INTRODUCTION	Model	Equilibrium	Predictions	CONCLUSION
0000	00000	00000	000	0

The Industrial Organization of Money Management

Simon Gervais Duke University

Günter Strobl University of North Carolina

7 June 2012

London School of Economics - Paul Woolley Centre Conference - 7 June 2012

INTRODUCTION	Model	Equilibrium	Predictions	Conclusion
	00000	00000	000	0
-				

BACKGROUND

- Key observations about money management (MM) industry.
 - Different forms of money management: mutual funds, hedge funds, VC/PE firms, etc.
 - Common tools: financial securities (and potentially voice).
 - Common objective: generate returns for investors.

INTRODUCTION	Model	Equilibrium	Predictions	Conclusion
0000	00000	00000	000	0

BACKGROUND

- Key observations about money management (MM) industry.
 - Different forms of money management: mutual funds, hedge funds, VC/PE firms, etc.
 - Common tools: financial securities (and potentially voice).
 - Common objective: generate returns for investors.
- Key questions for a potential money manager.
 - What is the optimal form of money management to adopt?
 - How do I benefit the most from my set (or lack) of investment skills?

INTRODUCTION	Model	Equilibrium	Predictions	Conclusion
	00000	00000	000	0

BACKGROUND

- Key observations about money management (MM) industry.
 - Different forms of money management: mutual funds, hedge funds, VC/PE firms, etc.
 - Common tools: financial securities (and potentially voice).
 - Common objective: generate returns for investors.
- Key questions for a potential money manager.
 - What is the optimal form of money management to adopt?
 - How do I benefit the most from my set (or lack) of investment skills?
- This paper.
 - Choice of MM form \approx Signal about skills.
 - Question: who chooses what organizational form?

INTRODUCTION	Model	Equilibrium	Predictions	CONCLUSION
0000	00000	00000	000	0

OVERVIEW OF THE PAPER

- Main assumption.
 - Forms of MM indexed by (costly) transparency.
 - Examples.
 - Mutual funds more transparent than hedge funds.
 - Some hedge funds divulge their strategies to potential investors more than others.
 - Costs: monitoring, reporting, fund family, strategy leaks, etc.

INTRODUCTION	Model	Equilibrium	Predictions	CONCLUSION
0000	00000	00000	000	0

OVERVIEW OF THE PAPER

- Main assumption.
 - Forms of MM indexed by (costly) transparency.
 - Examples.
 - Mutual funds more transparent than hedge funds.
 - Some hedge funds divulge their strategies to potential investors more than others.
 - Costs: monitoring, reporting, fund family, strategy leaks, etc.
- Main result.
 - High-skill and low-skill managers in opaque funds.
 - Medium-skill managers in transparent funds.

INTRODUCTION	Model	Equilibrium	Predictions	CONCLUSION
0000	00000	00000	000	0

OVERVIEW OF THE PAPER

- Main assumption.
 - Forms of MM indexed by (costly) transparency.
 - Examples.
 - Mutual funds more transparent than hedge funds.
 - Some hedge funds divulge their strategies to potential investors more than others.
 - Costs: monitoring, reporting, fund family, strategy leaks, etc.
- Main result.
 - High-skill and low-skill managers in opaque funds.
 - Medium-skill managers in transparent funds.
- Intuition.
 - High skill: "My performance will speak for itself."
 - Medium skill: "My performance may make me look unskilled, so I will incur the cost to separate from the low-skilled with a transparent fund."

INTRODUCTION	Model	Equilibrium	Predictions	CONCLUSION
0000	00000	00000	000	0

LITERATURE

- Signaling in principal-agent models of MM.
 - Risky strategies: Huberman & Kandel (1993), Huddart (1999).
 - Risky compensation: Das & Sundaram (2002).
 - Open-end mutual fund: Stein (2005).
- Job-market signaling.
 - Canonical model: Spence (1973).
 - Separating equilibrium.
 - Key assumption: cheaper for skilled to signal.
 - Grades: Daley & Green (2011), Feltovich et al. (2002).
 - Pooling when grade is informative.
 - Partial-pooling when medium type can't fully rely on grade.
- Modeling technology.
 - Berk & Green (2004).
 - High $r_t \to \Pr\{\text{MM skilled}\} \uparrow \to \text{Capital flows} \to \mathbb{E}[r_{t+1}] = 0.$

Introduction 0000	Model • 0 0 0 0	Equilibrium 00000	Predictions 000	Conclusion o
Model –	Money N	ANAGERS		
		(h. proł	λ_{l}	

• Risk-neutral, 3 types: $\tilde{\tau} = \begin{cases} n, & \text{prob. } \lambda_h \\ m, & \text{prob. } \lambda_m \\ \ell, & \text{prob. } \lambda_\ell \end{cases}$

$$\lambda_h + \lambda_m + \lambda_\ell = 1$$

0000 0000 0000 000 0	INTRODUCTION	MODEL	Equilibrium	Predictions	CONCLUSION
	0000	00000	00000	000	0

• Risk-neutral, 3 types: $\tilde{\tau} = \begin{cases} h, \text{ prob. } \lambda_h \\ m, \text{ prob. } \lambda_m \\ \ell, \text{ prob. } \lambda_\ell \end{cases}$ $\lambda_h + \lambda_m + \lambda_\ell = 1$

• Performance (excess return) in period $n \in \{1, ..., N\}$: $\tilde{r}_n(\tilde{\tau})$.

