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1.  Introduction 

 This paper will initially consider common factors in a linear, bivariate framework and 

then ask if similar concepts can be extended for use with conditional distributions.  For the start, 

it is important to have the idea of a �dominant property� (DP).  Throughout, the dominant 

property will be thought of as being in a component of a process.  If a series has several 

properties, it will be the DP that, in general will determine the relationship of the variable with 

others, and how it fits into models and equations.  For the moment, we will consider only the 

case where there is a single dominant property and one (or more) dominated properties.  In what 

follows, for a pair of random processes, tt YX , , say,  tt YX +  is used as a convenient notation to 

denote the more general sum 

mtt AYX ++                                                                      (1) 

where A, m are some constants and 0≠A  .  Some assumed properties are:  

If  tX  has DP and tY  does not, then  tt YX +  will have the DP.   

If  tt YX , both do not have a DP, then tt YX + will not have the DP.   

Finally, it will generally be the case that if tX  and tY  both have a common DP, then 

tt YX +  has this DP. 

 Some of the usual examples of dominant properties or component processes are: 

i. A trend in mean (either deterministic or stochastic) 

ii. A strong seasonal component (either deterministic or stochastic); 

iii. A strong business cycle component; 

iv. Smooth transitions or distinct breaks in mean; 

 In (1) a lead of m (which may be negative) is allowed but for most of the dominant 

properties it is clear that taking m = 0 is little different in practice than any non-zero value. This 

is clear because there is little loss of information from knowing mtY +  rather than tY  unless m is 

quite large for all of the examples, except the last, near a break.   

A persistent process (denoted I(1)) dominates a non-persistent process, denoted I(0).  It 
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has become the common practice to think of I(1) to be a unit root process, of a narrowly defined 

form, and I(0) to be a stationary linear process, such as an ARMA series, but again this is not 

necessary. 

The relevance of a dominant property is clear in an explanatory model such as 

tttt eaWbYaX +++=  

as the two sides must balance, with the two sides having the same dominant properties. For 

example, if Xt has the DP whereas neither Yt nor Zt does, then the error term et must have the this 

property. 

2.  Dominant Common Factors 

 A particularly interesting case involving dominant properties and common factors is in 

the form 
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+=
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ttt

ZWY
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2

1                                                            (2) 

where tW has the DP,  tt ZZ 21 ,  are independent of the DP, and 0≠A   is some constant. From the 

rules given above, both  tt YX ,  will have the DP but  tttt AZZAYX 21 −=−  will not have the DP.  

Thus, with this construction, a particular linear combination of two variables with a dominant 

property will not have the property. 

 If the DP is a trend, the variables are said to be �co-trending,� if it is a break process, the 

variables are �co-breaking.�  From (2) it follows, however, that the breaks need not be 

simultaneous, as 0≠m is allowed.  Furthermore, if tW  is a business cycle component, the 

variables are �co-cyclical,� and if tW  has a strong seasonal, they can be thought of as being �co-

seasonal.�  Finally when tW  is I(1) but the linear combination is I(0), they have been called �co-

integrated.�  For a recent discussion of the co-cyclical literature, see Issler and Vahid (2001). 

 In this paper we concentrate on dominant common factors; that is a common factor that 

determines the major time series properties of two (or just a few) series.  In general factor 

analysis, a common factor need not be dominant, but be present in largely unrelated processes.  

Such common factors can become dominant under cross-sectional aggregation (see Granger 
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(1987)).  Sometimes a common factor can be important but not dominant such as the stock index 

in the Capital Asset Pricing Model in finance.  Common factors may be either directly observed 

or derived from other series in the system, as in simple cointegration. 

