
Winton (2009) or Thompson (2007).
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as P , and the probability that the insurer is solvent as q, the bank’s expected payoff is

pRB + (1− p)q − (1− p)(1− q)Z − P. (1)

Note that in the event of a claim, the insurer fails with probability 1 − q and for simplicity, pays

nothing to the bank.7 In other words, the bank is never fully insured against the loss provided

q < 1.

2.2 Insurers

We allow for the possibility of insurer insolvency (with probability 1− q), which we refer to as

counterparty risk. Importantly, we allow the probability of insurer insolvency to be heterogeneous

across insurers. This represents our first departure from the literature. We model this heterogeneity

by considering two insurance providers, one relatively stable and the other unstable, referred to

simply as “(G)ood” and “(B)ad” insurers.

Both insurers have an exogenous portfolio of assets represented by θ, that pays off at t = 1. The

portfolio consists of a draw from the distribution function F (θ), in which θ ∈ [θ, θ] and θ < 0 < θ.

If an insurer does not sell an insurance contract, it is assumed to fail when its portfolio draw is

between [θ, 0]. When it sells an insurance contract, the good insurer invests the premium it receives

in a risk-free asset with return normalized to one, which is available at t = 1. The bad insurer

invests in a more profitable, but illiquid asset which has a rate of return r > 1, and is received at

t = 2. In other words, the bad insurer makes an investment that has no pledgable value at t = 1.8

Insurer j ∈ {G,B}, forms a belief bj corresponding to the probability that a claim will not be made

(when the underlying loan does not default). In our discussion thus far, we have assumed that

there is only one type of bank, therefore the beliefs are bG = bB = p. In Section 5, we allow for

heterogeneity across bank types, and so beliefs will be less trivial. Denoting the premium charged

by insurer j by Pj , we write the payoff function for each insurer when they insure a loan of size 1.

Note that insurer default is assumed to result in zero profit (i.e., limited liability).

πG = p

[∫ θ

−PG

(θ + PG) dF (θ)

]
+ (1− p)

[∫ θ

(1−PG)
(θ − 1 + PG) dF (θ)

]
(2)

πB = p

[∫ θ

0
(θ + rPB) dF (θ)

]
+ (1− p)

[∫ θ

1
(θ − 1 + rPB) dF (θ)

]
(3)

Examining the limits of integration in the second terms of expressions (2) and (3), we can charac-

terize the counterparty risk for each insurer. The probability that the good or bad insurer is solvent

when a claim is made, is given by qG = 1−F (1−PG) and qB = 1−F (1) respectively. Importantly,

note that the bad insurer’s probability of default is independent of the premium. This is not the

7A zero recovery value is assumed for simplicity and could be relaxed without changing the results.
8Note that for simplicity, we are implicitly assuming that insurers invest in different assets for reasons outside

the model. In Robustness Section 8.1, we detail how the model could be modified to allow the investment decision
to be endogenous.
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case with the good insurer, since the probability of defaulting on a claim depends on the premium

PG. It is straightforward to see that if the premium increases, counterparty risk decreases for the

good insurer, but remains constant for the bad insurer. This occurs because the good insurer uses

the premium to improve the chances of solvency at t = 1, whereas the premium has no effect on

the bad insurer’s chances of being solvent at t = 1. It follows that qG > qB whenever the premium

is positive.

In the following lemma, we characterize a property of the premia which we use throughout the

paper. First, define the zero profit premia P 0
G and P 0

B, as the premium for which the good and bad

insurer earn zero profit from selling a contract respectively.

Lemma 1 There exists a return r∗, such that for all r > r∗, P 0
G > P 0

B.

Proof. See Appendix A.

The bad insurer invests the premium it receives from the insurance contract in an illiquid asset

and earns a return r. It follows that if r increases, it would require a lower premium to attain the

same expected payoff. For the remainder of the paper we assume that r > r∗ so that P 0
G > P 0

B. In

other words, the bad insurer is able to offer lower premia due to its favorable investment opportunity.

If this were not true, the good insurer could offer the bank a lower premium and lower counterparty

risk; trivially excluding the bad insurer from the market.

2.3 Timing

There are three time periods, in which we assume there is no discounting. At t = 0, an insurance

contract is written by an insurer on a risky loan owned by the bank. At t = 1, the uncertainty

about the insured loan and the insurer’s portfolio is resolved. In this period, a claim is made if

the loan defaults. The insurer either fulfils the claim if it is solvent, otherwise it fails and returns

nothing to the bank. At t = 2, the payoff to the two period insurer investment is received. Figure

1 summarizes.

t = 0 t = 1 t = 2

If needed, each insurer either pays
the claim or defaults.

Portfolio draw and liquid invest-
ment for insurer realized. Insur-
ance claim can be made.

Illiquid asset pays
off for insurer

Bank endowed and
insures loan of size 1

Figure 1: Timing of the Model
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3 Equilibrium

3.1 Insurer type known

We begin by assuming that the bank can identify the insurer type. There are two outcomes

in this simple insurance market. Either the good or the bad insurer dominates the market, and

provides insurance for the bank.9 Modifying expression (1), we give the bank’s payoff function

when insuring with insurer type j.

Π(j) = pRB + (1− p)qj − (1− p)(1− qj)Z − Pj (4)

We assume without loss of generality that a bank which is indifferent between contracting with a

good and bad insurer opts for the former. Therefore, the good insurer will dominate the market

when Π(G) ≥ Π(B). Similarly, the bad insurer will dominate the market when Π(B) > Π(G).10

The following lemma summarizes these equilibria.

Lemma 2 There exist two equilibria in the market for insurance described above, which are char-

acterized as follows:

i. The good insurer provides insurance when

(1− p)(1 + Z)(qG − qB) ≥ P 0
G − P 0

B, (5)

where the equilibrium premium is P ∗G = (1− p)(1 + Z)(qG − qB) + P 0
B ≥ P 0

G.

ii. The bad insurer provides insurance when

(1− p)(1 + Z)(qG − qB) < P 0
G − P 0

B, (6)

where the equilibrium premium is P ∗B = P 0
G − (1− p)(1 + Z)(qG − qB)− ε ≥ P 0

B, for ε small.

Proof. See Appendix A.

The good insurer will dominate the market when the benefit of reduced counterparty risk, the

left hand side of expression (5), more than compensates for the additional premia that the banks

must pay, the right hand side of expression (5). It is straightforward to see that this will be true for

large values of Z. Conversely, the bad insurer dominates the market when the premium discount it

can offer exceeds the cost of the additional counterparty risk it poses to the banks. Regardless of

9Note that we are implicitly assuming that the bank does not split its contract over the two insurers. Allowing this
would only complicate the analysis and would not change our qualitative results. One can imagine a transaction cost
which induces this behavior. Alternatively, a straightforward restriction on the parameter space will also accomplish
this. We explore the possibility of diversification by splitting the contract over many insurers in Section 5.

10Note that we are implicitly assuming that the bank chooses to purchase insurance (the bank’s participation
constraint is slack). The participation constraint discussed in Robustness Section 8.2.
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which insurer dominates, premia are set just low enough to force the competitor out of the market

and yield weakly positive profits to the remaining insurer.

In the remainder of this section, we describe forces which change the features of the equilibrium

described above, with a focus on stability (measured by the probability of insurer default). Lemma

2 outlines two possible benchmarks from which this analysis could proceed. Presumably, the most

interesting cases are those in which the counterparty risk posed by insurers increases. As we wish

to highlight this phenomena, we present the results of this section using the case where the good

insurer dominates (as per Lemma 2) as a benchmark; however, we will discuss the results in the

alternative case where the bad insurer initially dominates the market.

3.2 Competition

We now analyze how competition affects the equilibrium outlined previously. In addition to the

good and bad insurers, let us consider an insurer type j = M (middle), which has the same initial

portfolio. Assume that this insurer invests half of its premia in the liquid asset, and half in the

illiquid asset. The payoff of the new insurer is given as follows.

πM = p

[∫ θ

− 1
2
PM

(
θ +

1

2
PM (1 + r)

)
dF (θ)

]

+ (1− p)

[∫ θ

(1− 1
2
PM )

(
θ − 1 +

1

2
PM (1 + r)

)
dF (θ)

]
(7)

It follows that in the event of a claim, the probability of solvency of insurer type M is given by

qM = 1 − F (1 − 1
2PM ), where qB < qM < qG. A straightforward extension of Lemma 1 yields

P 0
G > P 0

M > P 0
B, so that the zero profit premium of the middle type is between that of the good

and bad insurers. Consider the case in which expression (5) holds so that the bank chooses to

insure with the good over the bad insurer. We define market counterparty risk as the expected

counterparty risk to which the bank is exposed. The following proposition shows that market

counterparty risk weakly increases as competition increases.