• Low types:

$$\tilde{r}_{n}(\ell) = \begin{cases} r_{G}, \text{ prob. } p_{G} & p_{G} + p_{A} + p_{B} = 1 \\ r_{A}, \text{ prob. } p_{A} & r_{G} > r_{A} > r_{B} \\ r_{B}, \text{ prob. } p_{B} & \mu_{\ell} \equiv p_{G}r_{G} + p_{A}r_{A} + p_{B}r_{B} = 0 \end{cases}$$

0000 •0000 0000 000 0	INTRODUCTION	MODEL	Equilibrium	Predictions	CONCLUSION
	0000	0000	00000	000	0

• Risk-neutral, 3 types: $\tilde{\tau} = \begin{cases} h, \text{ prob. } \lambda_h \\ m, \text{ prob. } \lambda_m \\ \ell, \text{ prob. } \lambda_\ell \end{cases}$ $\lambda_h + \lambda_m + \lambda_\ell = 1$

• Performance (excess return) in period $n \in \{1, \ldots, N\}$: $\tilde{r}_n(\tilde{\tau})$.

• Low types:

$$\tilde{r}_n(\ell) = \begin{cases} r_{\rm G}, & \text{prob. } p_{\rm G} \\ r_{\rm A}, & \text{prob. } p_{\rm A} \\ r_{\rm B}, & \text{prob. } p_{\rm B} \end{cases}$$

$$p_{\rm G} + p_{\rm A} + p_{\rm B} = 1$$
$$r_{\rm G} > r_{\rm A} > r_{\rm B}$$
$$\boldsymbol{\iota}_{\boldsymbol{\ell}} \equiv p_{\rm G} r_{\rm G} + p_{\rm A} r_{\rm A} + p_{\rm B} r_{\rm B} = \boldsymbol{0}$$

$$\tilde{r}_n(m) = \begin{cases} r_{\rm G}, \text{ prob.} \frac{p_{\rm G}}{p_{\rm G} + p_{\rm A}} \\ r_{\rm A}, \text{ prob.} \frac{p_{\rm A}}{p_{\rm G} + p_{\rm A}} \end{cases} \quad \boldsymbol{\mu}_m \equiv \frac{p_{\rm G} r_{\rm G} + p_{\rm A} r_{\rm A}}{p_{\rm G} + p_{\rm A}} > \mathbf{0}$$

	Equilibrium		Conclusion
0000 0000 0	00000	000	0

• Risk-neutral, 3 types: $\tilde{\tau} = \begin{cases} h, \text{ prob. } \lambda_h \\ m, \text{ prob. } \lambda_m \\ \ell, \text{ prob. } \lambda_\ell \end{cases}$ $\lambda_h + \lambda_m + \lambda_\ell = 1$

• Performance (excess return) in period $n \in \{1, ..., N\}$: $\tilde{r}_n(\tilde{\tau})$.

• Low types:

$$\tilde{r}_n(\ell) = \begin{cases} r_{\rm G}, & \text{prob. } p_{\rm G} \\ r_{\rm A}, & \text{prob. } p_{\rm A} \\ r_{\rm B}, & \text{prob. } p_{\rm B} \end{cases}$$

$$p_{\rm G} + p_{\rm A} + p_{\rm B} = 1$$

$$r_{\rm G} > r_{\rm A} > r_{\rm B}$$

$$\boldsymbol{\iota}_{\boldsymbol{\ell}} \equiv p_{\rm G} r_{\rm G} + p_{\rm A} r_{\rm A} + p_{\rm B} r_{\rm B} = \boldsymbol{0}$$

$$\tilde{r}_n(m) = \begin{cases} r_{\rm G}, \text{ prob. } \frac{p_{\rm G}}{p_{\rm G} + p_{\rm A}} \\ r_{\rm A}, \text{ prob. } \frac{p_{\rm A}}{p_{\rm G} + p_{\rm A}} \end{cases} \quad \mu_m \equiv \frac{p_{\rm G}r_{\rm G} + p_{\rm A}r_{\rm A}}{p_{\rm G} + p_{\rm A}} > \mathbf{0}$$
High types:

 $\tilde{r}_n(h) = r_{\rm G} \equiv \mu_h > \mu_m.$

INTRODUCTION	Model	Equilibrium	Predictions	CONCLUSION
0000	0000	00000	000	0

- Risk-neutral, 3 types: $\tilde{\tau} = \begin{cases} h, \text{ prob. } \lambda_h \\ m, \text{ prob. } \lambda_m \\ \ell, \text{ prob. } \lambda_\ell \end{cases}$ $\lambda_h + \lambda_m + \lambda_\ell = 1$
- Performance (excess return) in period $n \in \{1, ..., N\}$: $\tilde{r}_n(\tilde{\tau})$.
 - Low types:
 - $\tilde{r}_{n}(\ell) = \begin{cases} r_{G}, \text{ prob. } p_{G} & p_{G} + p_{A} + p_{B} = 1 \\ r_{A}, \text{ prob. } p_{A} & r_{G} > r_{A} > r_{B} \\ r_{B}, \text{ prob. } p_{B} & \mu_{\ell} \equiv p_{G}r_{G} + p_{A}r_{A} + p_{B}r_{B} = \mathbf{0} \end{cases}$
 - Medium types:

$$\tilde{r}_n(m) = \begin{cases} r_{\rm G}, \text{ prob.} \frac{p_{\rm G}}{p_{\rm G} + p_{\rm A}} \\ r_{\rm A}, \text{ prob.} \frac{p_{\rm A}}{p_{\rm G} + p_{\rm A}} \end{cases} \quad \boldsymbol{\mu}_m \equiv \frac{p_{\rm G} r_{\rm G} + p_{\rm A} r_{\rm A}}{p_{\rm G} + p_{\rm A}} > \mathbf{0}$$

• High types:

 $\tilde{r}_n(h) = r_c \equiv \mu_h > \mu_m$

MLRP important; above dist. useful (updating, 1st-passage time).

INTRODUCTION	Model	Equilibrium	Predictions	CONCLUSION
0000	0000	00000	000	0

MODEL – TRANSPARENCY

- Funds indexed by transparency $t \in [0, 1]$.
 - Chosen and announced by MM at the outset.
 - Cannot be changed.
 - Example: mutual fund (t > 0) vs. hedge fund (t = 0).

INTRODUCTION	Model	Equilibrium	Predictions	CONCLUSION
0000	0000	00000	000	0

MODEL – TRANSPARENCY

- Funds indexed by transparency $t \in [0, 1]$.
 - Chosen and announced by MM at the outset.
 - Cannot be changed.
 - Example: mutual fund (t > 0) vs. hedge fund (t = 0).

• Eliminates some "dart-shooters": $\tilde{i}_t \in \{0, 1\}$ observed at outset.

$$\Pr\{\tilde{i}_t = 0 \mid \tilde{\tau} = \ell\} = t = 1 - \Pr\{\tilde{i}_t = 1 \mid \tilde{\tau} = \ell\} \\ \Pr\{\tilde{i}_t = 1 \mid \tilde{\tau} = m\} = \Pr\{\tilde{i}_t = 1 \mid \tilde{\tau} = h\} = 1$$

INTRODUCTION	Model	Equilibrium	Predictions	CONCLUSION
0000	00000	00000	000	0

MODEL – TRANSPARENCY

- Funds indexed by transparency $t \in [0, 1]$.
 - Chosen and announced by MM at the outset.
 - Cannot be changed.
 - Example: mutual fund (t > 0) vs. hedge fund (t = 0).
- Eliminates some "dart-shooters": $\tilde{i}_t \in \{0, 1\}$ observed at outset.

$$\Pr\{\tilde{i}_t = 0 \mid \tilde{\tau} = \ell\} = t = 1 - \Pr\{\tilde{i}_t = 1 \mid \tilde{\tau} = \ell\} \\ \Pr\{\tilde{i}_t = 1 \mid \tilde{\tau} = m\} = \Pr\{\tilde{i}_t = 1 \mid \tilde{\tau} = h\} = 1$$

- Costly.
 - Adds to costs to manage/run the fund (Berk & Green, 2004).
 - Per-dollar-managed costs in period $n: k_t A_n$.
 - *A_n*: assets under management in *n*. [endogenous]
 - $k_0 > 0$, k_t strictly increasing in t. [exogenous]
 - k_t independent of MM's skill, but skill will affect total costs through A_n .

Introduction 0000	MODEL 00000	Equilibrium 00000	Predictions 000	Conclusion 0

MODEL – COMPENSATION

• Per-\$-invested payment $w_n > 0$ to manage the fund in period *n*.

- Announced by MM at the beginning of each period *n*.
- Choose *w_n* to maximize period-*n* compensation (later).
- Total compensation in period *n*: *w*_{*n*}*A*_{*n*}.

INTRODUCTION	MODEL	Equilibrium	Predictions	CONCLUSION
0000	0000	00000	000	0

MODEL – COMPENSATION

- Per-\$-invested payment $w_n > 0$ to manage the fund in period *n*.
 - Announced by MM at the beginning of each period *n*.
 - Choose *w_n* to maximize period-*n* compensation (later).
 - Total compensation in period *n*: *w*_{*n*}*A*_{*n*}.
- Remarks.
 - Could be made contingent on period-*n* performance.
 - Implications about risk of compensation as a function of *t*.
 - Useful for moral hazard issues.
 - Cannot lock investors into a multiperiod state-contingent contract.

INTRODUCTION	MODEL	Equilibrium	Predictions	CONCLUSION
0000	00000	00000	000	0

MODEL – INVESTORS

- Information.
 - Outset: observe *t* and $\tilde{\imath}_t$.
 - Start of period *n*: observe $\{\tilde{r}_1(\tilde{\tau}), \ldots, \tilde{r}_{n-1}(\tilde{\tau})\}$ and w_n .
 - Update rationally about type $\tilde{\tau}$.

