Learning from Prices, Liquidity Spillovers, and Market Segmentation

Giovanni Cespa and Thierry Foucault

Elias Albagli, USC Marshall

June 10, 2011

GIOVANNI Cespa and Inlerr Learning from Prices, Liquidity Spillovers, and Market

Image: A math a math

- Overview
- Key Contribution
- Robustness

ヘロン ヘロン ヘヨン ヘヨン

• 2 periods. 2 interdependent risky assets

$$\begin{split} v_D &= \delta_D + d_D \cdot \delta_F + \eta \\ v_F &= d_F \cdot \delta_D + \delta_F + \nu \\ d_i: \text{ loading of asset } j \text{ on asset's } -j \text{ principal component} \end{split}$$

- 3 types of traders in each market
 - Uninformed traders:
 - · CARA utility; observe own asset's principal component and price

$$\mathcal{F}_j^u = \{\delta_j, p_j\}$$

- Informed traders (pricewatchers): fraction μ_j
 - · CARA utility; observe own asset's principal component and both prices

$$\mathcal{F}_j^u = \{\delta_j, p_j; p_{-j}\}$$

- Noise traders: exogenous supply u_j
- Payoff components + noise trading: normal distributions

Proposition 2: With limited attention ($\mu_i \leq 1$), there exists a noisy REE of the type

$$p_j = \delta_j + B_j u_j + A_j \delta_{-j} + C_j u_{-j}; \ (j = D, F)$$

- Informational content of prices:
 - Pricewatchers in market j extract info about δ_{-j} from p_{-j}
 - $w_{-j} = \delta_{-j} + B_{-j}u_{-j}$
 - They know how uninformed and pricewatchers trade
 - Uninformed in market j extract less precise info about δ_{-i} from p_i
 - $\hat{w}_j = B_j u_j + A_j \delta_{-j} + C_j u_{-j}$
 - They don't know how pricewatchers trade

イロン イ部ン イヨン イヨ

- Key mechanism: cross-price informational interdependence
 - Informativeness of price p_j (about δ_j) affects information of agents in market -j
 - This affects their trading intensities and price informativeness of p-j
 - ...which affects trading and price informativeness in market j even further
- Liquidity: price effects of noise trading (market depth)
 - Through price informativeness, liquidity across markets is interdependent

Amplification: liquidity spillovers

- Liquidity is Fragile (large κ): small drops in risk tolerance may sharply reduce liquidity
- Multiple equilibria can arise: low/high price informativeness and liquidity in both markets

2 Liquidity spillovers can be negative: opposing effects

- Uncertainty: more informative p_{-j} reduces uncertainty of all agents in j
 - · Both pricewatchers and uninformed more willing to absorbe noise trading
- Adverse selection: more informative p_{-j} enhances informational advantage of pricewatchers
 - Uninformed less willing to absorbe noise trading
- With endogenous info acquisition: information complementarities
 - · An increase in fraction of pricewatchers may increase incentives to become one

< ロ > < 回 > < 回 > < 回 > < 回</p>

Key Contribution: spillovers through price informativeness

- Many have stressed role of risk tolerance/wealth effects in the comovement of liquidity
 - Kyle and Xiong (2001); Gromb and Vayanos (2002); Brunnermeier and Pedersen (2009)
- But cross market liquidity contagion through informational links seems new
 - This distinction can be important empirically
 - imagine the model with N interdependent securities!
 - Market disruptions can affect other markets where dealers don't appear funding constrained
 - · It can also matter for policy implication regarding public liquidity provision
- This insight should be the main punchline
 - · Perhaps document cases during 2008 crisis where this mechanism seems plausible
 - Ex: many hedge fund strategies were simultaneously hit in August 2007 and September 2008
 - Very challenging though: informational theories are hard to test!
- Low hanging fruit suggestion: add + supply and talk about risk premium

A B A B A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

- Let's consider different informational assumptions
 - Uninformed traders: observe both prices
 - $\mathcal{F}_{j}^{u} = \{\delta_{j}, p_{j}; p_{-j}\}$
 - Informed traders: observe in addition a signal of δ_{-j}
 - $\mathcal{F}_{i}^{u} = \{\delta_{j}, p_{j}; s_{-j}, p_{-j}\}, \text{ with } s_{-j} = \delta_{-j} + \epsilon_{-j}$
- This specification is closer to traditional REE setups
 - Assumption of inability/cost of observing other prices OK for high trading frequency
 - Probably less satisfactory for modeling trading choices over weeks/months/quarters
- I conjecture that in such a (plausible) environment:
 - Price informativeness and liquidity still interconnected (good!), but..
 - Spillovers can only be positive
 - 3 Information acquisition is no longer complementary (i.e; Grossman and Stiglitz (1980) holds)

・ロト ・回ト ・ヨト ・ヨ

Uninformed demands:
$$X_j^{\mu} = \frac{\mathbb{E}[v_j | \delta_j, p_j] - p_j}{\gamma_j \mathbb{V}[v_j | \delta_j, p_j]}$$

- Uncertainty effect (denominator):
 - More informative p_{-i} makes pricewatchers in j trade more aggressively
 - p_j becomes more informative about δ_{-j} : $\mathbb{V}[v_j | \delta_j, p_j]$ falls
- Adverse selection effect (numerator):
 - More informative p_j makes $\mathbb{E}[v_j | \delta_j, p_j]$ and p_j move closer together
 - · Uninformed assign more probability to price movements driven by informed trading
 - ... and become less willing to "make the market" (absorb exogenous demand)
- A negative spillover occurs when uncertainty effect is weaker
 - Low fraction of informed traders (so reduction in uncertainty is low)
 - Risk tolerance is already pretty high (so mg effect on denominator is low)

A B A B A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

- In the modified framework, this no longer holds
 - Uninformed demands: $X_j^u = \frac{\mathbb{E}[v_j | \delta_j, p_j, p_{-j}] p_j}{\gamma_j \mathbb{V}[v_j | \delta_j, p_j, p_{-j}]}$
 - More informative p_{-i} reduces the informational advantage of the informed
 - Uncertainty and adverse selection are alleviated

イロト イヨト イヨト イヨ

- Modified framework also matters for complementarity of information
 - More informative p_{-j} : higher value of **pubic information**
 - This should reduce the benefit of becoming informed in market *j* (purchase private signals)
- Actually, this could reduce the multiplier κ
 - More informative p_{-i} induces less investment in private info
 - · Which would attenuate the surge in price informativeness across markets
 - Would multiplicity still emerge? Maybe, maybe not..

- Illiquidity can spread through inter-market informational linkages
 - ✓ New insight in REE literature
 - ✓ Potentially of first-order relevance
- Central insight robust to alternative information environments
 - But some results may change under more standard REE assumptions