Proposition 1 When the good insurer dominates the market (as per Lemma 2), increased com-

petition causes market counterparty risk to increase. This occurs regardless of which one of two

possible equilibria arise. In the first case, the good insurer continues to dominate, which occurs

when

(1− p)(1 + Z)(qG − qM ) ≥ P 0
G − P 0

M , (8)

where the equilibrium premium is P ∗G = (1 − p)(1 + Z)(qG − qM ) + P 0
M ≥ P 0

G. Alternatively, the

middle insurer may dominate, which occurs when

(1− p)(1 + Z)(qG − qM ) < P 0
G − P 0

M , (9)
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where the equilibrium premium is P ∗M = P 0
G − (1− p)(1 + Z)(qG − qM )− ε ≥ P 0

M , for ε small.

These equilibria can be shown to exist in the same way as outlined in the proof of Lemma 2.

To gain the intuition behind this result, we consider both situations described in the proposition.

Initially, the good insurer provides coverage as described in Lemma 2. Thus the premium and

associated counterparty risk are implied by the equality of (5), which we denote P̂G and q̂G =

1−F (1− P̂G). First, consider the situation in which the good insurer continues to dominate when

another competitor is introduced. Define the equilibrium premium charged by the good insurer

when the middle insurer is introduced by P̃G, which in turn defines q̃G = 1 − F (1 − P̃G). The

premium and counterparty risk in this case are defined by the equality of (8). Contrasting this

with the equilibrium with no middle insurer, it follows that P̂G ≥ P̃G. In other words, the new

competitor forces the good insurer to lower its premium, which results in an increase in counterparty

risk since q̂G ≥ q̃G. Alternatively, the new competitor may take the market, which occurs when (9)

is satisfied. Since qM < qG, market counterparty risk is always higher in this case.11

We can also consider the case when the bad insurer dominates the good insurer initially (ex-

pression (6) is satisfied). When this occurs, there will be two possible outcomes when the middle

insurer is added. First, the bad insurer dominates the middle insurer and counterparty risk remains

unchanged. Although the middle insurer may force the bad insurer to cut its premium, recall that

1 − qB = F (1), so that the risk of insolvency of the bad insurer is independent of the premium.

In the second case, the middle insurer will dominate the bad insurer and market counterparty risk

will decrease.

3.3 Unknown Insurer

We now return to the case of two insurers (good and bad) and consider the consequences of

asymmetric information regarding the quality of the insurance provider. In Section 3.1, the good

insurer can dominate with perfect information. With asymmetric information regarding insurer

type, the bad insurer can simply offer a contract with the same premium as the good insurer and

no information would be revealed. Conversely, the bad insurer will be revealed if it sets PB < P 0
G,

since the good insurer would never offer a contract that earns negative profit. The following

proposition characterizes the impact of this informational asymmetry on market counterparty risk.

Proposition 2 When the good insurer dominates under perfect information (as per Lemma 2),

market counterparty risk as well as the individual counterparty risk of the good insurer will increase

when insurer type is unknown.

Proof. See Appendix A.

11Note that the form of competition is not vital to Proposition 1. Alternatively, we could assume that increased
competition comes in the form of additional insurers of the same type (i.e., good and bad types). With two insurers
of the same type, the premium is driven down to that which earns zero profit à la Bertrand competition. Since
counterparty risk of the good insurer increases as the premium decreases, the result follows.
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The intuition behind this result is as follows. When the insurer type is known and the good

insurer dominates, it charges the highest premium such that the bank still prefers to insure with

it rather than the bad insurer (who charges the lowest premium it can). When the insurer type

is unknown, the good insurer is forced to cut its premium or else give up the entire market to the

bad insurer who can undercut it and still not reveal itself. In equilibrium, the premium charged by

both insurers is P 0
G. Since the good insurer (weakly) reduces its premium and 1− qG = F (1−PG),

it follows that the good insurer becomes individually less stable. Furthermore, bad insurers now

participate in the market, so that market counterparty risk unambiguously increases.

When the bad insurer dominates under perfect information, there are two equilibria that can

arise when insurer type is unknown (a straightforward condition would determine which one prevails

in equilibrium). First, the bad insurer may choose to reveal itself by setting P ∗B < P 0
G and dominate

the market. The bad insurer does this to obtain the insurance contract with certainty, rather than

charging P 0
G and allowing the good insurer to stay in the market, thereby reducing its chances

it will obtain the contract. Since the counterparty risk of the bad insurer is independent of the

premium (1 − qB = F (1)), if it chooses to reveal itself and take the market, market counterparty

risk remains unchanged. Conversely, when the bad insurer prefers the higher premium P 0
G over

obtaining the contract with certainty, the presence of the good insurer causes market counterparty

risk to fall since the expected counterparty risk to which the bank is exposed decreases.

4 Incentives to Insure

A fundamental difference between a standard insurance market and that for CDS are the incen-

tives for purchasing these types of contracts. For example, some buyers may own the underlying

loan being insured, while others do not. More generally, some participants may use CDS entirely for

trading purposes, while others may use them for risk management purposes. Fitch (2009, 2010) use

surveys to gauge the motivation of global banks to use credit derivatives (of which CDS represents

more than 90% (Fitch 2010)). They find that hedging/credit risk management and speculation are

the two most common reasons to use credit derivatives (with similar prevalence).

To the best of our knowledge, there has not been a paper which analyzes the impact of buyer’s

incentives on the market for CDS. We can do this simply in our model, as the incentive to purchase

insurance is captured by Z. One would expect that those who purchase CDS for risk management

purposes will view counterparty risk differently than those who purchase it for speculation (i.e.,

speculators will internalize the cost of counterparty risk less). Further, although it does not directly

follow that those who purchase CDS for risk management will own the underlying loan, it is

reasonable to expect that those who do not own the underlying loan are more likely to purchase

CDS for speculation than for risk management. This has interesting consequences for policies aimed

at increasing stability, since ownership of the underlying loan can be easily observed. Consider

Germany’s recent ban on the practice of buying CDS without owning the underlying risk, and
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China’s intent on creating a CDS market with this same restriction.12

Modifying the base model from Sections 2 and 3, we create a market for CDS as simply as

possible. In addition to the good and bad insurers, we let there be two types of banks who differ

on Z, which we denote ZL and ZH (to be defined below). For simplicity, we assume that a bank

insures with its own insurer, and that the size of each contract is one. At the end of the section, we

discuss how our results obtain when the model is enriched. The following lemma finds the value of

Z for which a bank is indifferent between insuring with a good or bad insurer.

Lemma 3 Define Ẑ as the level of Z for which the bank is indifferent between insuring with the

good or bad insurer at the zero profit premium for each insurer. Thus, with P 0
G and P 0

B, a bank

with Z < Ẑ will prefer to contract with the bad insurer and a bank for which Z > Ẑ will prefer the

good insurer. The expression for Ẑ is given by Ẑ =
P 0
G−P

0
B

(1−p)(qG−qB) − 1.

Proof. See Appendix A.

We interpret Ẑ by considering the two relevant components of a contract from the perspective

of a bank: counterparty risk and premium. A bank trades off a higher premium against increased

counterparty risk in its choice of insurer. A bank for which Z < Ẑ is less averse to counterparty risk

and so insures with the bad insurer, as it is able to offer a lower premium than the good insurer.

A bank for which Z > Ẑ is sufficiently averse to counterparty risk to compensate for the increase

in premium at the good insurer. For the remainder of the section, let ZL < Ẑ and ZH > Ẑ.

Given the market for CDS we have introduced, we define market counterparty risk as the average

counterparty risk to which banks are exposed. In light of Lemma 3, we can explore the difference

between a market for CDS and that for traditional insurance in a relatively simple way. When

modeling a market for insurance, it is customary to assume that the insured party has exposure to

the underlying risk (i.e., has an insurable interest). An insured party is typically modeled as being

risk averse and so willing to pay a risk premium when purchasing insurance. As discussed above,

in the market for CDS, some buyers purchase protection purely for speculation. As the number of

speculators (i.e., ZL types) increases, so does the relative amount of insurance sold by bad insurers.

It is reasonable to assume that the CDS market has more speculators than a traditional insurance

market, so it follows that the market for CDS will tend to have lower quality sellers.

The existence of speculators and bad insurers implies that CDS markets are generally charac-

terized by higher market counterparty risk. Although this is a “mechanically” trivial consequence

of our framework, it adds a new element to the policy debate on the CDS market. Ideally, a policy

maker whose mandate is to reduce counterparty risk could simply remove bad insurers; however,

the quality of the counterparty is often not observable to the bank, so it is unlikely that it will be

observable to a regulator.13 A second-best alternative may be to remove the ZL banks from the

market, similar to the recent proposals described above which disallow CDS to be purchased by

12http://www.bloomberg.com/news/2010-09-13/china-plans-to-introduce-credit-default-swaps-by-year-end-
official-says.html, http://dealbook.nytimes.com/2010/05/19/germany-bans-naked-shorts-and-c-d-s-s/

13For a discussion on this issue see Pirrong (2009).
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those who do not own the underlying loan. Although it is possible that those who own the loan

could purchase CDS on speculation, it is more likely that this policy will reduce the number of

buyers for which Z = ZL more than it would for buyers with Z = ZH . We look at the extreme

case in which the ZL bank can be eliminated. For a policy maker concerned about counterparty

risk in CDS markets, we show that removing the bank which demands insurance from the bad

insurer, may reduce counterparty risk, but can actually increase it depending on the structure of

the market. We consider the following two polar cases of market competition.