INTRODUCTION	MODEL	Equilibrium	Predictions	CONCLUSION
0000	00000	00000	000	0

MODEL – INVESTORS

- Information.
 - Outset: observe *t* and $\tilde{\imath}_t$.
 - Start of period *n*: observe $\{\tilde{r}_1(\tilde{\tau}), \ldots, \tilde{r}_{n-1}(\tilde{\tau})\}$ and w_n .
 - Update rationally about type $\tilde{\tau}$.
- Decide on how much money A_n to invest.
 - Profits in period *n*: $\tilde{\pi}_n \equiv A_n [\tilde{r}_n(\tilde{\tau}) w_n k_t A_n]$.
 - Competition (and scarcity of MM talent):

$$\mathbf{E}[\tilde{\pi}_n \mid \mathcal{I}_n] = 0 \quad \Rightarrow \quad A_n = \frac{\mathbf{E}[\tilde{r}_n(\tilde{\tau}) \mid \mathcal{I}_n] - w_n}{k_t}.$$

INTRODUCTION	MODEL	Equilibrium	Predictions	CONCLUSION
0000	00000	00000	000	0

MODEL – INVESTORS

- Information.
 - Outset: observe *t* and $\tilde{\imath}_t$.
 - Start of period *n*: observe $\{\tilde{r}_1(\tilde{\tau}), \dots, \tilde{r}_{n-1}(\tilde{\tau})\}$ and w_n .
 - Update rationally about type $\tilde{\tau}$.
- Decide on how much money A_n to invest.
 - Profits in period *n*: $\tilde{\pi}_n \equiv A_n [\tilde{r}_n(\tilde{\tau}) w_n k_t A_n]$.
 - Competition (and scarcity of MM talent):

$$\mathbf{E}\big[\tilde{\pi}_n \,|\, \mathcal{I}_n\big] = 0 \quad \Rightarrow \quad A_n = \frac{\mathbf{E}\big[\tilde{r}_n(\tilde{\tau}) \,|\, \mathcal{I}_n\big] - w_n}{k_t}.$$

• Remarks.

MODEL – MM'S DECISIONS

- Transparency *t* at outset (equil. analysis later).
- Compensation w_n at the beginning of period n.

$$\max_{w_n} w_n A_n = w_n \left(\frac{\mathrm{E}\big[\tilde{r}_n(\tilde{\tau}) \mid \mathcal{I}_n\big] - w_n}{k_t} \right) \quad \Rightarrow \quad w_n = \frac{1}{2} \mathrm{E}\big[\tilde{r}_n(\tilde{\tau}) \mid \mathcal{I}_n\big]$$

MODEL – MM'S DECISIONS

- Transparency *t* at outset (equil. analysis later).
- Compensation w_n at the beginning of period n.

$$\max_{w_n} w_n A_n = w_n \left(\frac{\mathrm{E}\big[\tilde{r}_n(\tilde{\tau}) \mid \mathcal{I}_n\big] - w_n}{k_t} \right) \quad \Rightarrow \quad w_n = \frac{1}{2} \mathrm{E}\big[\tilde{r}_n(\tilde{\tau}) \mid \mathcal{I}_n\big]$$

• With this w_n in period n:

fund size:
$$A_n = \frac{1}{2k_t} \mathbb{E}[\tilde{r}_n(\tilde{\tau}) \mid \mathcal{I}_n]$$

MM comp: $u_n \equiv w_n A_n = \frac{1}{4k_t} \left(\mathbb{E}[\tilde{r}_n(\tilde{\tau}) \mid \mathcal{I}_n] \right)^2$

00000 00000 0 0000 0	INTRODUCTION	Model	Equilibrium	Predictions	CONCLUSION
	0000	00000	0000	000	0

- Pure strategy equilibrium $\{t_h, t_m, t_\ell\}$.
 - Investors update using Bayes' rule on equilibrium path.
 - MMs cannot profitably deviate.

0000 00000 0 000 0	INTRODUCTION	Model	Equilibrium	Predictions	CONCLUSION
	0000	00000	0000	000	0

- Pure strategy equilibrium $\{t_h, t_m, t_\ell\}$.
 - Investors update using Bayes' rule on equilibrium path.
 - MMs cannot profitably deviate.
- Equilibrium elimination.
 - Low type always pools.
 - Otherwise, $A_1 = A_2 = \cdots = A_N = 0$, since $\mu_\ell = 0$.
 - High type always pools.
 - No cost advantage for separating (vs. job-market signaling).
 - Medium type can always mimic (and collect high-type comp).

0000 00000 0 000 0	INTRODUCTION	Model	Equilibrium	Predictions	CONCLUSION
	0000	00000	0000	000	0

- Pure strategy equilibrium $\{t_h, t_m, t_\ell\}$.
 - Investors update using Bayes' rule on equilibrium path.
 - MMs cannot profitably deviate.
- Equilibrium elimination.
 - Low type always pools.
 - Otherwise, $A_1 = A_2 = \cdots = A_N = 0$, since $\mu_\ell = 0$.
 - High type always pools.
 - No cost advantage for separating (vs. job-market signaling).
 - Medium type can always mimic (and collect high-type comp).
- Implication: $t_h = t_\ell$. Thus, two potential equilibria.
 - Partial pooling: $\{t', t, t'\}$.
 - Pooling: $\{t, t, t\}$.

