C

CDS as Insurance: Leaky Lifeboats in Stormy Seas

Eric Stephens Ja Department of Economics Schoo University of Alberta

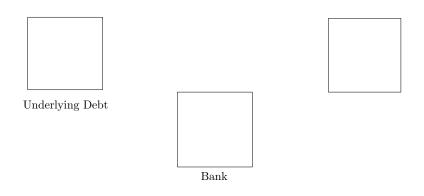
James R. Thompson School of Accounting and Finance University of Waterloo

Presented at: LSE Paul Woolley Centre June 10, 2011

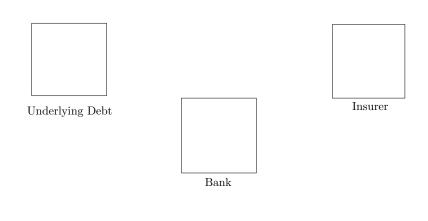
Eric Stephens and James R. Thompson

CDS as Insurance: Leaky Lifeboats in Stormy Seas

University of Waterloo

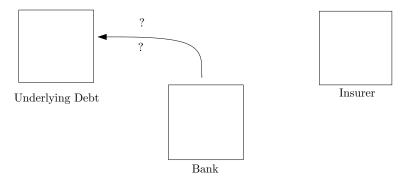

Underlying Debt

Eric Stephens and James R. Thompson


CDS as Insurance: Leaky Lifeboats in Stormy Seas

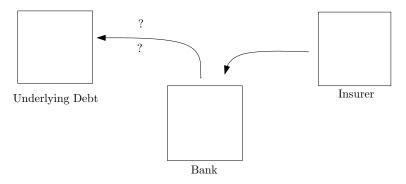
University of Waterloo

Eric Stephens and James R. Thompson


CDS as Insurance: Leaky Lifeboats in Stormy Seas

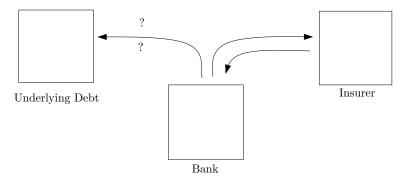
Eric Stephens and James R. Thompson

CDS as Insurance: Leaky Lifeboats in Stormy Seas


Bank may own underlying risk

- 18th century England, insurance market was like the CDS market today.
- e.g., Merchants bought policies on other's ships.
- In 1746, Parliament passed the Marine Insurance act requiring insurable interest, and no over-insure.

Eric Stephens and James R. Thompson


Bank insures with Insurer

Eric Stephens and James R. Thompson

CDS as Insurance: Leaky Lifeboats in Stormy Seas

Bank pays premium to Insurer

- Roughly half of buyers use them purely for speculation, rest use for risk management/hedging.
 - Fitch Rating Agency 2009, 2010.
- China and Germany propose bans on trading without owning underlying.
 - Bloomberg Sept 13, 2010, June 14, 2010
- New York State trying to regulate CDS sellers as Insurers
 New York State Insurance Department, Circular Letter No. 19 (2008)
- AMBAC, MBIA, ACA, AIG, many hedge funds did not provide true insurance.

- Roughly half of buyers use them purely for speculation, rest use for risk management/hedging.
 - Fitch Rating Agency 2009, 2010.
- China and Germany propose bans on trading without owning underlying.
 - Bloomberg Sept 13, 2010, June 14, 2010
- New York State trying to regulate CDS sellers as Insurers
 New York State Insurance Department, Circular Letter No. 19 (2008)
- AMBAC,MBIA,ACA,AIG, many hedge funds did not provide true insurance.

- Roughly half of buyers use them purely for speculation, rest use for risk management/hedging.
 - Fitch Rating Agency 2009, 2010.
- China and Germany propose bans on trading without owning underlying.
 - Bloomberg Sept 13, 2010, June 14, 2010
- New York State trying to regulate CDS sellers as Insurers - New York State Insurance Department, Circular Letter No. 19 (2008)
- AMBAC, MBIA, ACA, AIG, many hedge funds did not provide true insurance.