Case 1: Bertrand competition within each insurer type.

Case 2: No Bertrand competition within each insurer type.

We can think of the first case as having multiple insurers of the same type who are able to compete

in the market, while in the second case there is only one good and one bad insurer. The following

proposition characterizes the impact of removing the ZL bank from the market, where P ∗G and P ∗∗G
are defined as the good insurer’s equilibrium premium before and after this is done.

Proposition 3 In case 1, a policy that removes ZL banks will decrease market counterparty risk. In

case 2, such a policy will make the good insurer riskier and consequently may increase or decrease

market counterparty risk. When 2F (1 − P ∗∗G ) > F (1 − P ∗G) + F (1), market counterparty risk

increases.

Proof. See Appendix A.

In the first case, the insurers are driven down to zero profit due to competition within types.

When the ZL banks are removed, the bad insurers cannot compete in the market and so drop out

(as per Lemma 3). The good insurers still face Bertrand competition and so profits are zero and

the risk of the good insurer remains unchanged. Thus, average counterparty risk in the market

falls since bad insurers drop out.

In the second case, the good (bad) insurer contracts with the ZH (ZL) bank as in case one;

however, there is no Bertrand competition before the ZL banks are removed. Therefore, both

insurers extract positive profits from the contracts. When the ZL bank is removed, the bad insurer

then competes with the good insurer for the remaining bank, thereby eroding profits for both

insurers. In equilibrium, the good insurer cuts its premium sufficiently to attract the remaining

bank and the bad insurer drops out of the market as in case one. Since its premium is forced

down due to competition, the good insurer becomes riskier. Whether the net affect on market

counterparty risk is negative or positive depends on how much the good insurer must cut its

premium. Market counterparty risk will increase when 2F (1 − P ∗∗G ) > F (1 − P ∗G) + F (1), where

1 > 1 − P ∗∗G ≥ 1 − P ∗G. Given the ordering of premia in equilibrium, it is clear that this can be

satisfied by any number of distribution functions F (·). The proof of the proposition characterizes

this outcome using the example of the uniform distribution. It follows that policy makers must be
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cognizant that eliminating some buyers from the market may drive premia down, working against

the reduction of counterparty risk that arises when bad insurers drop out.

Although we model the market for insurance in a simple way, our results survive when we

consider a more complex framework. If we allow for many banks and insurers, it will still follow

that ZL banks will prefer the bad insurers. As long as premia are not set at the zero profit level

(so that insurers have some market power) and there is some competition between insurer types,

the impact of removing ZL type buyers from the market will have the same implications for market

counterparty risk. Essentially, such a policy amounts to a decrease in demand, which results in

increased competition for existing buyers and puts downward pressure on premia.

5 Separation and Mutual Exclusion

In their seminal papers, Rothschild and Stiglitz (1976) and Wilson (1977) develop a framework

in which insurers can screen individuals through a menu of contracts. Screening provides the means

to deal with an asymmetric information problem facing providers, as unobservable insured party

risk types will reveal themselves through their choice of contract. Up to this point, we have not

considered risk heterogeneity among the purchasers of insurance (banks), so that the traditional

form of asymmetric information has not been analyzed. This section evaluates a similar outcome to

the separating equilibrium in Rothschild and Stiglitz (1976). We do this by extending the analysis

to allow for multiple bank risk types, which cannot be directly observed by the insurer.

Before considering the existence of separating equilibria, we make note of a fundamental as-

sumption which is commonly made in models of insurance; that insured parties cannot purchase

insurance from more than one provider. Without this assumption, which is referred to as exclu-

sivity, separation of risk types through a market mechanism cannot generally be achieved.14 The

nature of CDS markets makes the exclusion assumption implausible, as it is not possible for a seller

to restrict a buyer from purchasing insurance elsewhere. For presentation purposes, we present the

results of this section under the assumption of exclusivity, as this provides the intuition with a

simple extension of our previous model. We conclude with a discussion of how our results obtain

without exclusivity. The interested reader can refer to Appendix B, where we formally analyze this

case.

We enrich the environment outlined in Section 3.1 to allow two types of loans that a bank can

insure; a safe type (S) and a risky type (R), both of size 1. We assume that the safe (risky) loan

succeeds with probability pS (pR), and the bank is privately endowed with one or the other with

equal probability. Further, we continue to assume that contracts are exclusive and that the bank

insures both loans completely, i.e., the contract size is 1 regardless of loan type. The analysis is

similar to that in Section 3.1, however we need to modify the beliefs that the insurers have about

the probability of a claim. Recall that insurer j ∈ {G,B}, forms a belief bj corresponding to the

14For a further discussion of why a separating equilibrium will not generally exist with non-exclusivity in the
context of life insurance, see Hoy and Polborn (2000).
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probability that a claim will not be made (when the underlying loan does not default). We rewrite

the payoff for each insurer, noting that the premium is a function of beliefs.

πG = bG

[∫ θ

−PG

(θ + PG) dF (θ)

]
+ (1− bG)

[∫ θ

1−PG

(θ − 1 + PG) dF (θ)

]
(10)

πB = bB

[∫ θ

0
(θ + rPB) dF (θ)

]
+ (1− bB)

[∫ θ

1
(θ − 1 + rPB) dF (θ)

]
(11)

These payoffs are akin to those described in equations (2) and (3). The difference is that the

probability of a claim, which we previously referred to as p, is replaced with the insurer’s beliefs

about the type of bank it has contracted with. Since bank types are unknown to insurers, we focus

our attention on Bayesian Nash Equilibria.

Analogous to Section 3.1, there exists a pooling equilibrium in which the good insurer dominates

the market and provides insurance for both safe and risky banks, and another in which the bad

insurer dominates and provides insurance for either bank type. Unlike Section 3.1, there exists a

separating equilibrium in which both insurers are active. In this case, the safe bank insures with the

bad insurer and the risky bank with the good insurer.15 Before characterizing such an equilibrium,

we rewrite the payoff function for bank i ∈ {S,R}, when insuring with insurer type j as follows.

Π(i, j) = piRB + (1− pi)qj − (1− pi)(1− qj)Z − Pj (12)

Consider the first case in which the good insurer dominates the market. This will occur when both

bank types prefer the good insurer, Π(S,G) ≥ Π(S,B) and Π(R,G) ≥ Π(R,B), with the former

being the binding condition. Similarly, we define the case under which the bad insurer will dominate

the market. In this case, Π(S,B) > Π(S,G) and Π(R,B) > Π(R,G), where the latter is the binding

condition. The final case in which the bank types separate occurs when Π(S,B) > Π(S,G) and

Π(R,G) ≥ Π(R,B). The following lemma characterizes the set of equilibria in this market.16

Lemma 4 There are three equilibria in this market.

i. When Z is high, there exists an equilibrium in which the good insurer contracts with both safe

and risky banks at a single (pooling) premium.

ii. When Z is low, there exists an equilibrium in which the bad insurer contracts with both safe

and risky banks at a single (pooling) premium.

15In the proof to Lemma 4, the separating equilibrium where the good insurer contracts with the safe bank and
the bad insurer with the risky bank is ruled out.

16Lemma 4 characterizes two pooling equilibria which do not have an analogue in Rothschild and Stiglitz (RS)
(1976). In their screening model, the insurer is free to choose a menu of contracts, namely any contract size and
premium combination. In our model, counterparty risk plays the same role as contract size in RS (1976). To see this,
note that the difference in counterparty risk between the good and bad insurer alters the expected coverage from an
ex-ante perspective, whereas changing the contract size in RS (1976) alters the actual level of coverage. It is because
insurers are flexible in their choice of contract size in RS (1976) that pooling is never optimal. In our framework, the
level of counterparty risk is not a choice variable, so that pooling equilibria can be supported.
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iii. For intermediate values of Z, there exists an equilibrium in which the banks separate wherein

the bad (good) insurer contracts with the safe (risky) bank.

Proof. See Appendix A.

When Z is high, both the safe and risky bank are highly averse to counterparty risk, and are

willing to pay more for the increased protection that the good insurer offers. When Z is low,

both the safe and risky banks care little about counterparty risk, and so insure with the bad

insurer at a lower premium. A separating equilibrium exists when the risky bank is willing to pay

a higher premium and be revealed as risky, since it obtains lower counterparty risk at the good

insurer. Similarly, the safe bank reveals itself and pays a lower premium, however it suffers higher

counterparty risk at the bad insurer. This equilibrium will arise when the safe bank is concerned

less about the risk of insurer default (due to its lower probability of making a claim), whereas the

risky bank is driven more by counterparty risk (due to its higher probability of making a claim).

In the proof of the lemma, we provide the formal conditions needed to establish existence, as well

as characterize the equilibrium premia.