3.  Conditional Distributions and Conditional Copula 

 The models considered in the previous section are relevant for the conditional expectation 

of a distribution, and are therefore somewhat limited in ambition.  Similar examples can be 

constructed for the conditional variance.  For a complete description of a relationship between 

random variables; however, one needs to consider a joint distribution.  In our analysis of the joint 

distribution, we will employ a theorem of Sklar (1959), who showed that a bivariate density 

function can be decomposed into three parts: the two univariate marginal densities and a 

�copula� density. Suppose we concentrate just on the bivariate relationship between X and Y, 

conditional on W; then 

)|)|(),|(()|()|()|,( WWyFWxFkWyfWxfWyxf YXYXXY =                             (3) 

where k is the conditional copula density function.  As an example, when X and Y are 

conditionally independent given W, 1)|,( ≡Wyxk .  In this special case, k is not dependent on W, 

although the marginals may still be dependent on W.  Such situations will be of interest later on. 

 Equation (2) shows Sklar�s theorem for density functions; the original theorem applied 

more generally to distribution functions: 

)|)|(),|(()|,( WWyFWxFCWyxF YXXY =                                        (4) 

where  XYF is the joint conditional distribution function of X, Y,  XF  is the conditional marginal 

distribution function of X, and similarly  YF  is the conditional marginal distribution function of 

Y.  Sklar showed that there will always be a function C, called the copula distribution function, 

so that (4) holds.  Differentiating (4) with respect to x and y gives (3).  Function C itself is a 

cumulative distribution function, namely, a cumulative distribution function of two conditionally 

Uniform(0,1) distributed random variables.  If X and Y are both continuous random variables, the 

copula is unique, and is the joint distribution conditional on W, of the random variables u and v 

which are defined as )|( WxFu X= and )|( WyFv Y= . 
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The copula function represents the dependence between X and Y after taking out the 

effects of the marginals, which may be different, see Joe (1997) and Nelson (1999).  What makes 

the copula important is that the marginal distributions and linear correlations determine the joint 

distribution of a set of random variables only if the latter are elliptically distributed, such as 

normally or t-distributed random variables.  If this is not the case, the copula will take the place 

of the correlations.  For discussion, see, for example, Embrechts, McNeil and Straumann (1999, 

2001).  Note, however, that the copula has a link to rank correlations.  Kendall�s τ for the 

dependence between X and Y is defined as 

}0))(Pr{(}0))(Pr{(),( <−−−>−−= jijijiji YYXXYYXXYXτ  

for ji ≠  where ),( ii YX is a pair of observations from the joint distribution of  X and Y.  Now 

[ ]∫ ∫ −=−=
1

0

1

0
.1),(41),(),(4),( vuCEvudCvuCYXτ  

where C is the copula of the joint distribution X and Y.  While the copula is a two-dimensional 

entity, Kendall�s τ is a univariate measure of dependence between X and Y.  It can similarly be 

shown that Spearman�s rank correlation coefficient, Sρ , is equal to 

[ ]∫ ∫ −=−=
1

0

1

0
.3123),(12),( uvEvuuvdCYXSρ  

 The interpretation of the decomposition (3) is important for later developments in the 

paper.  Let tX  and tY  be defined as in (2) and assume that tt ZZ 21 ,  are independent of 

0, ≥− jw jt .  It should be noted that in (3) all of the univariate properties of the tX  process, such 

as the (conditional) mean, variance, higher moments, and so forth, are encapsulated in the 

conditional marginal distribution )|( WxfY .  The copula involves none of these quantities and 

only contains measures relating to the extent that tt WX |  and tt WY |  are interdependent.  It is a 

bivariate function which generalizes the standard correlation coefficient, but which generally 

depends on the conditioning variable tW . In general, the extent and manner in which tt YX ,  are 

interrelated may change with the conditioning variable.  However, in the system (3), without 

conditioning tX  and tY  will be dependent largely through tW , but on conditioning the 

dependence of tX  and tY  will only depend on the joint distribution of tt ZZ 21  and .  It should be 
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noted that in this example it is enough to condition on tW  as conditioning on tW  and its lags is 

not required. 