- Roughly half of buyers use them purely for speculation, rest use for risk management/hedging.
 - Fitch Rating Agency 2009, 2010.
- China and Germany propose bans on trading without owning underlying.
 - Bloomberg Sept 13, 2010, June 14, 2010
- New York State trying to regulate CDS sellers as Insurers
 New York State Insurance Department, Circular Letter No. 19 (2008)
- AMBAC, MBIA, ACA, AIG, many hedge funds did not provide true insurance.

What we do

- Update the insurance economics framework to handle CDS.
- Contrast results with traditional insurance contracts.
- Use model to shed new light on Central Counterparty (CCP) debate.

What we do

- Update the insurance economics framework to handle CDS.
- Contrast results with traditional insurance contracts.
- Use model to shed new light on Central Counterparty (CCP) debate.

What we do

- Update the insurance economics framework to handle CDS.
- Contrast results with traditional insurance contracts.
- Use model to shed new light on Central Counterparty (CCP) debate.

Unique to CDS

- UPDATE 1: Risk of insurer insolvency private information
- UPDATE 2: Buyers (banks) can have differing motivations to purchase.
- UPDATE 3: No contract exclusivity *Time Permitting*

Unique to CDS

- UPDATE 1: Risk of insurer insolvency private information
- UPDATE 2: Buyers (banks) can have differing motivations to purchase.
- UPDATE 3: No contract exclusivity *Time Permitting*

Unique to CDS

- UPDATE 1: Risk of insurer insolvency private information
- UPDATE 2: Buyers (banks) can have differing motivations to purchase.
- UPDATE 3: No contract exclusivity *Time Permitting*

Main Results

- Counterparty risk (usually) increases when insurers opaque. Increased competition among insurers can increase counterparty risk.
- CDS market characterized by lower quality insurers than traditional insurance due to speculators. Removing speculators may actually increase counterparty risk.
- With a CCP, stable insurers can lose competitive advantage and drop out of market in a *problem of the commons* type result.

Main Results

- Counterparty risk (usually) increases when insurers opaque. Increased competition among insurers can increase counterparty risk.
- CDS market characterized by lower quality insurers than traditional insurance due to speculators. Removing speculators may actually increase counterparty risk.
- With a CCP, stable insurers can lose competitive advantage and drop out of market in a *problem of the commons* type result.

Main Results

- Counterparty risk (usually) increases when insurers opaque. Increased competition among insurers can increase counterparty risk.
- CDS market characterized by lower quality insurers than traditional insurance due to speculators. Removing speculators may actually increase counterparty risk.
- With a CCP, stable insurers can lose competitive advantage and drop out of market in a *problem of the commons* type result.

Players

- Insured Party (Bank)
 - ► Endowed with asset (e.g., loan) of size 1 that can default (prob 1 - p).
- Two Insurers
 - Either 'good' or 'bad'
 - Both endowed with random portfolio
 - Both make investment decision. Good invests liquid, bad invests illiquid.

- Return from loan of R_B with probability p, nothing otherwise
- It insures entire loan of size 1 (indemnity of 1). As in Thompson (2010), suffers cost Z if no protection.

• Portfolio (realized at interim period)

 $\int_{0}^{\overline{\theta}} \theta dF(\theta) + \int_{\underline{\theta}}^{0} 0 dF(\theta)$

- Good insurer receives premium P_G .
 - Invests premium in liquid (storage) asset available at t = 1, return: 1.
- Bad insurer receives premium P_B.
 - Invests premium in illiquid asset available only at t = 2, return: r > 1.

• Portfolio (realized at interim period)

 $\int_{0}^{\overline{\theta}} \theta dF(\theta) + \int_{\underline{\theta}}^{0} 0 dF(\theta)$

- Good insurer receives premium P_G .
 - ► Invests premium in liquid (storage) asset available at t = 1, return: 1.
- Bad insurer receives premium P_B.
 - Invests premium in illiquid asset available only at t = 2, return: r > 1.

• Portfolio (realized at interim period)

 $\int_{0}^{\overline{\theta}} \theta dF(\theta) + \int_{\underline{\theta}}^{0} 0 dF(\theta)$

- Good insurer receives premium P_G .
 - Invests premium in liquid (storage) asset available at t = 1, return: 1.
- Bad insurer receives premium P_B.
 - ► Invests premium in illiquid asset available only at t = 2, return: r > 1.