In our previous discussion, which culminated in Lemma 4, we assumed that banks buy insurance

exclusively from one provider. As discussed above, this assumption is not appropriate in the CDS

market, as insurers cannot preclude banks from purchasing more protection elsewhere. Proposition

5 in Appendix B shows that a separating equilibrium, in which unobserved bank type is revealed,

can exist even when a bank can split its contract among many insurers. A formal argument requires

a more complicated model, which can be found in Appendix B, but the general intuition is fairly

simple. As long as the bank cannot replicate the insurance it receives through the good insurer,

by simply purchasing more insurance from the bad insurer, a separating equilibrium can exist. In

Appendix B, we consider a case with many good and bad insurers in which the latter are exposed

to aggregate risk, so that all may fail in some event. In other words, bad insurers effectively cannot

provide complete coverage. In this environment, either bank will divide insurance across providers

to reduce idiosyncratic default risk. In the separating equilibrium, the safe bank will contract solely

with bad insurers and bear the aggregate risk in exchange for a lower premium, while the risky bank

will contract solely with good insurers and pay a higher premium in exchange for more complete

protection.

6 Central Counterparties

In the wake of the credit crisis that began in 2007, law makers around the world have been

tabling regulations to move CDS from over-the-counter markets to a formal central counterparty

(CCP) arrangement.17 In the absence of a central counterparty, contracts are bilateral and take one

of two forms. First, and most commonly, contracts are negotiated through a dealer. In these types

of transactions, a buyer purchases protection from a counterparty located by a dealer. Second,

17See Bliss and Steigerwald (2007) for an introduction to and discussion on CCPs.
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trading may be done without a dealer, where a buyer approaches a seller directly. In a CCP

arrangement, all transactions flow through a central counterparty which acts as the buyer to every

seller and the seller to every buyer. In this arrangement, participants provide capital and post

margins (collateral) that the CCP can use to cover default losses. Furthermore, the CCP can

require participants to make additional payments if needed to cover losses. Therefore, a CCP pools

default risk across participants (or members).18

In our model, bad insurers are forced to set a lower premium because they pose a greater risk of

default (assuming insurer type is known). Arora et al. (2009) provide evidence that counterparty

risk is priced in CDS contracts, so that premia can vary depending on the quality of the seller.

Importantly, the CCP forces a single premium on the market because traders view counterparty

risk as being only that of the CCP. As discussed above, a CCP requires capital (for a default fund)

and collateral in case of contract non-performance. Typically, CCPs demand collateral according

to the quality of the asset being insured, but less so based on the quality of the counterparties

(Pirrong 2009). In what follows, we assume that insurers are either unwilling or cannot condition

collateral or contributions to the default fund based on insurer quality.19

A comprehensive analysis of a CCP arrangement is beyond the scope of this paper, however

our framework can be used to address an issue that has been largely ignored in the debate thus

far. Assume there are many insurers of both types, that there is Bertrand competition within both

insurer types and that each insurer contracts with its own bank. Let there be N banks, who each

contract with one insurer. As in Section 4, banks may differ in their aversion to counterparty risk.

We assume that there are NG banks for which Z = ZH and NB banks for which Z = ZL, so that

N = NG+NB. When there is no CCP, Lemma 3 implies that in equilibrium ZH (ZL) banks insure

with good (bad) insurers, so that the number of good (bad) insurers in the market is NG (NB).

Furthermore, since there is Bertrand competition within insurer type, all premia are determined

by the zero profit conditions defined in Section 2.2.

We now analyze the imposition of a CCP on this market, which we conceptualize as a scheme

to pool the risk of insurer default. Mutualization requires each insurer to contribute to a pool of

funds that the CCP can use in the event of insurer failure. We denote the size of this pool by m.

The CCP will pay out claims as long as it is solvent, but fails if the number of insurers which have

defaulted on claims is too high. We assume collateral requirements are not insurer specific (and

the risk of a claim is the same with every bank), so for simplicity we normalize collateral to zero.

Since all contracts are of size 1, the CCP will default when m insurers who have been faced with

a claim have defaulted. The default risk of the CCP can be characterized as follows (note that

18This can be contrasted with the analysis in Appendix B, which shows that a risk-averse (Z > 0) bank will
divide a contract across many insurers to reduce idiosyncratic risk of counterparty default. A CCP however, forces
the diversification of counterparty risk among all insurers, so that a bank that insures with one insurer receives the
diversification benefit as if it were to contract with every insurer.

19In practice, CCPs can and sometimes do try to enforce higher capital charges (and higher collateral) to riskier
counterparties. The relevance of this assumption is discussed below, but we note that the results of this section will
survive provided that the CCP does not perfectly condition on counterparty quality.
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qB = 1− F (1) and qG = 1− F (1− P 0
G)).

1− qccp =

N∑
i=m

i∑
j=0

(
NG

i− j

)(
NB

j

)
[(1− p)(1− qG)]i−j [(1− p)(1− qB)]j

×[p+ (1− p)qG]NG−(i−j)[p+ (1− p)qB]NB−j (13)

This expression captures all the possible combinations for which m or more insurers default,

weighted by the probability of each outcome. To determine the optimal size of the default pool m

requires added structure which is beyond the scope of this paper. However, because our results are

not dependent on the specific form of the CCP objective, we focus our attention on the simple case

in which every insurer must fail before the central counterparty fails. For example, this would be

true if the remaining solvent insurers could be forced to help cover all losses. Therefore, expression

(13) collapses to

1− qccp = (1− qG)NG(1− qB)NB . (14)

The following proposition characterizes the equilibrium with a CCP and represents the main result

of this section.

Proposition 4 In the presence of a CCP, the bad insurers will dominate the market and push the

good insurers out when

(1− p)(1 + Z)(qG − qB)(1− qG)NG−1(1− qB)NB < P 0
G − P 0

B, (15)

which is satisfied for large N .

Proof. See Appendix A.

This result is best understood by comparing (15) to the case in which a bank chooses to contract

with a bad insurer in the absence of a CCP, given by (6), which we re-write here for convenience.

(1− p)(1 + Z)(qG − qB) < P 0
G − P 0

B (16)

Comparing (15) and (16), it is straightforward to see that the additional counterparty risk to which

the bank is exposed from a bad insurer is smaller in the CCP case, since (1−qG)NG−1(1−qB)NB < 1.

With a CCP, the change in individual counterparty risk from switching to a bad insurer (the left

hand size of (15)) approaches zero as either NG →∞, NB →∞ or both. Thus, in a large market,

the good insurer presents no benefit of reduced counterparty risk since the additional counterparty

risk that a single bank adds to the CCP by choosing a bad over a good insurer is negligible. Instead,

the insurers compete solely on premium. Given the assumption that r > r∗ (see Lemma 1), the bad

insurer can offer a lower premium (P 0
B < P 0

G). Accordingly, the bad insurer will simply undercut

the good insurer and obtain the contract with the bank. No single bank would then wish to remain
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at the good insurer, so that in equilibrium, only bad insurers are left in the market. This result is

similar in spirit to the classic problem of the commons. Although as a group, they may be worse

off for only insuring with bad insurers (through increased default risk of the CCP or an increase

in the capital charge/collateral requirement to offset the increased risk), a single bank does not

internalize the counterparty risk since it is individually too small.

As a straightforward corollary of the above proposition, we note that the existence of a CCP

with a large number of members eliminates the possibility of a separating equilibrium as discussed

in Section 5. Obviously, banks will not separate on insurer type when the counterparty risk to

which they are exposed is the same regardless of the insurer in which they contract.

This result can be interpreted as an example of the Lucas critique, in that policy-makers con-

sidering the imposition of a CCP must consider the reaction of market participants to the policy.

The remedy to the problem is obvious: the CCP should penalize unstable insurers in this market.

Pirrong (2009) reports that this may not be possible since it is not clear whether CCPs can deduce

the quality of the insurer, especially if market participants cannot deduce the quality themselves.

Nonetheless, to mitigate the problem posed in Proposition 4, our analysis suggests that CCPs

should condition capital requirements and collateral on the quality of the counterparty. In this

way, the bad insurer would have a higher cost of participation in the market and thus may not be

able to undercut the premium of the good insurer.

A brief discussion about marking to market and counterparty risk is warranted. With daily mark

to market, the CDS seller would have to post additional collateral if the quality of the underlying

asset deteriorates. When the quality of the insurer falls at the same time as the underlying asset,

the increase in collateral will help mitigate the counterparty risk to which the buyer is exposed.

However, it could be that the underlying asset becomes safer at the same time as the insurer becomes

riskier. In this case, the decrease in collateral exacerbates the counterparty risk. Therefore, it is

clear that mark to market cannot eliminate the problem in Proposition 4.

The results from this section are meant to highlight a very specific point relevant to the debate

over CCPs. There are many factors that must be considered in determining whether such an

arrangement would be beneficial to the market. For example, there is certainly a diversification

benefit that comes with co-insurance which may outweigh the endogenously lower quality individual

insurance that we consider. Further, there are other possible benefits such as netting that CCPs

can provide.20 A formal welfare analysis is left for future research.

