Financial Intermediary Capital

Adriano A. Rampini S. Viswanathan Duke University

Duke University

Session on "Asset prices and intermediary capital" 5th Annual Paul Woolley Centre Conference, London School of Economics

> London, UK June 7, 2012

Needed: A Theory of Financial Intermediary Capital Question

• How does intermediary capital affect financing & macroeconomic activity?

Needed

• A dynamic theory of financial intermediary capital

Motivation

• Recent events

Theory of Financial Intermediary Capital

Our theory

- Financial intermediaries are collateralization specialists
 - Intermediaries better able to collateralize claims than households
- Financial intermediary capital
 - ... required to finance additional collateralized amount

Theory of Financial Intermediary Capital (Cont'd)

Implications

- Two state variables
 - Firm and intermediary net worth jointly determine dynamics of firm investment, financing, and loan spreads
- Relatively slow accumulation of intermediary net worth
- Compelling dynamics
 - When corporate sector is very constrained,
 - $_{\circ}$... intermediaries "hold cash" at low interest rates
 - When intermediaries are very constrained,

 $_{\circ}$... firms' investment stays low even as firms pay dividends

Literature: Financial Intermediary Capital

Models of financial intermediaries

• Intermediary capital

- \bullet Holmström/Tirole (1997) need capital at stake to commit to monitor
- Diamond/Rajan (2000), Diamond (2007) ability to enforce claims due to better monitoring
- Other theories of financial intermediation no role for capital
 - Liquidity provision theories Diamond/Dybvig (1983)
 - Diversified delegated monitoring theories Diamond (1984), Ramakrishnan/Thakor (1984), Williamson (1986)
 - Coalition based theories Townsend (1978), Boyd/Prescott (1986)

Literature: Financial Intermediary Capital (Cont'd)

Dynamic models with net worth effects

- Firm net worth
 - Bernanke/Gertler (1989), Kiyotaki/Moore (1997a)
- Intermediary net worth
 - Gertler/Kiyotaki (2010), Brunnermeier/Sannikov (2010)
- Firm and intermediary net worth
 - This paper

Model

Environment

- Discrete time
- Infinite horizon
- 3 types of agents
 - Households
 - Financial intermediaries
 - Firms

Model: Households

Households

- \bullet Risk neutral, discount at $R^{-1} > \beta$ where firms' discount rate is β
- Large endowment of funds (and collateral) in all dates and states

Model: Collateral Constraints

Financing subject to collateral constraints

• Collateral constraints

- Complete markets in one period ahead Arrow securities
 subject to collateral constraints
- Firms can issue state-contingent promises
 - $_{\circ}$... up to fraction θ of resale value of capital to households
 - $_{\circ}$... up to fraction θ_i of resale value of capital to intermediaries
- Related: Kiyotaki/Moore (1997a); but two types of lenders and allow risk management

• Limited enforcement

• Rampini/Viswanathan (2010, 2012) derive such collateral constraints from limited enforcement without exclusion - different from Kehoe/Levine (1993)

Model: Financial Intermediaries

Financial intermediaries

- Risk neutral, discount at $\beta_i \in (\beta, R^{-1})$
- Collateralization specialists
 - Ability to seize up to fraction $\theta_i > \theta$ of (resale value of) collateral

• Refinancing collateralized loans

- Idea: Intermediaries can borrow against their (collateralized) loans
 ... but only to extent households can collateralize assets backing loans.
- Households can collateralize up to θ of collateral backing loans ("structures")
- Intermediaries need to finance $\theta_i \theta$ out of own net worth ("equipment")

Model: Collateral and Financing

Capital, collateral value, and financing

Model: Firms

Representative firm (or "corporate sector")

- \bullet Risk neutral, limited liability, discount at $\beta < 1$
- Capital k
 - Depreciation rate δ ; no adjustment costs
- Standard neoclassical production function
 - Cash flows A'f(k) where $A'\equiv A(s')$ is (stochastic) Markov productivity with transition probability $\Pi(s,s')$
 - Strictly decreasing returns to scale $(f(\cdot) \text{ strictly concave})$
- Two sources of outside finance
 - Households
 - Financial intermediaries

Firm's Problem

Dynamic program

• Firm solves

$$v(w, Z) = \max_{\{d, k, b', b'_i, w'\} \in \mathbb{R}^2_+ \times \mathbb{R}^S \times \mathbb{R}^{2S}_+} d + \beta E\left[v(w', Z')\right]$$
(1)

subject to budget constraints

$$w + E\left[b' + b'_i\right] \ge d + k \tag{2}$$

$$A'f(k) + k(1-\delta) \ge w' + Rb' + R'_ib'_i$$
 (3)

and $\operatorname{\mathbf{collateral\ constraints}}$

$$\theta k(1-\delta) \ge Rb' \tag{4}$$

$$(\theta_i - \theta)k(1 - \delta) \ge R'_i b'_i \tag{5}$$

Firm's Problem (Cont'd)