Model Setup	Known Insurer	Unknown Insurer	Incentives to Insure	Contract Non-exclusivity	CCP
Timing					

Bank endowed with loan and insures proportion γ	Portfolio draw and liquid invest- ment for insurer realized. Insur- ance claim can be made.	Illiquid insurer	asset pays off for
	If needed, each insurer the claim or defaults.	either pays	
t = 0	t = 1		t = 2

- Good insurer:
 - Premia used to pay claims: Counterparty risk (q_G) decreasing in P_G
- Bad insurer:
 - Premia cannot be used to pay claims: Counterparty risk (q_B) independent of P_B

- Good insurer:
 - Premia used to pay claims: Counterparty risk (q_G) decreasing in P_G
- Bad insurer:
 - ▶ Premia cannot be used to pay claims: Counterparty risk (q_B) independent of P_B

Eric Stephens and James R. Thompson

Lemma

There exists a return r^* , such that for all $r > r^*$, $P_G^0 > P_B^0$, where P_G^0 and P_B^0 are the zero profit premia.

- Intuition: higher return on investment = less needed to break even.
- Assume $r > r^*$

Eric Stephens and James R. Thompson

Equilibrium - Premium

• Competition between insurers determines equilibrium premium

Equilibrium - Market

Lemma

1. The good insurer provides insurance when

$$(1-p)(1+Z)(q_G-q_B) \geq P_G^0-P_B^0,$$

where $P_G^* \ge P_G^0$ such that above holds with equality.

2. The bad insurer provides insurance when

$$(1-p)(1+Z)(q_G-q_B) < P_G^0 - P_B^0,$$

where $P_B^* \ge P_B^0$ such that above holds with equality.

Eric Stephens and James R. Thompson

Equilibrium - Market

Lemma

1. The good insurer provides insurance when

$$(1-p)(1+Z)(q_G-q_B) \ge P_G^0 - P_B^0,$$

where $P_G^* \ge P_G^0$ such that above holds with equality.

2. The bad insurer provides insurance when

$$(1-p)(1+Z)(q_G-q_B) < P_G^0 - P_B^0,$$

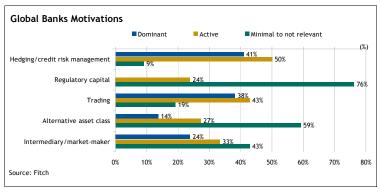
where $P_B^* \ge P_B^0$ such that above holds with equality.

Eric Stephens and James R. Thompson

Competition

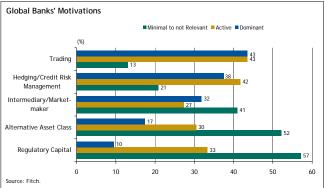
• When we add insurer types, this can increase counterparty risk: Forces good insurer to compete more on premium.

Unknown Insurer


- market counterparty risk is expected/average counterparty risk of insurers in market. vspace5pt
- Consider when good insurer dominates with perfect info.

Proposition

Good insurer becomes riskier and market counterparty risk unambiguously increases.


Why buy protection?

Fitch 2009 Credit Derivatives survey of global banks...

Eric Stephens and James R. Thompson

Fitch 2010 Credit Derivatives survey of global banks...

Eric Stephens and James R. Thompson

CDS as Insurance: Leaky Lifeboats in Stormy Seas

University of Waterloo

Why buy protection?

- size of most outstanding single name CDSs are multiples of total bonds outstanding.
- Data is sketchy, but majority do not own the underlying.

Eric Stephens and James R. Thompson

Lemma

There exists a \hat{Z} such that a bank for which $Z < \hat{Z}$ insures with bad insurer, and $Z \ge \hat{Z}$ insures with good insurer.

- Z_L is speculator, Z_H is hedger. $Z_L = 0$ is risk neutral $Z_H > 0$ is risk averse (the normal case of insurance)
- Simplest setting: 2 banks $(Z_H > \hat{Z}, Z_L < \hat{Z})$, 2 insurers (G, B)
 - ► Assume each bank insures with it's own insurer.
- Markets with more Z_H banks will have more good (stable) insurance. CDS versus traditional insurance.