7 Conclusion

In this paper we update the traditional insurance economics model to account for features

unique to the market for credit default swaps. We show that when the counterparty risk of the

insurer is unknown, unstable insurers can exist in equilibrium and otherwise stable insurers can

destabilize. Increased competition among insurers is also shown to potentially destabilize good

20See Bliss and Steigerwald (2007).
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insurers. Further, we show that when some buyers of CDS use the instrument purely for speculation

(and potentially have no insurable interest), the market will be characterized by more unstable

insurers; however, removing these traders may cause market counterparty risk to increase. We

also analyze the case when contracts can be split over multiple providers. Contrary to standard

results in the insurance economics literature, we show that with counterparty risk (some of which

must be aggregate risk), the insured parties can separate based on the type of insurers with whom

they contract. Finally, we apply our analysis to the ongoing debate on central counterparties. We

show that in such an arrangement, the stable insurers can be driven out of the market due to their

inability to compete on premia.

8 Robustness

8.1 Insurer Investment Choice

We model heterogeneity between the two insurer types as simply as possible. Given that the two

insurers are identical before contracts are issued, there is an obvious question of why they would

invest in different assets. We recognize that investing in the liquid asset may not be credible for the

good insurer, given that it could earn a higher profit investing in the illiquid asset. This could easily

remedied by allowing heterogeneity along two dimensions. First, by making our insurers different

before contracting and second, by allowing the investment choice to be an optimal decision variable,

as in Thompson (2010). For example, instead of endowing both insurers with a portfolio draw from

F (θ), as is done in our paper, let the good (bad) insurer receive a draw from a distribution G(θ)

(B(θ)). Next, let the proportion that the good (bad) insurer invests in the liquid asset be given

by βG (βB), with the remainder invested in the illiquid asset. Each insurer can now solve for its

optimal investment decision given its portfolio distribution. Using the usual notation for premia,

counterparty risk is now defined in a similar way as in Section 2, 1 − qG = G(1 − β∗GPG) and

1 − qB = B(1 − β∗BPB), where the asterisk represents the optimal portfolio choice. We can then

impose the appropriate restrictions on the distribution functions to ensure qG(β∗G) > qB(β∗B), i.e.,

so that our bad insurer has higher counterparty risk.

What will drive the difference in investment choice between the good and bad insurer is how

valuable the liquid asset is relative to the illiquid asset. As in expressions (2) and (3), the insurers

invest in the liquid asset to reduce the probability of insolvency in the state of the world when a

claim is made. Given the new distributions, the reduction in counterparty risk from investing in

the liquid asset for the good (bad) insurer is: G(1)−G(1−β∗GPG) (B(1)−B(1−β∗BPB)). Therefore,

the more mass that the distribution function has in this region, the higher the benefit and the more

that will be invested in the liquid asset. We imagine that the bad insurer is endowed with a riskier

portfolio than the good insurer, in the sense that it has more mass on high and low outcomes (for

example, portfolio draws near θ and θ). Consequently, the bad insurer invests more in the illiquid

asset (and reaps higher returns) because investments in the liquid asset are unlikely to be sufficient

for it to remain solvent in the event of a bad draw. Conversely, we imagine that the good insurer
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has a portfolio with less risk so that bad portfolio draws are less extreme and can therefore be

offset by investing in the liquid asset. All of the results of the paper would then follow with the

new definition of counterparty risk.

8.2 Z and Risk Aversion

It is worthwhile to contrast the parameter Z in our model with standard utility assumptions

made in most insurance papers. Typically, a non-linear utility function is used for the insured

party that puts different weights/utility value on high and low outcomes. A standard risk averse

utility function will put relatively more negative weight on the bad outcomes (e.g., an ‘accident’)

versus the high outcome (e.g., no ‘accident’). As such, insurance is purchased to protect the risk

averse individual that may cost more than the expected loss from the accident. In our model, we

use the simplest formulation possible that captures insurance without a non-linear function. In

particular, we put a weight Z on the bad outcome (i.e., the loan fails). As such, the utility in the

good state (i.e., the loan does not fail) is simply equal to the monetary payoff. In our model we

let Z ∈ [0,∞). To understand this range, we consider the condition under which a bank (with

probability of default 1-p) is indifferent between purchasing and not purchasing insurance, i.e., its

participation constraint.

pRB + (1− p)q − (1− p)(1− q)Z − P = pRB − (1− p)Z

⇒ P = (1− p)q(1 + Z) (17)

Therefore, when Z = 0, P = (1 − p)q, which is the actuarially fair premium, i.e., the bank

pays the expected value of the coverage. This corresponds to the usual insurance result with a risk

neutral agent. When Z > 0, the bank is willing to pay greater than the expected value in return

for coverage. This represents the usual risk premium that an insurance provider can extract due

to the risk aversion of the insured party.
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Appendix A

Proof of Lemma 1

Equation (3) characterizes the profit of the bad insurer. Setting this equal to
∫ θ
0 θdF (θ), provides

an expression which implicitly defines the zero-profit premium P 0
B as a function of r, the return

on premia invested. It is straightforward to show that P 0
B becomes arbitrarily small as r becomes

arbitrarily large. Differentiating with respect to r yields(
P 0
B + r

dP 0
B

dr

)[
p

∫ θ

0
dF (θ) + (1− p)

∫ θ

1
dF (θ)

]
= 0 (18)

⇒ P 0
B + r

dP 0
B

dr
= 0⇒

dP 0
B

dr
= −

P 0
B

r
< 0. (19)

Thus P 0
B(r) is strictly decreasing in r, and limr→∞ P

0
B = 0. Since the zero profit premium for

the good insurer is a positive finite number, there exists a finite r∗ such that P 0
G = P 0

B(r∗) and

P 0
G > P 0

B(r∗) for all r > r∗.

Proof of Lemma 2

First, consider the case in which the good insurer dominates. The existence of such an equi-

librium can be ensured when the bank’s aversion to counterparty risk is high. As Z becomes

arbitrarily large, (1− p)(1 +Z)(qG − qB) ≥ P 0
G − P 0

B must hold, so that the bank prefers the good

insurer at the zero profit premium. The good insurer’s optimal premium P ∗G, is that which satisfies

(5) with equality, as described in the lemma.

The case in which the bad insurer dominates follows the same logic, but is somewhat more

involved given the simplified framework outlined in Section 2. The bad insurer offers a lower

premium, but higher counterparty risk. Intuitively, it will dominate the market if the added risk is

small relative to the discount on premium it offers. Existence requires

(1− p)(1 + Z)(qG − qB) < P 0
G − P 0

B. (20)

From the proof to Lemma 1, we can see that P 0
B becomes arbitrarily small as r becomes large. Let

this be the case, let Z = 0 and replace qB = 1−F (1) and qG = 1−F (1−P 0
G) so that (20) becomes

(1− p)[F (1)− F (1− P 0
G)] < P 0

G. (21)
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To prove existence, let F (·) be uniform over [θ, θ]. Expression (21) then becomes

P 0
G >

(1− p)
θ − θ

P 0
G, (22)

which holds since (1 − p)/(θ − θ) < 1. Note that θ > 1, otherwise the bad insurer would always

default when faced with a claim. The equilibrium premium is the maximum premium for which

(6) is still satisfied. This is sufficient to prove the result, but we note that existence in the case

where the bad insurer dominates can be shown for any F (·) through a simple generalization of Z.

In Section 2, we assume that when the bank suffers a loss and is uninsured, or is insured but the

insurer cannot pay, it suffers the cost Z. Implicit in this is that the insurer pays nothing in the event

of a default. This simplification is made to avoid unnecessary complication, and is not vital to our

results. In reality, it would be more common for there to be a recovery value when the underlying

asset of a CDS defaults. This feature can be added to the model with a simple modification to Z.

Let φ be the recovery value. We can then define Z̃ = Z − φ and all of the results in the paper

follow through by replacing Z with Z̃. In particular, if we rewrite (20) with the general form of Z

described above, we obtain the following.

(1− p)(1 + Z̃)(qG − qB) < P 0
G − P 0

B (23)

Thus, to prove the existence of an equilibrium where the bad insurer dominates we can simply let

Z = 0, and φ → 1, so that Z̃ → −1 and (23) holds trivially. The intuition is that when there is

almost full recovery, there is little difference in counterparty risk. Since the bad insurer offers a

lower premium, it is preferred.

Proof of Proposition 2

With no information about insurer type, banks will insure with the provider who offers the

lowest premium (unless the premium is below P 0
G). Given this, the insurers will compete on premia

until it falls to P 0
G. Below this premium, the bad insurer would be revealed and the good insurer

would drop out of the market. Thus, the equilibrium is characterized as one in which both insurers

offer coverage at the premium P 0
G, and the bad insurer earns a positive profit.

With perfect information over insurer type and all insurance provided by the good insurer, the

premium is P ∗G ≥ P 0
G such that (5) holds with equality. The market counterparty risk is then given

by 1− qG = F (1− PG). It follows that,

d(1− qG)

dPG
= −dF (1− PG) ≤ 0. (24)

With asymmetric information over insurer type, P ∗G = P 0
G. Thus counterparty risk for the good

insurer is (weakly) higher with asymmetric information. Coupled with the participation of the bad
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insurer, market counterparty risk unambiguously increases.

Proof of Lemma 3

The bank’s payoff from insuring with the good and bad insurers are given as follows.

Π(G) = pRB + (1− p)qG − (1− p)(1− qG)Z − PG (25)

Π(B) = pRB + (1− p)qB − (1− p)(1− qB)Z − PB (26)

We now define Ẑ as that which equates these expressions.