INTRODUCTION	Model	Equilibrium	Predictions	CONCLUSION
0000	00000	0000	000	0

- Pure strategy equilibrium $\{t_h, t_m, t_\ell\}$.
 - Investors update using Bayes' rule on equilibrium path.
 - MMs cannot profitably deviate.
- Equilibrium elimination.
 - Low type always pools.
 - Otherwise, $A_1 = A_2 = \cdots = A_N = 0$, since $\mu_\ell = 0$.
 - High type always pools.
 - No cost advantage for separating (vs. job-market signaling).
 - Medium type can always mimic (and collect high-type comp).
- Implication: $t_h = t_\ell$. Thus, two potential equilibria.
 - Partial pooling: $\{t', t, t'\}$.
 - Pooling: $\{t, t, t\}$.
 - *N* large (and Mailath et al., 1993, "undefeated equilibria"): partial-pooling $\{0, t, 0\}$ vs. pooling $\{0, 0, 0\}$.

INTRODUCTION	Model	Equilibrium	Predictions	CONCLUSION
0000	00000	0000	000	0

- Conjectured equilibrium.
 - *h* and ℓ in opaque fund with t = 0 (HF).
 - *m* in transparent fund with t > 0 (MF).

<u>0000</u> 00000 0€000 000 0	0000 000 0

- Conjectured equilibrium.
 - *h* and ℓ in opaque fund with t = 0 (HF).
 - *m* in transparent fund with t > 0 (MF).
- Hedge fund Updating.
 - First time that $\tilde{r}_n^{\text{HF}} < r_{\text{G}} \rightarrow \Pr\{\tilde{\tau} = \ell \mid \mathcal{I}_n\} = 1 \rightarrow \text{fund closes.}$

INTRODUCTION N	Model	EQUILIBRIUM	Predictions	CONCLUSION
0000	00000	0000	000	0

- Conjectured equilibrium.
 - *h* and ℓ in opaque fund with t = 0 (HF).
 - *m* in transparent fund with t > 0 (MF).
- Hedge fund Updating.
 - First time that $\tilde{r}_n^{\text{HF}} < r_{\text{G}} \rightarrow \Pr\{\tilde{\tau} = \ell \mid \mathcal{I}_n\} = 1 \rightarrow \text{fund closes.}$

•
$$\Pr\{\tilde{\tau} = h \mid \tilde{r}_1^{\text{HF}} = \cdots = \tilde{r}_{n-1}^{\text{HF}} = r_G\} = \frac{\lambda_h}{\lambda_h + \lambda_e p_G^{n-1}} \equiv \phi_n \nearrow 1$$

•
$$\mathbf{E}[\tilde{r}_n^{\text{HF}} | \tilde{r}_1^{\text{HF}} = \cdots = \tilde{r}_{n-1}^{\text{HF}} = r_G] = \frac{\lambda_h \mu_h}{\lambda_h + \lambda_\ell p_G^{n-1}} \equiv \bar{r}_n \nearrow \mu_h$$

INTRODUCTION	Model	Equilibrium	Predictions	CONCLUSION
0000	00000	0000	000	0

- Conjectured equilibrium.
 - *h* and ℓ in opaque fund with t = 0 (HF).
 - *m* in transparent fund with t > 0 (MF).
- Hedge fund Updating.
 - First time that $\tilde{r}_n^{\text{HF}} < r_{\text{G}} \rightarrow \Pr\{\tilde{\tau} = \ell \mid \mathcal{I}_n\} = 1 \rightarrow \text{fund closes.}$

•
$$\Pr\{\tilde{\tau} = h \mid \tilde{r}_1^{\text{HF}} = \cdots = \tilde{r}_{n-1}^{\text{HF}} = r_G\} = \frac{\lambda_h}{\lambda_h + \lambda_\ell p_G^{n-1}} \equiv \phi_n \nearrow 1$$

•
$$\operatorname{E}\left[\tilde{r}_{n}^{\operatorname{HF}} \mid \tilde{r}_{1}^{\operatorname{HF}} = \cdots = \tilde{r}_{n-1}^{\operatorname{HF}} = r_{\operatorname{G}}\right] = \frac{\lambda_{h}\mu_{h}}{\lambda_{h}+\lambda_{\ell}p_{\operatorname{G}}^{n-1}} \equiv \bar{r}_{n} \nearrow \mu_{h}$$

• Hedge Fund – MM expected utility (i.e., total compensation).

• Type *h*:
$$u_h = \frac{1}{4k_0} \left[\bar{r}_1^2 + \bar{r}_2^2 + \dots + \bar{r}_N^2 \right]$$

• Type ℓ : $u_\ell = \frac{1}{4k_0} \left[\bar{r}_1^2 + p_G \bar{r}_2^2 + \dots + p_G^{N-1} \bar{r}_N^2 \right]$

INTRODUCTION	Model	Equilibrium	Predictions	CONCLUSION
0000	00000	0000	000	0

- Recall conjectured equilibrium.
 - *h* and ℓ in opaque fund with t = 0 (HF).
 - *m* in transparent fund with t > 0 (MF).