- Z_L is speculator, Z_H is hedger. $Z_L = 0$ is risk neutral $Z_H > 0$ is risk averse (the normal case of insurance)
- Simplest setting: 2 banks $(Z_H > \hat{Z}, Z_L < \hat{Z})$, 2 insurers (G, B)
 - Assume each bank insures with it's own insurer.
- Markets with more Z_H banks will have more good (stable) insurance. CDS versus traditional insurance.

- Z_L is speculator, Z_H is hedger. $Z_L = 0$ is risk neutral $Z_H > 0$ is risk averse (the normal case of insurance)
- Simplest setting: 2 banks $(Z_H > \hat{Z}, Z_L < \hat{Z})$, 2 insurers (G, B)
 - ► Assume each bank insures with it's own insurer.
- Markets with more Z_H banks will have more good (stable) insurance. CDS versus traditional insurance.

- Consider the policy of removing speculators
- Two cases: Bertrand competition within each insurer type, No Bertrand competition with insurer type

Proposition

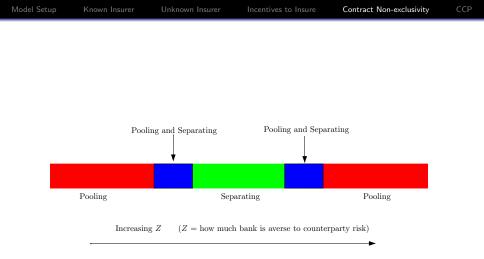
In case 1, a policy that removes Z_L banks will decrease market counterparty risk.

In case 2, this policy will make the good insurer riskier and consequently may increase or decrease market counterparty risk.

- Consider the policy of removing speculators
- Two cases: Bertrand competition within each insurer type, No Bertrand competition with insurer type

Proposition

In case 1, a policy that removes Z_L banks will decrease market counterparty risk.


In case 2, this policy will make the good insurer riskier and consequently may increase or decrease market counterparty risk.

- Traditional Insurance: can restrict your purchase of insurance elsewhere.
 - ► Not true in life insurance
- Certainly not true in CDS.
- Precludes traditional method of separation of insured party types à la Rothschild and Stiglitz (1976).
- First, assume bank asset is of two types with equal probability, (R)isky or (S)afe.
 - ▶ $1 p_R > 1 p_S$

- Traditional Insurance: can restrict your purchase of insurance elsewhere.
 - ► Not true in life insurance
- Certainly not true in CDS.
- Precludes traditional method of separation of insured party types à la Rothschild and Stiglitz (1976).
- First, assume bank asset is of two types with equal probability, (R)isky or (S)afe.
 - ▶ $1 p_R > 1 p_S$

- Traditional Insurance: can restrict your purchase of insurance elsewhere.
 - ► Not true in life insurance
- Certainly not true in CDS.
- Precludes traditional method of separation of insured party types à la Rothschild and Stiglitz (1976).
- First, assume bank asset is of two types with equal probability, (R)isky or (S)afe.
 - ▶ $1 p_R > 1 p_S$

- Traditional Insurance: can restrict your purchase of insurance elsewhere.
 - ► Not true in life insurance
- Certainly not true in CDS.
- Precludes traditional method of separation of insured party types à la Rothschild and Stiglitz (1976).
- First, assume bank asset is of two types with equal probability, (R)isky or (S)afe.
 - ▶ $1 p_R > 1 p_S$

CDS as Insurance: Leaky Lifeboats in Stormy Seas

Lemma

There are three equilibria:

1. The good insurer Dominates:

$$(1-p_S)(1+Z)(q_G-q_B)\geq P_G-P_B.$$

2. The good insurer Dominates:

$$(1-p_R)(1+Z)(q_G-q_B) < P_G-P_B.$$

3. Separation

$$(1-p_S)(1+Z)(q_G-q_B) \le P_G-P_B \ (1-p_R)(1+Z)(q_G-q_B) > P_G-P_B$$

- Is the separating result robust? CDS is not mutually exclusive!
- Let there be many insurers of both types (independent draws). Banks can insure with as many as they chose.
- Let there be aggregate risk that bad insurers cannot protect against: $q_B = \widetilde{q_B} + q_A$.
- Re-define aversion to c-party risk: Z(x) where x is % of bank's insurers that fail. Z' > 0, Z'' > 0, Z(0) = 0.