Ẑ =
PG − PB

(1− p)(qG − qB)
− 1 (27)

Inserting the zero profit premia yields the expression characterized in Lemma 3.

Proof of Proposition 3

The result is straightforward in case 1. Given that there is Bertrand competition within each

type of insurer, the premium is always that which earns zero profit. Initially, market counterparty

risk is given by (2− qB − qG)/2, where qB = 1− F (1) and qG = 1− F (1− P 0
G). Once the ZL bank

is removed from the market, the bad insurer drops out (by Lemma 3), but the good insurer cannot

alter its premium. Therefore, market counterparty risk is now 1− qG. Since qG is unchanged, and

qG > qB, market counterparty risk decreases.

The second case is less obvious. We begin by defining the initial equilibrium and then charac-

terize the change in market counterparty risk when the ZL bank is removed. Initially, there are two

banks and two insurers. The ZH bank is most attractive to both insurers, as this type is willing to

pay a higher premium for insurance, yet poses no additional risk. Thus, by Lemma 3, we restrict

our attention to the case when the good insurer contracts with ZH and the bad insurer with ZL.

Given this, a unique set of equilibrium premia are determined by the following set of participation

and incentive constraints.

qB(1− p)(1 + ZL) ≥ PB (PCL)

qG(1− p)(1 + ZH) ≥ PG (PCH)

PG − PB ≥ (1− p)(1 + ZL)(qG − qB) (ICL)

PG − PB ≤ (1− p)(1 + ZH)(qG − qB) (ICH)

The Inequality PCL (PCH) ensures that the ZL (ZH) bank will purchase insurance from the bad

(good) insurer, rather than go without. Inequality ICL (ICH) ensures that the ZL (ZH) bank
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contracts with the bad (good) insurer rather than the competitor. Recall that we assume that an

insurer only insures one bank so that a deviating bank is still the only party with whom the new

insurer contracts.21 This could be relaxed to allow multiple contracts per insurer, but would add

undue complication without changing the qualitative results. Expanding ICH, we have

PG ≤ qG(1− p)(1 + ZH)− [qB(1− p)(1 + ZH)− PB]. (28)

The second term on the right hand side is negative since

qB(1− p)(1 + ZH)− PB > qB(1− p)(1 + ZL)− PB ≥ 0, (29)

where the second inequality follows from PCL. Thus, (28) shows that PCH is redundant and can

be ignored. Furthermore, in equilibrium, ICH must be satisfied with equality, otherwise the good

insurer could increase the premium and still attract the ZH bank. This implies

PG − PB = (1− p)(1 + ZH)(qG − qB) > (1− p)(1 + ZL)(qG − qB), (30)

so that ICL can also be ignored. Finally, in equilibrium the bad insurer will increase its premium

until the ZL bank is just indifferent to purchasing the contract or not so that PCL is satisfied with

equality. To summarize, the equilibrium premia in this situation are P ∗B = qB(1− p)(1 + ZL) and

P ∗G = (1− p)(qG − qB)(1 + ZH) + P ∗B.

We now consider the equilibrium when the ZL banks are removed. We know from Lemma 3

that this will drive the bad insurer out of the market. However, this constrains the good insurer by

changing ICH, which determines the premium in equilibrium. As the bad insurer no longer has a

contract, it will offer the lowest premium possible in an attempt to lure the ZH bank, namely P 0
B.

Thus, the new premium offered by the good insurer is P ∗∗G = (1− p)(qG− qB)(1 +ZH) +P 0
B. Since

P ∗∗G ≤ P ∗G, the good insurer will become less stable (weakly).

Market counterparty risk in the initial equilibrium is (2−qB−qG)/2, where qB and qG are implied

by the premia P ∗B and P ∗G defined above. When the ZL bank is removed, market counterparty risk

is simply 1− qG, which is defined by the premium P ∗∗G . Since P ∗∗G ≤ P ∗G, and the default risk of the

good insurer is decreasing in the premium, the affect on market counterparty risk is ambiguous.

Using the definition of q and the relevant premia, we can derive the following condition under which

market counterparty increases (as stated in the proposition).

2F (1− P ∗∗G ) > F (1− P ∗G) + F (1) (31)

Clearly, a distribution function can be chosen that will satisfy this condition. In the case where

F (·) is uniform, condition (31) is simply 2P ∗∗G < P ∗G. Using the expressions for P ∗G and P ∗∗G we

21We make this simplifying assumption for expositional purposes. Since both banks have the same probability of
a claim, the insurer would be indifferent between the two for a given premium. Therefore, we assume they choose to
contract with the deviating bank. Allowing each insurer to contract with both banks greatly complicates the payoff
function of the insurers, but would not change our result.
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write

2P ∗∗G − P ∗G = (1− p)(1 + ZH)(2qG(P ∗∗G )− qB − qG(P ∗G)) + 2P 0
B − qB(1− p)(1 + ZL). (32)

Using the uniform assumption for qG and qB yields:

2P ∗∗G − P ∗G =
(1− p)(1 + ZH)

θ − θ
(2P ∗∗G − P ∗G) + 2P 0

B − qB(1− p)(1 + ZL) (33)

Therefore,

2P ∗∗G − P ∗G =
(θ − θ)[2P 0

B − qB(1− p)(1 + ZL)]

θ − θ − (1− p)(1 + ZH)
. (34)

Consider the case in which r becomes arbitrarily large, so that P 0
B → 0 as shown in Lemma 1. It

follows that when ZH < θ−θ−(1−p)
1−p , then 2P ∗∗G < P ∗G. Note that θ > 1 and θ < 0 (if θ < 1, the bad

insurer would always default when faced with a claim).

Proof of Lemma 4

Since there are effectively four participants in this market, a Bayesian Nash equilibrium is

attained when all four have no incentive to change their behavior. The banks choose an insurer

and the insurers optimize payoffs through their choice of premia. First, we characterize the payoff

functions for both types of banks when insuring with both types of insurer.

Π(S,G) = pSR+ (1− pS)qG − (1− pS)(1− qG)Z − PG (35)

Π(S,B) = pSR+ (1− pS)qB − (1− pS)(1− qB)Z − PB (36)

Π(R,G) = pRR+ (1− pR)qG − (1− pR)(1− qG)Z − PG (37)

Π(R,B) = pRR+ (1− pR)qB − (1− pR)(1− qB)Z − PB (38)

We first set up conditions for each bank type which determine with whom they contract. We then

consider the behavior of the insurers, which is characterized by the premia.

Pooling at the Good Insurer:

Consider first the case in which the good insurer dominates the market. This will occur when

Π(S,G) ≥ Π(S,B) and Π(R,G) ≥ Π(R,B), which are characterized as follows.

(1− pS)(1 + Z)(qG − qB) ≥ PG − PB (39)

(1− pR)(1 + Z)(qG − qB) ≥ PG − PB (40)

Should the premia be such that (39) holds, then condition (40) is satisfied by default. Intuitively,
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these conditions are satisfied when both bank types care more about counterparty risk (Z) and less

about the difference in premia between the two insurers. If (39) is satisfied, the (pooling) beliefs of

the good insurer are defined by bG = (2−pR−pS)/2, while the beliefs of the bad insurer are defined

off the equilibrium path. We use off the equilibrium path beliefs for the bad insurer that make this

equilibrium least likely to exist, namely bB = 1 − pS . When the good insurer dominates, the bad

insurer will cut its premium as low as it can and is still driven out of the market. Therefore, the

premium the bad insurer charges is P 0
B(1 − pS), where we write the beliefs of the insurer as an

argument of the premium function in bold to avoid confusion with the multiplication operator. We

now rewrite expression (39) to include beliefs.

(1− pS)(1 + Z)(qG − qB) ≥ PG ((2− pR − pS)/2)− P 0
B(1− pS) (41)

The good insurer will maximize profit by setting a premium which just satisfies (41) with equal-

ity, so that P ∗G ((2− pR − pS)/2) ≥ P 0
G ((2− pR − pS)/2). We simply wish to show exis-

tence, so we look at the limiting case where Z → ∞. In this case, (41) is clearly satisfied for

P ∗G ((2− pR − pS)/2) = P 0
G ((2− pR − pS)/2). It remains to be determined whether either

insurer has an incentive to change its premium. Given that the bad insurer sets the lowest possible

premium, it only has the possibility of raising its premium. Since no bank contracts with it at

P 0
B(1 − pS), then no bank will contract with it at a higher premium. Since the good insurer

already appeals to both bank types, it has no incentive to lower its premium. It may however,

want to increase its premium to as high as the risky bank can tolerate, losing the safe bank in the

process. The premium will be set such that (40) holds with equality where PB = P 0
B(1 − pS).

However, the payoffs for the banks converge in the limiting case, so that

lim
Z→∞

(1− pS)(1 + Z)(qG − qB) = lim
Z→∞

(1− pR)(1 + Z)(qG − qB).

Effectively, both bank’s payoffs are dominated by the aversion to counterparty risk and the insurer

has no way of determining bank type. Thus, it cannot extract any extra premium from the risky

bank.