Returning to the discussion in the previous section, if W has a dominant property, then 

the equivalent of equation (2) in distributions would be that both of the marginal densities 

)|(),|( WyfWxf YX  are not independent of W.  Thus, W does have an impact somewhere in the 

joint density.  However, the equivalent of the linear common factor situation could be that the 

relationship between X and Y as expressed by the conditional copula density function does not 

depend on W.  This will be discussed in Section 5, but one may already note the above-

mentioned special case in which X and Y are conditionally independent given W. 

4.  Examples of Dominant Properties in Conditional Distribution 

 A process tX  can be said to have a seasonally varying distribution if it has a time-

varying density )(xft  but, when measured monthly, 

)()( 12 xfxf tt +−  

is small, using some suitable norm for densities.  A plausible pseudo-norm is the Kullback-

Leibler Criterion, see White (1994) for instance.   tX  could be used as a conditioning variable in 

the common factor framework outlined above. 

 Similarly, a sequence of time-varying densities )(xft could be called �trending� if )(xft  

stochastically dominates (to order one) )(xfs  for all t > s; i.e. )()( xFxF st >  for all x, t > s where 

)(xFt  is the distribution function corresponding to the density )(xft .  If  tT  is a random variable 

drawn from such a distribution, it might be called a trend and be a variable with a dominant 

property. 

 If ft(x) takes the form ),( txf θ  where tθ  is some vector of parameters which are not 

necessarily constant, the densities can be called �breaking� if 00 , ttt ≤=θθ , )( 01 θθθ ≠=t , 

0tt > .    There could be several breaks and they could be caused by other variables taking 

particular values.  A variable tW  drawn from the distribution can be called a breaking process 

and used as a conditioning variable. 

 If  tB  is a process that is closely linked with the business cycle, such as a coincident 
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indicator, then it can be used directly as a candidate for a common factor in conditional 

distributions.  

 There are several ways that persistence can be defined.  A useful way is to define a 

process tW  as being persistent if ),( ntt WWF +  ≠ )()( ntt WFWF + as n becomes large.  This can 

potentially be tested using some of the measures of dependence discussed in Joe (1997).  If tW  is 

a persistent process, it can be used as a conditioning variable and it will have a dominant 

property. 

 The class of possible processes with dominant properties can be extended further to 

include �long-memory processes� for example, but these will not be considered here. 

 Tests for the existence or not of a particular dominant property will exist in some cases, 

such as for first-order stochastic dominance, but others will need to be developed. 

 Dominant factors need not be treated individually and a group of different trending 

variables, say, or a trend and a seasonal can be used jointly as conditioning variables.  Further, 

other variables without dominant properties can also be included in the conditioning set.  These 

extensions do complicate the picture and make analysis more difficult, although possibly more 

realistic. We leave such questions to be considered with the analysis of particular applications. 

5. Common Factors in Distributions 

We can now formally state our definition of common factors in distributions. The definition is 

adapted to time series situations where the observations are not independent but the present ones 

may depend on the previous ones. 

Definition:  Let tt YX ,  be a pair of processes and denote 0, ≥≡ − jXX jtt  and similarly tY  is 

the present and the past of the Y�s.  A process tW  will be considered as one with a dominant 

common property, or a common factor in distribution, if the conditional marginals 

),,,|( 111 −−− tttttX YXWWXF  and ),,,|( 111 −−− tttttY YXWWYF  do depend on tW  and possibly the 

lagged terms 1−tW ,  but the conditional copula ),|,(),,,|,( 11111 −−−−− = tttttttttt YXvukYXWWvuk    

does not depend on tW , either directly or through the lags.  
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Thus, the effect of tW  on ( tt yx , ) is through the marginal distributions but not through their 

relationship.   Although this could happen with any conditioning variable, it is particularly 

noteworthy for variables representing a dominant property.  Thus, for example, a pair of 

variables could have marginals that vary seasonally, but their relationship, as characterized by 

the copula, does not vary seasonally.  Similarly, a pair could have marginal distributions that 

change with the business cycle, not just in means but many quantities, yet the conditional copula 

density does not vary with the business cycle.  Such possibilities lead to interesting 

interpretations for economic series.  Again, suitable tests need development. 