INTRODUCTION	Model	Equilibrium	Predictions	CONCLUSION
0000	00000	0000	000	0

- Recall conjectured equilibrium.
 - *h* and ℓ in opaque fund with t = 0 (HF).
 - *m* in transparent fund with t > 0 (MF).
- Mutual fund.
 - Only type *m* in MF. No (need for) updating.
 - $\mathbf{E}[\tilde{r}_n^{\mathrm{MF}} \mid \mathcal{I}_n] = \mu_m$
 - Utility (i.e, total compensation):

$$u_m = \frac{1}{4k_t} \Big[\mu_m^2 + \mu_m^2 + \dots + \mu_m^2 \Big]$$

INTRODUCTION	Model	EQUILIBRIUM	Predictions	Conclusion
0000	00000	00000	000	0

PARTIAL-POOLING EQUILIBRIUM (DEVIATIONS?)

• Type *l*: HF vs. MF

$$\frac{1}{4k_0} \Big[\bar{r}_1^2 + p_{\rm G} \bar{r}_2^2 + \dots + p_{\rm G}^{N-1} \bar{r}_N^2 \Big] \ge (1-t) \frac{1}{4k_t} \Big[\mu_m^2 + \mu_m^2 + \dots + \mu_m^2 \Big]$$

 \hookrightarrow To separate, type *m* will choose *t* to make this an equality.

INTRODUCTION	Model	Equilibrium	Predictions	CONCLUSION
0000	00000	00000	000	0

PARTIAL-POOLING EQUILIBRIUM (DEVIATIONS?)

• Type *l*: HF vs. MF

$$\frac{1}{4k_0} \Big[\bar{r}_1^2 + p_{\rm G} \bar{r}_2^2 + \dots + p_{\rm G}^{N-1} \bar{r}_N^2 \Big] \ge (1-t) \frac{1}{4k_t} \Big[\mu_m^2 + \mu_m^2 + \dots + \mu_m^2 \Big]$$

 \hookrightarrow To separate, type *m* will choose *t* to make this an equality.

• Type *m*: MF vs. HF

$$\frac{1}{4k_t} \Big[\mu_m^2 + \mu_m^2 + \dots + \mu_m^2 \Big] \ge \frac{1}{4k_0} \Big[\bar{r}_1^2 + \frac{p_G}{p_G + p_A} \bar{r}_2^2 + \dots + \underbrace{\left(\frac{p_G}{p_G + p_A} \right)^{N-1} \bar{r}_N^2}_{\to 0 < \mu_m^2} \Big]$$

INTRODUCTION	Model	EQUILIBRIUM	Predictions	CONCLUSION
0000	00000	00000	000	0

PARTIAL-POOLING EQUILIBRIUM (DEVIATIONS?)

• Type *l*: HF vs. MF

$$\frac{1}{4k_0} \Big[\bar{r}_1^2 + p_{\rm G} \bar{r}_2^2 + \dots + p_{\rm G}^{N-1} \bar{r}_N^2 \Big] \ge (1-t) \frac{1}{4k_t} \Big[\mu_m^2 + \mu_m^2 + \dots + \mu_m^2 \Big]$$

→ To separate, type *m* will choose *t* to make this an equality.
Type *m*: MF vs. HF

$$\frac{1}{4k_t} \Big[\mu_m^2 + \mu_m^2 + \dots + \mu_m^2 \Big] \ge \frac{1}{4k_0} \Big[\bar{r}_1^2 + \frac{p_G}{p_G + p_A} \bar{r}_2^2 + \dots + \underbrace{\left(\frac{p_G}{p_G + p_A} \right)^{N-1} \bar{r}_N^2}_{\to 0 < \mu_m^2} \Big]$$

• Type *h*: HF vs. MF $\frac{1}{4k_0} \Big[\bar{r}_1^2 + \bar{r}_2^2 + \cdots + \underbrace{\bar{r}_N^2}_{\rightarrow \mu_u^2 > \mu_w^2} \Big] \ge \frac{1}{4k_t} \Big[\mu_m^2 + \mu_m^2 + \cdots + \mu_m^2 \Big]$

INTRODUCTION	Model	EQUILIBRIUM	Predictions	CONCLUSION
0000	00000	00000	000	0

PARTIAL-POOLING EQUILIBRIUM (DEVIATIONS?)

• Type *l*: HF vs. MF

$$\frac{1}{4k_0} \Big[\bar{r}_1^2 + p_{\rm G} \bar{r}_2^2 + \dots + p_{\rm G}^{N-1} \bar{r}_N^2 \Big] \ge (1-t) \frac{1}{4k_t} \Big[\mu_m^2 + \mu_m^2 + \dots + \mu_m^2 \Big]$$

→ To separate, type *m* will choose *t* to make this an equality.
Type *m*: MF vs. HF

$$\frac{1}{4k_t} \left[\mu_m^2 + \mu_m^2 + \dots + \mu_m^2 \right] \ge \frac{1}{4k_0} \left[\bar{r}_1^2 + \frac{p_G}{p_G + p_A} \bar{r}_2^2 + \dots + \underbrace{\left(\frac{p_G}{p_G + p_A} \right)^{N-1} \bar{r}_N^2}_{\to 0 < \mu_m^2} \right]$$

• Type *h*: HF vs. MF $\frac{1}{4k_0} \Big[\bar{r}_1^2 + \bar{r}_2^2 + \cdots + \underbrace{\bar{r}_N^2}_{\rightarrow \mu_m^2 > \mu_m^2} \Big] \ge \frac{1}{4k_t} \Big[\mu_m^2 + \mu_m^2 + \cdots + \mu_m^2 \Big]$

• Bottom line: P-P equilibrium $\{0, t, 0\} \exists$ if N is sufficiently large.