Pooling at the Bad Insurer:

We now consider the case in which the bad insurer dominates the market. This will occur when

Π(S,G) < Π(S,B) and Π(R,G) < Π(R,B), which are characterized as follows.

(1− pS)(1 + Z)(qG − qB) < PG − PB (42)

(1− pR)(1 + Z)(qG − qB) < PG − PB (43)

Should the premia be such that (43) holds, then condition (42) is satisfied by default. Intuitively,

these conditions are satisfied when the banks put little weight on counterparty risk (Z) and are

more driven by the premium. If (43) is satisfied, the (pooling) beliefs of the good insurer are defined
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by bB = (2− pR − pS)/2, while the beliefs of the bad insurer are defined off the equilibrium path.

We take off equilibrium path beliefs for the good insurer that make this equilibrium least likely

to exist, bG = 1 − pS . When the bad insurer dominates, the good insurer charges the premium

P 0
G(1− pS) and still does not insure either type. We rewrite expression (43), explicitly specifying

the beliefs.

(1− pR)(1 + Z)(qG − qB) < P 0
G(1− pS)− PB ((2− pR − pS)/2) (44)

The bad insurer will maximize profit by setting a premium which just satisfies (44), so that

P ∗B ((2− pR − pS)/2) ≥ P 0
B ((2− pR − pS)/2). To show existence, we show that (44) holds

when P ∗B ((2− pR − pS)/2) = P 0
B ((2− pR − pS)/2). Similar to Lemma 2, this can be shown

by setting Z = 0 and placing appropriate restrictions on the distribution function F (·). Alterna-

tively, as discussed in the proof to Lemma 2, we could analyze the limiting case when the recovery

value φ→ 1, so that Z → −1. In this case, (44) is trivially satisfied.

It remains to be determined whether either insurer has an incentive to change its premium. The

bad insurer is the only one that may have the incentive to do so. It can raise its premium as high

as possible, such that (42) still holds, where P ∗G = P 0
G(1− pS). In this case, it gives up the risky

bank in exchange for a higher premium. As with the previous case of pooling at the good insurer,

we can rule this type of deviation out by considering a limiting case in which the left hand side of

inequalities (42) and (43) converge. A value of Z = 0 is not sufficient to attain this however, as the

good insurer may provide a higher expected return for the risky bank even when Z = 0 (when the

banks are risk neutral), as it poses less risk of default. Thus we let Z = 0 and pR → pS and see that

in the limit, the bad insurer has no means by which to insure only the safe bank. Alternatively,

we can consider the limiting case with a recovery value, in which Z gets arbitrarily close to −1. In

this case, it is easy to see that the left hand side of (42) and (43) both approach 0, so the amount

by which the bad insurer can raise its premium and obtain only the safe bank gets arbitrarily small.

Separating Equilibrium:

A separating equilibrium is most likely to exist when there is a significant difference between risky

and safe banks. With this in mind, we prove existence by fixing Z and focusing on the limiting

case in which the probability that the safe bank makes a claim is arbitrarily small, so that pS → 1.

We will then show that a separating equilibrium cannot exist when Z takes extreme values as with

the pooling equilibria discussed above.

In examining this case, it is necessary to be explicit about a bank participation constraint which

imposes a ceiling on the premium. Recall that banks receive the penalty Z if they suffer a loss.

It follows that if the premium is too high, they will simply choose not to insure. Using expression

(1), we can determine the premium under which a bank i, potentially insuring with an insurer j,

will be indifferent to purchasing the contract.

Pmaxij = qj(1− pi)(1 + Z) (45)
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From expressions (35)-(38), the following inequalities characterize the conditions that must hold

for a separating equilibrium in which a safe bank insures with the bad insurer, while a risky bank

insures with the good insurer.

(1− pS)(1 + Z)(qG − qB) < PG(1− pR)− PB(1− pS) (46)

(1− pR)(1 + Z)(qG − qB) ≥ PG(1− pR)− PB(1− pS) (47)

We propose a candidate equilibrium in which the risky (safe) bank contracts with the good (bad)

insurer, with P ∗B = PmaxSB and P ∗G that which satisfies (47) with equality. Note that when (47) holds

with equality, then (46) must also hold, as pR < pS .

These premia satisfy (46) - (47), so a risky (safe) bank will indeed contract with a good (bad)

insurer. What remains to be shown is that the insurers will not benefit from deviating and offering

different premia. Consider the bad insurer first. The premium PmaxSB , is defined as in expression

(45) so that the safe bank is just indifferent to purchasing the contract. If it increases the premium,

it will no longer participate in the market. Alternatively, it may wish to reduce its premium and

insure both bank types. However, in the limiting case where pS → 1 this will not be optimal

because PmaxSB is lower than the zero profit pooling premium, PmaxSB ≤ P 0
B(2− pR − pS/2). To see

that this is true, note that as pS → 1, PmaxSB → 0.

Now consider the good insurer. As the good insurer’s premium is that which just satisfies (47)

with equality, it cannot increase the premium or it will lose the risky bank and not participate in

the market. Alternatively, it may wish to lower its premium and take the whole market (pooling

over both types). To do this, P ∗G must fall until (46) is satisfied. In the limiting case, the left

hand side of (46) approaches zero, thus, to satisfy this expression we must have P ∗G → PmaxSB ≤
P 0
B(2− pR − pS/2) < P 0

G(2− pR − pS/2). Therefore, such a deviation is not profitable and our

candidate is an equilibrium.

Now consider the case in which pS fixed. If Z → ∞, (46) and (47) cannot be simultaneously

satisfied. The same is the case when Z = 0 (with suitable restrictions on the distribution function

F (·)), or alternatively for Z → −1 when we allow for recovery values. Therefore, separation will

only occur for intermediate values of Z as described in the lemma.

As a final note, we can see that the separating equilibrium in which the safe (risky) bank insures

with the good (bad) insurer is easily ruled out. Such an equilibrium would require the following.

(1− pS)(1 + Z)(qG − qB) ≥ PG(1− pS)− PB(1− pR)

(1− pR)(1 + Z)(qG − qB) < PG(1− pS)− PB(1− pR)

These expressions cannot be satisfied simultaneously since 1− pS < 1− pR.

Proof of Proposition 4
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Consider one ZH bank switching from a good to a bad insurer. Default risk of the CCP,

1− qCCP , changes from (1− qG)NG(1− qB)NB to (1− qG)NG−1(1− qB)NB+1. Given the probability

of a claim, (1−p), the cost in terms of increased counterparty risk follows by subtracting these two

numbers. Under Bertrand competition, the benefit of insuring with the bad insurer is the difference

in premium P 0
G − P 0

B. Thus, if P 0
G − P 0

B ≥ (1− p)(1− qG)NG−1(1− qB)NB (qG − qB), every ZH will

unilaterally switch to the bad insurer, so that in equilibrium NG = 0.

Appendix B: Formal Analysis of Section 5

We extend the analysis of Section 5 to allow banks to divide their contracts (each of size one)

with as many insurers as they wish, and let there be a countably infinite number of good and bad

insurers. As defined previously, each insurer receives an independent portfolio draw from the same

distribution F (θ). We enrich the modeling of insurer default and allow aggregate risk that affects

bad insurers, but does not affect good insurers. Specifically, with probability 1− qA, all of our bad

insurers default at once.22 Therefore, we redefine 1− qB = 1− q̃BqA, where 1− q̃B represents the

idiosyncratic risk of a bad insurer (which can be thought of as the usual counterparty risk of the

bad insurer as in previous sections), and the default risk for a good insurer remains unchanged.

When banks contract with many insurers, it is possible that some default while others do not.

Thus, we redefine our cost of default Z as Z(x), where x represents the percentage of a bank’s

insurers that fail when a claim is made, and where Z ′(x) > 0, Z ′′(x) > 0 and Z(0) = 0. This

definition of Z implies the following.

Lemma 5 When Z(x) is strictly convex, the bank will insure with as many insurers as possible.

Proof:

Consider the expected profit of a bank that insures a risky asset (that defaults with probability

p), with k identical insurers. Since insurers are identical, we consider the size of each contract, 1/k

and the premium, P as the same across insurers. Profits are characterized as follows.

pR+ (1− p)
k∑
i=0

(
k

i

)
qk−i(1− q)i

[
k − i
k
− Z

(
i

k

)]
︸ ︷︷ ︸

Sk

−P. (48)

Where q (1 − q) is the probability that an insurer is solvent (insolvent) in the event of a claim.

We first show that increasing the number of insurers keeps the payoff constant if banks were risk

22This structure is assumed for simplicity. The good insurers could be exposed to aggregate risk, but to a lesser
degree. Furthermore, we could have partially correlated default risk instead of perfectly correlated risk. Neither
simplification affects the qualitative results.
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neutral (i.e., Z(x) = 0 for every x). In step 2 of this proof, we will show that (48) is concave and

so our banks will behave in a risk averse manner and so they will choose the number of insurers

to minimize the variance of their payoff. In other words, we show that decreasing the number of

insurers is a mean preserving spread, and so is not desirable to a risk averse bank; a standard result.