Comments

- Two sets of state-contingent collateral constraints restricting
 - ... borrowing from households b^\prime
 - ... borrowing from financial intermediaries b'_i
- State variables: net worth w and state of economy $Z = \{s, w, w_i\}$
 - . Net worth of representative firm w and intermediary w_i

Endogenous Minimum Down Payment Requirement

Minimum down payment requirement \wp (or margin)

• Borrowing from households only

$$\wp = 1 - R^{-1}\theta(1 - \delta)$$

• Borrowing from households and financial intermediaries

$$\wp_i(R'_i) = \wp - E[(R'_i)^{-1}](\theta_i - \theta)(1 - \delta)$$

Firm's investment Euler equation

$$1 \ge E \left[\beta \frac{\mu' A' f_k(k) + (1 - \theta_i)(1 - \delta)}{\wp_i(R'_i)} \right]$$
(6)

User Cost of Capital with Intermediated Finance Extension of Jorgenson's (1963) definition

- Jorgenson's (1963) user cost of capital: $u \equiv r + \delta$
- Premium on internal funds ρ : $1/(R + \rho) \equiv E[\beta \mu'/\mu]$
- Premium on intermediated finance ρ_i : $1/(R + \rho_i) \equiv E[(R'_i)^{-1}]$
- User cost of capital u is

$$u \equiv r + \delta + \frac{\rho}{R + \rho} (1 - \theta_i)(1 - \delta) + \frac{\rho_i}{R + \rho_i} (\theta_i - \theta)(1 - \delta),$$

where $1 + r \equiv R$

Premia on Internal and Intermediated Finance

Internal and intermediated funds are scarce

- Proposition 1 (Premia on internal and intermediated finance) (Abridged)
 - Premium on internal finance ρ (weakly) exceeds premium on internediated finance ρ_i

 $\rho \ge \rho_i \ge 0,$

- Premia equal, $\rho = \rho_i$, iff $E[\lambda'_i] = 0$.
- Premium on internal finance strictly positive, $\rho > 0$, iff $E[\lambda'] > 0$.

Intermediary's Problem

Representative intermediary's problem

• Intermediary solves

$$v_i(w_i, Z) = \max_{\{d_i, l', l'_i, w'_i\} \in \mathbb{R}^{1+3S}_+} d_i + \beta_i E\left[v_i(w'_i, Z')\right]$$
(7)

subject to budget constraints

$$w_i \ge d_i + E[l'] + E[l'_i] \tag{8}$$

$$Rl' + R'_i l'_i \ge w'_i \tag{9}$$

• State-contingent loans to direct lender l' and to firms l'_i

Equilibrium

Definition of an equilibrium

- Definition 1 (Equilibrium) (Abridged) An equilibrium is
 - allocation $x \equiv [d, k, b', b'_i, w']$ (for firm) and $x_i \equiv [d_i, l', l'_i, w'_i]$ (for intermediary)
 - interest rate process R'_i for intermediated finance

such that

- (i) x solves firm's problem in (1)-(5) and x_i solves intermediary's problem (7)-(9)
- $\ {\ }$ (ii) market for intermediated finance clears in all dates and states

$$l'_i = b'_i. (10)$$

Essentiality of Financial Intermediation

Definition

- Definition 2 (Essentiality of intermediation) Intermediation is essential if an allocation can be supported with a financial intermediary but not without.
 - \bullet Analogous: Hahn's (1973) definition of essentiality of money

Intermediaries are essential

- Proposition 3 (Positive intermediary net worth) Financial intermediaries always have positive net worth in a deterministic or eventually deterministic economy.
- Proposition 4 (Essentiality of intermediaries) In any deterministic economy, financial intermediaries are always essential.
 - Intuition: Without intermediaries, shadow spreads would be "high."