INTRODUCTION	Model	Equilibrium	Predictions	CONCLUSION
0000	00000	00000	000	0

POOLING EQUILIBRIUM

• A pooling equilibrium {0,0,0} also exists.

INTRODUCTION	Model	Equilibrium	Predictions	CONCLUSION
0000	00000	00000	000	0

POOLING EQUILIBRIUM

- A pooling equilibrium {0,0,0} also exists.
- Tradeoffs.
 - High type must stand out from medium type as well.
 - Prob. of being mimicked: $\frac{p_G}{p_G + p_A}$ for med type, p_G for low type.
 - Convergence to μ_h slower.
 - Medium type may look like low type.
 - Prob. of being mimicked by low type: *p*_G + *p*_A.
 - Slow convergence (especially if *p*_A is large) vs. instantaneous in partial-pooling equilibrium.
 - Medium type saves on monitoring costs (*k*₀ vs. *k*_t in P-P).

INTRODUCTION	Model	Equilibrium	Predictions	CONCLUSION
0000	00000	00000	000	0

POOLING EQUILIBRIUM

- A pooling equilibrium {0,0,0} also exists.
- Tradeoffs.
 - High type must stand out from medium type as well.
 - Prob. of being mimicked: $\frac{p_G}{p_G + p_A}$ for med type, p_G for low type.
 - Convergence to μ_h slower.
 - Medium type may look like low type.
 - Prob. of being mimicked by low type: *p*_G + *p*_A.
 - Slow convergence (especially if *p*_A is large) vs. instantaneous in partial-pooling equilibrium.
 - Medium type saves on monitoring costs (*k*₀ vs. *k*_t in P-P).
- Result: **Partial-Pooling** > **Pooling iff med-type prefers P-P**.
 - When $p_{\rm G}$ is small, and $p_{\rm A}$ is large.

PREDICTIONS – PERFORMANCE

• **Performance evaluations (cross-sectional):** (gross-return) *α*'s more dispersed in HF than MF, especially for young funds.

$$\alpha_n^{\rm HF} = \begin{cases} \mu_h > 0, \quad \text{prob. } \phi_n \\ \mu_\ell = 0, \quad \text{prob. } 1 - \phi_n \end{cases} \qquad \alpha_n^{\rm MF} = \mu_m \\ \Rightarrow \operatorname{Var}(\alpha_n^{\rm HF}) - \operatorname{Var}(\alpha_n^{\rm MF}) = \phi_n [1 - \phi_n] \mu_h > 0 \quad (\text{also } \downarrow n) \end{cases}$$

PREDICTIONS – PERFORMANCE

 Performance evaluations (cross-sectional): (gross-return) α's more dispersed in HF than MF, especially for young funds.

$$\alpha_n^{\rm HF} = \begin{cases} \mu_h > 0, \quad \text{prob. } \phi_n \\ \mu_\ell = 0, \quad \text{prob. } 1 - \phi_n \end{cases} \qquad \alpha_n^{\rm MF} = \mu_m$$
$$\Rightarrow \operatorname{Var}(\alpha_n^{\rm HF}) - \operatorname{Var}(\alpha_n^{\rm MF}) = \phi_n [1 - \phi_n] \mu_h > 0 \quad (\text{also } \downarrow n) \end{cases}$$

• **Performance over time:** Surviving HF have larger (gross-return) α 's than surviving MF of the same age.

$$\lim_{n \to \infty} \alpha_n^{\rm HF} = \mu_h > \mu_m = \lim_{n \to \infty} \alpha_n^{\rm MF}$$

PREDICTIONS – PERFORMANCE

 Performance evaluations (cross-sectional): (gross-return) α's more dispersed in HF than MF, especially for young funds.

$$\alpha_n^{\rm HF} = \begin{cases} \mu_h > 0, \quad \text{prob. } \phi_n \\ \mu_\ell = 0, \quad \text{prob. } 1 - \phi_n \end{cases} \qquad \alpha_n^{\rm MF} = \mu_m$$
$$\Rightarrow \operatorname{Var}(\alpha_n^{\rm HF}) - \operatorname{Var}(\alpha_n^{\rm MF}) = \phi_n [1 - \phi_n] \mu_h > 0 \quad (\text{also } \downarrow n) \end{cases}$$

• **Performance over time:** Surviving HF have larger (gross-return) *α*'s than surviving MF of the same age.

$$\lim_{n \to \infty} \alpha_n^{\rm HF} = \mu_h > \mu_m = \lim_{n \to \infty} \alpha_n^{\rm MF}$$

• Attrition rate (cross-sectional): HF more likely to close than MF, especially in early years.