- Is the separating result robust? CDS is not mutually exclusive!
- Let there be many insurers of both types (independent draws). Banks can insure with as many as they chose.
- Let there be aggregate risk that bad insurers cannot protect against: $q_B = \widetilde{q_B} + q_A$.
- Re-define aversion to c-party risk: Z(x) where x is % of bank's insurers that fail. Z' > 0, Z'' > 0, Z(0) = 0.

- Is the separating result robust? CDS is not mutually exclusive!
- Let there be many insurers of both types (independent draws). Banks can insure with as many as they chose.
- Let there be aggregate risk that bad insurers cannot protect against: $q_B = \widetilde{q_B} + q_A$.
- Re-define aversion to c-party risk: Z(x) where x is % of bank's insurers that fail. Z' > 0, Z'' > 0, Z(0) = 0.

- Is the separating result robust? CDS is not mutually exclusive!
- Let there be many insurers of both types (independent draws). Banks can insure with as many as they chose.
- Let there be aggregate risk that bad insurers cannot protect against: $q_B = \widetilde{q_B} + q_A$.
- Re-define aversion to c-party risk: Z(x) where x is % of bank's insurers that fail. Z' > 0, Z'' > 0, Z(0) = 0.

Lemma

The bank will insure with as many insurers as possible.

Proposition

There exists a separating equilibrium when the insurance market is non-exclusive.

- The CCP becomes the buyer to every seller, and the seller to every buyer.
- Dodd-Frank Bill in U.S., EMIR in Europe.
- CCP requires capital up front, and can force transfers ex-post. CCP pools counterparty risk. Basically, a mutual insurer.
- Pirrong (2009) reports that RM for CCP is mainly on underlying asset, and not counterparty risk.
 - Therefore, differential pricing not strong based on insurer quality.

- The CCP becomes the buyer to every seller, and the seller to every buyer.
- Dodd-Frank Bill in U.S., EMIR in Europe.
- CCP requires capital up front, and can force transfers ex-post. CCP pools counterparty risk. Basically, a mutual insurer.
- Pirrong (2009) reports that RM for CCP is mainly on underlying asset, and not counterparty risk.
 - Therefore, differential pricing not strong based on insurer quality.

- The CCP becomes the buyer to every seller, and the seller to every buyer.
- Dodd-Frank Bill in U.S., EMIR in Europe.
- CCP requires capital up front, and can force transfers ex-post. CCP pools counterparty risk. Basically, a mutual insurer.
- Pirrong (2009) reports that RM for CCP is mainly on underlying asset, and not counterparty risk.
 - Therefore, differential pricing not strong based on insurer quality.

- The CCP becomes the buyer to every seller, and the seller to every buyer.
- Dodd-Frank Bill in U.S., EMIR in Europe.
- CCP requires capital up front, and can force transfers ex-post. CCP pools counterparty risk. Basically, a mutual insurer.
- Pirrong (2009) reports that RM for CCP is mainly on underlying asset, and not counterparty risk.
 - Therefore, differential pricing not strong based on insurer quality.

Central Clearing Counterparties

- Assume there are lots of banks insuring with both insurer types.
- Consider very simple CCP function: every seller must fail before the CCP fails

Proposition

In the presence of a CCP, the bad insures will dominate the market and push the good insurers out.

Central Clearing Counterparties

- Assume there are lots of banks insuring with both insurer types.
- Consider very simple CCP function: every seller must fail before the CCP fails

Proposition

In the presence of a CCP, the bad insures will dominate the market and push the good insurers out.

Conclusion

- We demonstrated the pervasiveness of counterparty risk in these markets by updating the traditional insurance economics literature.
- A policy to remove speculators can cause market counterparty risk to increase.
- CCPs can cause players to choose lower quality counterparties.

Conclusion

- We demonstrated the pervasiveness of counterparty risk in these markets by updating the traditional insurance economics literature.
- A policy to remove speculators can cause market counterparty risk to increase.
- CCPs can cause players to choose lower quality counterparties.

Conclusion

- We demonstrated the pervasiveness of counterparty risk in these markets by updating the traditional insurance economics literature.
- A policy to remove speculators can cause market counterparty risk to increase.
- CCPs can cause players to choose lower quality counterparties.