 As an illustration of the definition, consider a two-factor model used to explore 

cointegration relationships.  tt YX ,  are a pair if I(1) series generated from tW  which is I(1) and 

tZ  which is I(0), by the equations 

Xtttt ZCAWX ε++= 1      (5) 

Ytttt ZCWY ε++= 2       (6) 

where YtXt εε ,  are zero mean, independent series, independent of each other with the constraint 

that 121 =− ACC .  The two equations can be augmented by the addition of a finite number of 

weighted logs of tt YX ∆∆ , .  Such an augmentation merely complicates the algebra without 

greatly changing the important aspects of the model. 

 It follows directly that 

Ztttt eAYXZ +−=       (7) 

where YtXtZt Aeee −= ; and 

Wtttt eXCYCW +−= 21      (8) 

where XtXtWt eCeCe 21 −= . 

 To give a specific example, suppose that ttW η=∆  where tη  is zero mean iid and 

ttt ZZ θρ += −1 , 1|| <ρ , tθ  zero mean, iid.  Taking changes in (5), (6) and using this example 

gives 

ttt ZCX 111 )1( γρ +−=∆ −      (9) 

ttt ZCY 212 )1( γρ +−=∆ −      (10) 
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where 

Xtttt CA εθηγ ∆++= 11      (11) 

Yttt C εθηγ ∆++= 222 .     (12) 

 In this example, tX  and tY  are seen to have the dominant I(1) property because of the 

common I(1) factor tW  in equations (5)(6).  However, there is a linear combination of tX  and tY  

which produces an estimate of tZ  with no tW  anywhere in its distribution.  From (8) tW  can be 

estimated, but with an I(0) error. 

 Turning to the specific example and now concentrating on  I(0) variables, (9) and (10) 

show that the relationship between tX∆  and tW∆  has become that between tX∆  and tη .  

Although tη  has mean zero, and so will not affect the conditional mean of tX∆ , given 

11, −− ∆∆ tt YX , it will influence the conditional variance, and similarly for tY∆ . 

 This example is standard for linear cointegration but does not quite fit into the examples 

discussed in this paper, as tW  is not directly observed in practice, only estimated from the raw 

data, tt YX , .  As tη  contains tX∆ , there is simultaneity involved in distributional relationships.  

If tW  is separately observed, it can be conditioned on and used in our definition. 

6.  Application 

As an empirical example for the ideas presented above we now present an analysis of the joint 

distribution of income and consumption, with a business cycle index variable as a possible 

common factor. Income and consumption are two of the most widely studied macroeconomic 

variables, and they both are known to vary individually over the business cycle, i.e., both 

consumption and income growth have cyclicality as a dominant property.  The relationship 

between these variables has also been widely studied, though to our knowledge no stylized facts 

regarding the behavior of the conditional dependence between these variables over the business 

cycle are available. We will investigate whether the conditional dependence between these 

variables also exhibits cyclicality, by testing whether a business cycle index variable influences 

the conditional copula of income and consumption growth. If no evidence of influence is found, 

then the index variable is a common factor, and cyclicality is a dominant common property. 
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6.1  Data and Model  

We used monthly data from January 1967 to November 2001 on U.S. real per capita disposable 

income (denoted tY ) and U.S. real per capita consumption on nondurables (denoted tC ). The 

business cycle indicator used was the Stock and Watson experimental coincident index1 (denoted 

tB ). As will be seen in the model, these variables appear in log-difference form. 