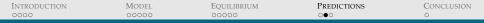
$$\Pr\{\tilde{r}_{n}^{\text{HF}} < r_{\text{G}} \mid \mathcal{I}_{n}\} = 1 - \phi_{n} > 0 = \Pr\{\tilde{r}_{n}^{\text{MF}} < r_{\text{A}} \mid \mathcal{I}_{n}\}$$

INTRODUCTION	Model	Equilibrium	Predictions	CONCLUSION
0000	00000	00000	000	0

PREDICTIONS – FUND FLOWS AND SIZE

- **Fund flows.** Steeper relationship between performance and fund flows in HF than in MF.
 - A_n^{MF} constant \rightarrow flat relation between performance and flows.

•
$$A_{n+1}^{\text{HF}} - A_n^{\text{HF}} = \begin{cases} \frac{\overline{r}_{n+1} - \overline{r}_n}{2k_0} > 0, & \text{if } \tilde{r}_n^{\text{HF}} = r_{\text{G}} \\ 0 - \frac{\overline{r}_n}{2k_0} < 0, & \text{otherwise} \end{cases}$$



PREDICTIONS – FUND FLOWS AND SIZE

- **Fund flows.** Steeper relationship between performance and fund flows in HF than in MF.
 - A_n^{MF} constant \rightarrow flat relation between performance and flows.

•
$$A_{n+1}^{\mathrm{HF}} - A_n^{\mathrm{HF}} = \begin{cases} \frac{\overline{r}_{n+1} - \overline{r}_n}{2k_0} > 0, & \text{if } \widetilde{r}_n^{\mathrm{HF}} = r_{\mathrm{G}} \\ 0 - \frac{\overline{r}_n}{2k_0} < 0, & \text{otherwise} \end{cases}$$

• **Fund size.** The disparity in size between HF and MF increases with fund age and manager tenure.

$$\bar{A}_{1}^{\text{MF}} = \dots = \bar{A}_{n}^{\text{MF}} = \frac{\mu_{m}}{2k_{t}} \text{ and } \bar{A}_{1}^{\text{HF}} < \bar{A}_{2}^{\text{HF}} < \dots < \bar{A}_{n}^{\text{HF}} = \frac{r_{n}}{2k_{0}}$$
$$\Rightarrow \bar{A}_{1}^{\text{HF}} - \bar{A}_{1}^{\text{MF}} < \bar{A}_{2}^{\text{HF}} - \bar{A}_{2}^{\text{MF}} < \dots < \bar{A}_{n}^{\text{HF}} - \bar{A}_{n}^{\text{MF}}$$

PREDICTIONS – CONTRACTS

• **MM compensation.** The disparity in MM compensation between HF and MF increases with manager tenure.

$$w_1^{\text{MF}} = w_2^{\text{MF}} = \dots = w_n^{\text{MF}} = \frac{\mu_m}{2} \text{ and } w_1^{\text{HF}} < w_2^{\text{HF}} < \dots < w_n^{\text{HF}} = \frac{r_n}{2}$$

 $\Rightarrow w_1^{\text{HF}} - w_1^{\text{MF}} < w_2^{\text{HF}} - w_2^{\text{MF}} < \dots < w_n^{\text{HF}} - w_n^{\text{MF}}$

PREDICTIONS – CONTRACTS

• **MM compensation.** The disparity in MM compensation between HF and MF increases with manager tenure.

$$w_1^{MF} = w_2^{MF} = \dots = w_n^{MF} = \frac{\mu_m}{2} \text{ and } w_1^{HF} < w_2^{HF} < \dots < w_n^{HF} = \frac{r_n}{2}$$

 $\Rightarrow w_1^{HF} - w_1^{MF} < w_2^{HF} - w_2^{MF} < \dots < w_n^{HF} - w_n^{MF}$

- Lock-up periods. Lock-up periods will tend to be longer when annual performance is a noisy signal of skill.
 - Intuitively, this reduces the probability (*p*_G) that skilled MMs are mimicked successfully.

INTRODUCTION	Model	Equilibrium	Predictions	CONCLUSION
0000	00000	00000	000	•

CONCLUSION

• Survey of hedge fund literature by Stulz (2007):

"Since hedge funds and mutual funds essentially perform the same economic function, why do they coexist?"

CONCLUSION

• Survey of hedge fund literature by Stulz (2007):

"Since hedge funds and mutual funds essentially perform the same economic function, why do they coexist?"

- This paper: organizational form is a key ingredient in efficient talent discovery.
 - Opaque: no monitoring costs, sort on performance.
 - Transparent: costly monitoring/reporting, sort on monitoring.

CONCLUSION

• Survey of hedge fund literature by Stulz (2007):

"Since hedge funds and mutual funds essentially perform the same economic function, why do they coexist?"

- This paper: organizational form is a key ingredient in efficient talent discovery.
 - Opaque: no monitoring costs, sort on performance.
 - Transparent: costly monitoring/reporting, sort on monitoring.
- Extensions.
 - When should MM switch from MF to HF?
 - Regulation of HF.
 - Can slow down talent discovery.
 - Can incentivize talent to do something else.