Deterministic Steady State

Steady state spreads and intermediary capitalization

- Definition 3 (Steady state) A deterministic steady state equilibrium is an equilibrium with constant allocations, that is, $x^* \equiv [d^*, k^*, b'^*, b'^*_i, w'^*]$ and $x_i^* \equiv [d_i^*, l'^*, l'^*_i, w'^*_i]$.
- Proposition 5 (Steady state) (Abridged) In steady state:
 - Intermediaries essential; positive net worth; pay positive dividends
 - Spread on intermediated finance $R_i^{\prime*} R = \beta_i^{-1} R > 0$
 - (Ex dividend) intermediary net worth (relative to firm's net worth)

$$\frac{w_i^*}{w^*} = \frac{\beta_i(\theta_i - \theta)(1 - \delta)}{\wp_i(\beta_i^{-1})}$$

(ratio of intermediary's financing to firm's down payment requirement)

Deterministic Dynamics

Equilibrium dynamics

• Two main phases: no dividend phase and dividend phase

Proposition 6 (Deterministic dynamics) Given w and w_i , there exists a unique deterministic dynamic equilibrium which converges to the steady state characterized by a no dividend region (ND) and a dividend region (D) (which is absorbing) as follows:

Region ND $w_i \leq w_i^*$ (w.l.o.g.) and $w < \bar{w}(w_i)$, and (i) d = 0 ($\mu > 1$), (ii) the cost of intermediated finance is

$$R'_{i} = \max\left\{R, \min\left\{\frac{(\theta_{i} - \theta)(1 - \delta)\left(\frac{w}{w_{i}} + 1\right)}{\wp}, \frac{A'f_{k}\left(\frac{w + w_{i}}{\wp}\right) + (1 - \theta)(1 - \delta)}{\wp}\right\}\right\},\$$

(iii) investment $k = (w + w_i)/\wp$ if $R'_i > R$ and $k = w/\wp_i(R)$ if $R'_i = R$, and (iv) $w'/w'_i > w/w_i$, that is, firm net worth increases faster than intermediary net worth.

Region D $w \ge \bar{w}(w_i)$ and (i) d > 0 ($\mu = 1$). For $w_i \in (0, \bar{w}_i)$, (ii) $R'_i = \beta^{-1}$, (iii) $k = \bar{k}$ which solves $1 = \beta[A'f_k(\bar{k}) + (1 - \theta)(1 - \delta)]/\wp$, (iv) $w'_{ex}/w'_i < w_{ex}/w_i$, that is, firm net worth (ex dividend) increases more slowly than intermediary net worth, and (v) $\bar{w}(w_i) = \wp \bar{k} - w_i$. For $w_i \in [\bar{w}_i, w^*_i)$, (ii) $R'_i = (\theta_i - \theta)(1 - \delta)k/w_i$, (iii) k solves $1 = \beta[A'f_k(k) + (1 - \theta)(1 - \delta)]/(\wp - w_i/k)$, (iv) $w'_{ex}/w'_i < w_{ex}/w_i$, that is, firm net worth (ex dividend) increases more slowly than intermediary net worth, and (v) $\bar{w}(w_i) = \wp_i(R'_i)k$. For $w_i \ge w^*_i$, $\bar{w}(w_i) = w^*$ and the steady state of Proposition 5 is reached with $d = w - w^*$ and $d_i = w_i - w^*_i$.

Deterministic Dynamics (Cont'd)

Intermediary's net worth dynamics

• Law of motion (as long as no dividends)

$$w_i' = R_i' w_i$$

• Intermediaries lend out all funds at (equilibrium) interest rate $R'_i (\geq R)$

- Slow accumulation of intermediary net worth
 - Intermediaries earn R'_i
 - At most marginal return on capital (collateral constraint)
 - Firms earn average return (decreasing returns to scale)

Deterministic Dynamics (Cont'd)

Initial dividend

- Lemma 2 (Initial intermediary dividend) The representative intermediary pays at most an initial dividend and no further dividends until the steady state is reached. If $w_i > w_i^*$, the initial dividend is strictly positive.
- Intuition: Low firm net worth limits loan demand
 - Intermediaries save only part of net worth to meet future loan demand

Slow Intermediary Net Worth Accumulation

Net worth dynamics

- \bullet Transition to steady state: Consider low initial firm net worth w
- Low firm net worth \Rightarrow low investment $k = w/\wp_i(R)$ and low loan demand
 - Intermediaries save at low interest rate $R'_i = R$ (lend to households) to meet future loan demand

• Firm net worth accumulates faster

- Investment $k = (w + w_i)/\wp$, loan demand, and interest rate $R'_i = (\theta_i \theta)(1 \delta)/\wp (w/w_i + 1)$ rise
- When collateral constraint stops binding, interest rate $R_i' = [A'f_k(k) + (1-\theta)(1-\delta)]/\wp$ falls
- When interest rate reaches β^{-1} , firms pay dividends and stop growing, waiting for intermediary capital to catch up ("recovery stalls")
- Once intermediaries catch up, interest rate falls and investment rises; corporate sector relevers until steady state $R'^*_i = \beta_i^{-1}$ reached

