Should Derivatives be Senior?

Patrick Bolton and Martin Oehmke

June 9-10, 2011 Fourth Annual Paul Woolley Center Conference – Financial Markets Group – London School of Economics Derivatives enjoy **super-seniority** in bankruptcy:

- not subject to automatic stay
- netting, collateral, and closeout rights

 \Rightarrow To the extent that net exposure is collateralized, derivative counterparties get paid before anyone else...

But why should/shouldn't derivatives be senior?

Answers often vague:

- systemic risk (Edwards and Morrison 2005; Bliss and Kaufman 2006)
- monitoring incentives for creditors (Roe 2010)
- cost of hedging

イロト イポト イヨト イヨト 二日

Role of derivatives in demise of Lehman

"This caused a massive destruction of value." Harvey Miller (2009)

Discussion of amending bankruptcy treatment of derivatives around Dodd-Frank

Ex-ante distortions through senior derivatives

"It's plausible to wonder whether Bear's financing counterparties would have so heavily supported Bear's short-term repo financings were they unable to enjoy the Code's advantages." Mark Roe (2010)

イロト イポト イヨト イヨト

Central insights:

Derivatives serve a valuable role as risk management tools, BUT

- senior derivatives raise overall cost of hedging
- estimation series is series of derivatives and lead to excessively large derivatives positions/markets

Why? Seniority for derivatives dilutes existing debtholders

- $\bullet\,$ Increases cost of debt $\Rightarrow\,$ firm has to take larger derivative position to hedge
- Firm may have an incentive to increase derivative exposure beyond efficient level

・ 何 ト ・ ヨ ト ・ ヨ ト

The Model

Three periods: t = 0, 1, 2

Risk-neutral firm has investment project:

- investment at t = 0:
- cash flows at t = 1: $\{C_1^H, C_1^L\}$ with prob $\{\theta, 1 \theta\}$
- cash flows at t = 2: C_2

Project can be liquidated at t = 1 for $L = 0 < C_2$

Liquidation value at t = 2 normalized to zero

イロト イ理ト イヨト イヨト

Firm finances project using **debt**

single risk-neutral creditor

Firm faces limited commitment à la Hart and Moore

- at t = 1 only minimum cash flow C_1^L verifiable
- ullet borrower can divert $C_1^H-C_1^L$ at t=1
- C_2 not pledgeable

Debt contract specifies **contractual repayment** R at t = 1

- if firm repays R, has right to continue and collect C_2
- otherwise creditor can liquidate firm

Benchmark: The Model without Derivatives

If C₁ = C₁^L firm has no option but to default
If C₁ = C₁^H firm repays if *IC* satisfied (*R* not too high)

Firm can finance project as long as:

$$F \leq C_1^L + \theta C_2$$

Social surplus:

$$\theta\left(C_{1}^{H}+C_{2}
ight)+\left(1- heta
ight)C_{1}^{L}-F$$

Limited commitment leads to inefficiency:

- early termination after C_1^L
- ullet expected surplus loss of $(1-\theta)\mathit{C}_2$

Introducing Derivatives

Derivative contract:

- specifies payoff contingent on realization of a verifiable random variable $Z \in \{Z^H, Z^L\}$
- Z is correlated with the firm's cash flow risk
- chosen after debt is in place (and R has been set)

Interpretation of Z:

- asset price
- a financial index

Payoffs of derivative:

- protection seller pays X when $Z = Z^L$
- firm pays fair premium x when $Z = Z^H$

イロト 人間ト イヨト イヨト

Using the Derivative to Hedge Cash Flow Risk

• Derivative pays off X with probability:

$$Pr[Z=Z^L]=1-p=1-\theta$$

• Usefulness in hedging determined by correlation to cash flow:

$$\Pr\left[Z=Z^L|C_1=C_1^L\right]=\gamma$$

 $\gamma=1$ means that derivative is a perfect hedge (no basis risk)

Counterparty to derivative (protection seller) incurs hedging cost

$$ho(X)
ho'(X) > 0, \
ho''(X) \ge 0$$

- < 🗇 > < E > < E >

Equilibrium: Senior Derivatives

To eliminate default, with probability $(1 - \theta)\gamma$, need to set:

$$X = R - C_L^1$$

• R determined by creditor breakeven condition:

$$\left[heta + \left(1 - heta
ight) \gamma
ight] extsf{R} + \left(1 - heta
ight) \left(1 - \gamma
ight) \left(extsf{C}_1^{ extsf{L}} - extsf{x}
ight) = extsf{F}$$

• x determined by derivative counterparty breakeven condition:

$$x\theta = X\left(1-\theta\right) + \delta X$$

Increase in surplus:

$$(1-\theta)\gamma C_2 - \delta X$$

イロト イ理ト イヨト イヨト

Equilibrium: Junior Derivatives

To eliminate default, with probability $(1 - \theta)\gamma$, need to set:

$$X^S = R^S - C_L^1$$

• R^S determined by creditor breakeven condition:

$$\left[\theta + (1-\theta)\gamma\right]R^{S} + (1-\theta)\left(1-\gamma\right)C_{1}^{L} = F$$

• x^{S} determined by derivative counterparty breakeven condition:

$$x^{S}[heta-(1- heta)(1-\gamma)]=(1- heta)X^{S}+\delta X^{S}$$

Increase in surplus:

$$(1-\theta)\gamma C_2 - \delta X^S$$

Key Point: Senior Derivatives Raise Cost of Debt

Face value of debt is lower when debt is senior:

$$R^{S} \leq R$$

$$\Leftrightarrow$$
$$R^{S} - C_{1}^{L} \leq R - C_{1}^{L}$$

- Required derivative position is lower when debt senior
- ullet This is more efficient because of deadweight cost of hedging δ

Difference in surplus:

$$\delta(R - R^{S}) = \delta \frac{(1 - \gamma) (1 - \theta) (1 - \theta + \delta)}{[\theta + \gamma (1 - \theta)] [\theta - (1 + \delta) (1 - \gamma) (1 - \theta)]} \ge 0$$

▲圖▶ ▲ 圖▶ ▲ 圖▶ …

Result extends to partial collateralization:

- $\overline{x} \leq x$ is collateralized and senior
- remaining claim of derivative counterparty is junior

Main point remains:

Surplus created by derivative contract decreasing in level or collateralization

Same intuition as before:

- $R(\overline{x})$ increasing in \overline{x}
- required derivative position increases in collateralization

< 回 ト < 三 ト < 三 ト

Default due to derivative losses:

- overall payment $R(\overline{x}) + x(\overline{x})$ is increasing in \overline{x}
- more collateralization makes it less likely that firm can meet payment obligation in high state, where losses on derivative can cause default

Excessively large derivative positions:

- when derivative senior, firm may take excessively large derivative positions
- essentially speculating at expense of creditors
- No such incentive when derivatives are junior

- 4 同 6 4 日 6 4 日 6

Model of seniority of derivatives in simple limited commitment CF model

Findings:

• Derivatives are a value-enhancing hedging tools

BUT

Super-seniority for derivatives:

- reduces surplus by raising firm's cost of debt
- may lead to excessively large derivative positions

Time to re-think special treatment of derivatives?

- 4 目 ト - 4 日 ト - 4 日 ト