We now set up the payoff function for the bank when it insures with k and k + 1 insurers (Sk
and Sk+1 respectively). Each term in the sum Sk consists of the claim payed out (k− i)/k, less the

cost of counterparty risk Z(i/k) when the fraction i/k insurers default (the result of which may be

negative) weighted by the probability that i/k insurers default. First, note that regardless of the

number of insurers (k), the bank will receive R with probability p and pay the insurance cost P ,

so we focus solely on the sum Sk. Expanding the sum (past k = 3) and separating the claims paid

from the cost of default, we have the following.

Sk = qk +

(
k

1

)
qk−1(1− q)

(
k − 1

k

)
+

(
k

2

)
qk−2(1− q)2

(
k − 2

k

)
+ ...+

(
k

k − 1

)
q(1− q)k−1

(
1

k

)
−

k∑
i=0

(
k

i

)
qk−i(1− q)iZ

(
i

k

)

Sk+1 = qk+1 +

(
k + 1

1

)
qk(1 − q)

(
k

k + 1

)
+

(
k + 1

2

)
qk−1(1 − q)2

(
k − 1

k + 1

)
+ ... +

(
k + 1

k

)
q(1 − q)k

(
1

k + 1

)

−
k+1∑
i=0

(
k + 1

i

)
qk+1−i(1 − q)iZ

(
i

k + 1

)

In step 1 we show that when the bank payoff function is linear, i.e., Z(·) = 0, then Sk = Sk+1.

Step 1

Let Z(x) = 0 ∀x. The insurance payout when there are k insurers is as follows.

k∑
i=0

(
k

i

)
qk−i(1− q)ik − i

k
= q

k−1∑
i=0

(
k − 1

i

)
qk−1−i(1− q)i

= q(1− q + q)k−1

= q

The first equality follows since the kth term in the sum is zero and
(
k
i

)
=
(
k−1
i

)
k
k−i . The second

equality follows from binomial theorem (x + y)n =
∑n

i=0

(
n
i

)
xiyn−i, where y = q, x = 1 − q and

n = k − 1. Similarly, we examine the insurance payout with k + 1 insurers

k+1∑
i=0

(
k + 1

i

)
qk+1−i(1− q)ik + 1− i

k + 1
= q

k∑
i=0

(
k

i

)
qk−i(1− q)i k + 1

k + 1− i
k + 1− i
k + 1

= q.

Therefore, Sk = Sk+1 so that changing the number of insurers does not change the payoff for a

bank with Z(·) = 0. We now show that when Z(·) is convex, the bank will prefer more insurers to
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fewer.

Step 2

We wish to appeal to standard results on mean preserving spreads and risk aversion. First, it is

simple to see that adding more insurers decreases the variance of the payoff. Intuitively, as more

insurers are added, it makes extreme events (such as every insurer defaulting at the same time)

less likely. To show that our objective function is concave in payoff (or wealth as it is traditionally

viewed in standard portfolio theory), we let y = k−i
k be the payout from insurers, and so the cost

of default becomes Z(1− y). Ignoring the constant terms, the payoff for a fixed number of insurer

defaults (defined as U(y)) can be represented as follows.

U(y) = y − Z(1− y) (49)

The derivative with respect to y is

1 + Z ′(1− y) > 0. (50)

Where the sign follows because Z ′(·) > 0. Taking and signing the second order condition yields the

following.

−Z ′′(1− y) < 0 (51)

Where the sign follows because Z ′′(·) > 0. Thus, our objective function is concave. Therefore, since

insurance with k insurers is a mean preserving spread of k + 1 insurers, a bank will insure with as

many insurers as possible.

Due to the convexity of Z(·), the bank is effectively risk averse. The benefit of insuring with

more insurers is that it makes the banks return more predictable by making tail events (e.g., every

insurer defaulting and the bank incurring a cost Z(1)) less likely. The result that a risk averse agent

prefers more predictable returns is then a standard one. Given that there is a countably infinite

number of insurers, Lemma 5 tells us that the banks will insure with a continuum of insurers.

We now turn to the main result of the section. The following proposition shows that there exists

a separating equilibrium wherein a risky bank insurers with only good insurers, and a safe bank

insures with only bad insurers.

Proposition 5 There exists a separating equilibrium when the insurance market is non-exclusive.

Proof.

Let the beliefs of the insurers correspond to a separating equilibrium in which the risky bank

insurers with only good insurers, and the safe bank insures with only bad insurers. Since insurers

34



are identical, we assume that all good (bad) insurers charge PG (PB). For expositional purposes, we

drop the belief argument on the premia. The payoff of the safe bank if it insures with a measure ψ

of bad insurers and 1−ψ of good insurers is given as follows. Note that we highlight the argument

of Z(·) in bold to emphasize that Z is now a function.

Π(S, ψB, (1− ψ)G) = pSR+ ψ(1− pS)qB + (1− ψ)(1− pS)qG

−(1− pS)(1− qA)Z (ψ (1− q̃B) + (1−ψ) (1− qG))

−(1− pS)qAZ (ψ+ (1−ψ) (1− qG))− ψPB − (1− ψ)PG

We wish to find when the safe bank chooses ψ = 1, i.e., insures exclusively with bad insurers.

This can be assured when Π(S, ψB, (1− ψ)G) is strictly increasing in ψ. Differentiating our profit

function with respect to ψ yields the following.

PG − PB
1− pS

> (qG − qB) + (1− qA)(qG − qB)Z ′ (ψ (1− q̃B) + (1−ψ) (1− qG))

+qAqGZ
′ (ψ+ (1−ψ) (1− qG)) (52)

Since Z ′′(·) > 0, the right hand side of (52) is increasing in ψ. To show existence, we use the value

that makes condition (52) least likely to hold, ψ = 1.

PG − PB
1− pS

> (qG − qB) + (1− qA)(qG − qB)Z ′ (1− q̃B) + qAqGZ
′ (1) (53)

Repeating a similar exercise for the risky bank, we wish to find when the payoff is decreasing in

ψ, i.e., the risky bank insures exclusively with good insurers. The condition under which it would

insure with only good insurers is given as follows.

PG − PB
1− pR

< (qG − qB) + (1− qA)(qG − qB)Z ′ (ψ (1− q̃B) + (1−ψ) (1− qG))

+qAqGZ
′ (ψ+ (1−ψ) (1− qG)) (54)

Since Z ′′(·) > 0, the right hand side of (54) is increasing in ψ. We use the value that makes

condition (54) least likely to hold, ψ = 0.

PG − PB
1− pR

< (qG − qB) + (1− qA)(qG − qB)Z ′ (1− qG) + qAqGZ
′ (1− qG) (55)

We now characterize the two equilibrium premia. Given competition within insurer types, an

insurer must charge its zero profit premium, conditional on its beliefs about bank type. Therefore,

in a separating equilibrium, the premia are: PG = P 0
G(1 − pR) and PB = P 0

B(1 − pS). To

demonstrate that the separating equilibrium exists, we use the extreme case in which pS → 1.

Since P 0
G(1−pR) > P 0

B(1−pS), it follows that (53) is satisfied and (55) is satisfied for some finite

Z ′ (1− qG).
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We are left with determining whether any insurers (or positive measure of insurers) would like

to change its premium. It is straightforward to see that the premium cannot increase since that

insurer would be removed from the market. Next, if a bad insurer cut its premium in an attempt to

gain the risky type, it will make negative profit since it is currently charging its zero profit premium

given the safe bank. If it was to insure the risky type as well, it would require a higher premium

to break even (i.e., the break-even pooling premium). Next, consider a good insurer who cuts its

premium to gain the safe bank in addition to the risky bank. As pS → 1, (53) implies that it must

reduce its premium to PG ≤ P 0
B(1− pS). In this case it would earn negative profit since Lemma

1 implies that P 0
G(1− pS) ≥ P 0

B(1− pS) and we know that P 0
G(1− pS) < P 0

G(2− pR − pS/2).

The intuition behind this result is as follows. Each bank type holds an infinitesimally small

amount with each insurer. There exists a parameter range in which the safe bank insures with the

full set of bad insurers, and no good insurers. Conversely, the risky bank insures with the full set

of good insurers, and no bad insurers. Banks do not insurer with both insurer types in this case

because uncertainty with bad insurers cannot be eliminated because of the aggregate risk. The

risky bank prefers to insure with only good insurers to avoid this uncertainty, whereas the safe

bank prefers the lower premium at the bad insurers.

In the separating equilibrium, our banks insure with one type of insurer, even though each was

permitted to split its contract over insurer type. We can go even further than this in addressing

contract non-exclusivity. Although we have not explicitly modeled it here, this equilibrium can still

exist with a formal choice of contract size by the banks. Although the banks can attain certainty

by insuring with an infinite number of good insurers, they cannot attain this with the bad insurers.

If they were able to attain certainty by insuring with an infinite number of bad insurers, then they

could replicate the protection that good insurers provide by simply increasing the contract size

with bad insurers. However, in the state of the world in which all bad insurers fail due to aggregate

risk, a larger contract size with bad insurers will not increase the payout. Therefore, banks cannot

replicate good insurance from the bad insurers so that the risky bank prefers to pay the extra

premium to insure with the good insurers.
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