Deterministic Dynamics (Cont'd)

Joint dynamics of firm and intermediary net worth

Deterministic Dynamics (Cont'd)

Dynamics of net worth, spread, and investment

Dynamics of a Credit Crunch

Joint dynamics of firm and intermediary net worth

Dynamics of a Credit Crunch (Cont'd)

Dynamics of net worth, spread, and investment

Dynamics of a Credit Crunch

Credit crunch

• Unanticipated drop in intermediary net worth w_i from steady state

Persistent real effects

- Moderate drop: intermediaries cut dividends
- "Delayed recovery" (until intermediaries accumulate sufficient capital)
 - Suppose corporate sector still well capitalized
 - Investment drops even as firms continue to pay dividends
 - Why? Higher interest rate $R'_i = \beta^{-1}$ increases cost of capital

• "Recovery stalls"

- Suppose corporate sector no longer well capitalized
- Investment drops more and interest rate R'_i even higher
- . Partial recovery until $R'_i = \beta^{-1}$ then "waiting for intermediaries to catch up"

Dynamics of a General Downturn

General downturn

- Unanticipated drop in firm (and possibly intermediary) net worth from steady state
 - Say due to surprise increase in depreciation rate δ

Persistent real effects

- Drop in real investment
- Spread on intermediated finance may fall (as loan demand goes down)
- Intermediaries may pay initial dividend when downturn hits!

Comovement of firm and intermediary net worth

Sufficient conditions for comovement

- Is value of intermediary net worth high when value of firm net worth high?
- Proposition 7 (Comovement of value of net worth) (Abridged) In economy which is deterministic from time 1 onward:
 - (i) Representative firm collateral constrained for direct finance against at least one state at time 1.
 - (ii) If $\lambda_i(s') = 0$, $\forall s' \in S$, marginal values comove: $\mu(s')/\mu(s'_+) = \mu_i(s')/\mu_i(s'_+)$, $\forall s', s'_+ \in S$.
 - (iii) If $S = \{\hat{s}', \check{s}'\}$ and $\lambda(\check{s}') > 0 = \lambda(\hat{s}')$, then the marginal values must comove, $\mu(\hat{s}') > \mu(\check{s}')$ and $\mu_i(\hat{s}') \ge \mu_i(\check{s}')$.
- Interpretation: neither firms nor intermediaries hedge fully

Conclusions

Theory of financial intermediaries as collateralization specialist

- Better ability to enforce claims
 - ... implies role for financial intermediary capital
- Tractable dynamic model

Dynamics of intermediary capital

- Economic activity and spreads **determined by firm and intermedi**ary net worth jointly
- Slow accumulation of intermediary net worth
- Credit crunch has **persistent real effects**

Characterization of Firm's Problem

First order conditions

- Multipliers
 - ... on (2) through (5): μ , $\Pi(Z, Z')\beta\mu'$, $\Pi(Z, Z')\beta\lambda'$, and $\Pi(Z, Z')\beta\lambda'_i$
 - ... on $d' \ge 0$ and $b'_i \ge 0$: ν_d and $\Pi(Z, Z') R'_i \beta \nu'_i$
 - (Redundant: $k \ge 0$ and $w' \ge 0$)
- First order conditions

$$\mu = 1 + \nu_d \tag{11}$$

$$\mu = E \left[\beta \mu' \left(\left[A' f_k(k) + (1 - \delta) \right] + \left[\lambda' \theta + \lambda'_i(\theta_i - \theta) \right] (1 - \delta) \right) \right]$$
(12)

$$\mu = R\beta\mu' + R\beta\lambda' \tag{13}$$

$$\mu = R'_i \beta \mu' + R'_i \beta \lambda'_i - R'_i \beta \nu'_i \tag{14}$$

$$\mu' = v'(w', Z') \tag{15}$$

• Envelope condition

$$v'(w,Z)=\mu$$

Weighted Average User Cost of Capital

Weighted average cost of capital representation

• User cost of capital with intermediated finance

$$u \equiv \frac{R}{R+\rho}(r_w + \delta)$$

where weighted average cost of capital r_w is

$$r_w \equiv (r+\rho)\wp_i(R'_i) + rR^{-1}\theta(1-\delta) + (r+\rho_i)(R+\rho_i)^{-1}(\theta_i-\theta)(1-\delta)$$