We specified linear models for the conditional means of the two series and the 

autoregressive conditional heteroscedasticity (ARCH) model of Engle (1982) for the conditional 

variances. Our choice of specification for the marginal densities was guided by our desire to 

allow for conditional non-normality. Two of the most common deviations from normality are fat 

tails (excess kurtosis) and asymmetry or skewness. Two distributions that are commonly used to 

allow for excess kurtosis are the Student�s t and the generalized error distribution (GED). Both of 

these distributions have been generalized to allow for skewness, and we selected the skewed 

Student�s t of Hansen (1994) for its simplicity and its past success in modeling economic 

variables. The skewed t distribution has two parameters: one for skewness and one for tail 

thickness. The distribution is not generally elliptical and thus the conditional copula is the 

appropriate measure of conditional dependence between the two variables.  The functional form 

of the skewed t density is given below. 
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1 The data on consumption and income were taken from the St. Louis Federal Reserve web page, 
http://www.stls.frb.org/fred. The business cycle index series was taken from Jim Stock�s web page, 
http://ksghome.harvard.edu/~.JStock.Academic.Ksg/xri/0201/xindex.asc. 
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Since the two marginal densities and the copula define a joint distribution, the natural estimation 

method is maximum likelihood. We employ the multi-stage maximum likelihood estimator 

presented in Patton (2001). Multi-stage estimation allows us to first estimate the marginal 

distributions separately, and then model the copula, which greatly simplifies the estimation of the 

model.  

We used the Akaike Information criterion (AIC) and goodness-of-fit tests to find appropriate 

models for the each of the conditional moments of the two series. Lags of consumption, income 

and the business cycle variable were allowed to enter as explanatory variables for both dependent 

variables. In our particular example it happened that the best fitting models did not require lags 

of the �other� variable (ie, lags of Yt in the model for Ct, and vice versa). This will not always be 

the case, and must be tested in each specific situation, as emphasized in Patton (2002, p10). 

 

The final models and parameter estimates are presented below; standard errors are provided in 

parentheses, and parameter estimates significant at the 5% level are marked with an asterisk. We 

used the modified logistic transformation, Λ, to keep the skewness parameter, λt, in (-1,1) at all 

times. 

 

( )

( ) 0.999 -
}exp{1

998.1 

95.7

)log(36.001.0

log 06.001.031.0

),( ~|   where,log32.0                 

log20.0log15.0log20.0log42.015.0log

)12.3(

2

)10.0()17.0(

2

)02.0(

2
1)02.0()03.0(

1)03.0(

24)04.0(12)04.0(2)05.0(1)05.0()03.0(

a
awhere

B

Bh

tSkewedI
h

B

CCCCC

C
t

t
C
t

tt
C
t

C
t

C
ttC

t

t
tt

ttttt

−+
=Λ

=






 ∆+−Λ=

∆+−=

+∆+

∆−∆−∆−∆−=∆

∗

∗

∗
−

∗∗

−
∗

−
∗

−
∗

−
∗

−
∗∗

υ

λ

ε

υλ
ε

ε

 (14) 

 



 
11

( ) 0.999 -
}exp{1

998.1  where

log43.029.066.01.2

)log(02.037.007.0

log03.046.026.0

),( ~| e      wher          

  ,log33.0log16.0log30.014.0log

2

)25.0(

2
1)20.0()26.0(

2

)06.0(

2
1)29.0()17.0(

)03.0(

2
1)18.0()11.0(

1

)04.0(2)07.0(1)10.0()04.0(

a
a

B

B

Bh

tSkewedI
h

BYYY

tt
Y
t

tt
Y
t

tt
Y
t

Y
t

Y
ttY

t

t

ttttt

−+
=Λ






 ∆−+−+=






 ∆++Λ=

∆++=

+∆+∆−∆−=∆

−
∗

−

−
∗∗

−

∗
−

∗
−

∗∗

ηυ

ηλ

η

υλη

η

   (15) 

No dynamics in the degrees of freedom parameter in the consumption density model 

were found, and so it was modeled as being constant. Many of the coefficients on the business 

cycle index variable in the conditional moment specifications were significant at conventional 

levels, confirming that both consumption and income vary over the business cycle. Although not 

all of the coefficients on the tB  terms are significant at the 5% level, these variables were needed 

for the model to pass the specification tests employed to check the adequacy of the proposed 

model. We conducted the specification tests presented in Patton (2002) to check the goodness-of-

fit of the above specifications, and found no evidence that they are inadequate. The test results 

are presented in Appendix A. 