Characterization of Intermediary's Problem

First order conditions

- Multipliers
 - ... on (8) through (9): μ_i and $\Pi(Z, Z')\beta_i\mu'_i$,
 - ... on $d'_i \ge 0$, $l' \ge 0$, and $l'_i \ge 0$: η_d , $\Pi(Z, Z')R\beta_i\eta'$, and $\Pi(Z, Z')R'_i\beta_i\eta'_i$
 - (Redundant: $w'_i \ge 0$)
- First order conditions

$$\mu_i = 1 + \eta_d, \tag{16}$$

$$\mu_i = R\beta_i \mu'_i + R\beta_i \eta', \qquad (17)$$

$$\mu_i = R'_i \beta_i \mu'_i + R'_i \beta_i \eta'_i, \qquad (18)$$

$$\mu'_i = v'_i(w'_i, Z'), \tag{19}$$

• Envelope condition

$$v_i'(w_i, Z) = \mu_i$$

Financial Intermediation in a Static Economy

Firm's static problem

• Firm's problem given R'_i

$$\max_{\{d,k,b',b'_i,w'\}\in\mathbb{R}^2_+\times\mathbb{R}\times\mathbb{R}^2_+} d + \beta w'$$
(20)

subject to (2) through (5).

Intermediary's static problem

$$\max_{\{d_i,l',l'_i,w'_i\}\in\mathbb{R}^4_+} d_i + \beta_i w'_i \tag{21}$$

subject to (8) through (9). R'_i determined in equilibrium.

Intermediated vs. Direct Finance in Cross Section

Poorly capitalized firms borrow from intermediaries

- \bullet Suppose firms vary in their net worth w
- Partial equilibrium: interest rate on intermediated finance R'_i given
- Firms with low net worth borrow from intermediaries:

Proposition 8 (Intermediated vs. direct finance across firms) (*Abridged*) Suppose $R'_i > \beta^{-1}$.

- (i) Exist $0 < \underline{w}_l < \underline{w}_u$ such that firms with
 - ... $w \leq \underline{w}_l$ borrow as much as possible from intermediaries.
 - ... $w \in (\underline{w}_l, \underline{w}_u)$ borrow positive amount from intermediaries.
 - $\cdots w \geq \underline{w}_u$ do not borrow from intermediaries.
- (iii) Investment increasing in w.
- Mirrors results of Holmström/Tirole (1997)

Effect of Intermediary Net Worth on Spreads

Firm and intermediary net worth determine spreads jointly

- \bullet Equilibrium in static economy with representative firm: R_i' determined endogenously
- Proposition 2 (Firm and intermediary net worth) (Abridged)
 - (i) For $w_i \ge w_i^*$, intermediaries well capitalized; minimal spread $\beta_i^{-1} R > 0$.
 - (ii) Otherwise
 - If $w \leq \underline{w}(w_i)$ intermediaries still well capitalized; spread $\beta_i^{-1} R$.
 - For $w > \underline{w}(w_i)$, intermediated finance scarce and spreads higher.
 - For $w_i \in [\bar{w}_i, w_i^*)$, spreads increasing until $\hat{w}(w_i)$, then constant $\hat{R}'_i(w_i) R \in (\beta_i^{-1} R, \beta^{-1} R]$.
 - For $w_i \in (0, \bar{w}_i)$, spreads increasing until $\hat{w}(w_i)$, then decreasing until $\bar{w}(w_i)$, then constant $\beta^{-1} R$.

Role of Firm and Intermediary Net Worth

Interest rate on intermediated finance $R'_i - 1$

- Spreads high when firm and intermediary net worth low
 - ... and in particular when intermediary relative to firm net worth low

Interest rate on intermediated finance $R'_i - 1$ (percent) as a function of firm (w) and intermediary net worth (w_i)

Role of Firm and Intermediary Net Worth

Interest rate on intermediated finance $R'_i - 1$

• Projection of spreads on intermediated finance

Interest rate on intermediated finance $R'_i - 1$ (percent) as a function of firm (w) for different levels of intermediary net worth (w_i)

Role of Firm and Intermediary Net Worth

Interest rate on intermediated finance $R'_i - 1$

• Spreads determined by firm and intermediary net worth jointly

Contour of area where spread exceeds $\beta_i^{-1} - R$: \bar{w}_i (solid) and $\underline{w}(w_i)$ (solid); $\hat{w}(w_i)$ (dashed); contour of area where spread equals $\beta_i^{-1} - \beta^{-1}$: \underline{w}_i (dash dotted) and $\bar{w}(w_i)$ (dash dotted).

Dynamics of Firm and Intermediary Net Worth

Deterministic Dynamics

• Contours of regions describing deterministic dynamics of firm and financial intermediary net worth.