In our search for the best specification of the conditional copula for these two variables, 

we considered eight alternative copula functional forms: normal, Clayton, rotated Clayton, 

Gumbel, rotated Gumbel, Plackett, Frank and the symmetrised Joe-Clayton. The first seven of 

these are presented in Joe (1997) and Nelsen (1999), while the eighth was introduced in Patton 

(2002). Each of these copulas implies a different type of dependence between the variables. For 

example, the Clayton copula would fit best if negative changes in consumption and income are 

more highly correlated than positive changes; the Gumbel and the rotated Clayton would fit best 

in the opposite situation. The Plackett and Frank copulas are symmetric, like the normal, but 

imply slightly different dependence structures.  Without any economic theory to guide us on the 

choice of dependence structure, it becomes an empirical question to find the best fitting model. 
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We estimated constant versions of these copulas, and the Gumbel was found to provide 

the best fit in terms of the log-likelihood value2. We proceeded to use the Gumbel copula for the 

time-varying conditional copula specifications. The forms of the Gumbel copula cumulative 

distribution function and probability density function (Cgumbel and kgumbel respectively) are given 

below. 
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We allowed the parameter of the Gumbel copula, κ, to vary through time, setting it to be a 

function of the change and squared change in the business cycle index variable, and the average 

distance between the �transformed� residuals, tU  and tV . This average distance is a measure of 

the degree of dependence between the variables over the last six months3, as under perfect 

positive dependence it always equals zero, under independence it is equal to one-third in 

expectation, and under perfect negative dependence it is equal to one-half in expectation. 
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The Gumbel copula parameter must be greater than or equal to one at all times, and we constrain 

the evolution equation for κt to ensure that this is the case.  

We computed the covariance matrix of the parameter estimates of the joint distribution 

model, and present the results for the copula parameters in Table 6.1. 
                                                           
2 As the Gumbel copula has a single parameter, and all the other copulas considered have either one or two 
parameters, selecting the Gumbel copula by the likelihood value is equivalent to selection by AIC or BIC. 
3 We also experimented with averaging over the preceding 12 and 24 months and found no significant improvement 
over using only 6 months. 
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Table 6.1: Copula parameter estimates and standard errors 

 
 
 

Coefficient 

 
 

Standard error

 
 

t-statistic 

 
Log-

likelihood 

Constant conditional copula 

Constant 1.0977 0.0361 2.7064* 7.9785 

Time-varying conditional copula 

Constant (γ0) 0. 2883 0.2106 1.3694 

 ∆logBt (γ1) 0. 0329 0.1040 0.3167 

 ∆logBt
2 (γ2) 0. 0490 0.0490 0.9987 

 Σ|u-v| (γ3) -0. 0913 0.5870 -0.1555 

8.5526 

* This t-statistic is for the test of the null hypothesis that the parameter equals one (rather than 

zero), which corresponds to independence of the two variables. 

 

As the results in the table show, none of the individual coefficient estimates of the variables used 

in the evolution equation for the conditional copula parameter are significant, and the joint 

hypothesis of no time variation in the conditional copula cannot be rejected either (a likelihood 

ratio test yields a p-value of 0.7655). This suggests that the conditional dependence between 

consumption and income is constant. We can, however, reject the hypothesis that the variables 

are independent at the 5% level. Most interestingly, our results suggest that the business cycle 

index variable is not important in describing the dependence between these two series, and thus 

may be a common factor in distribution for consumption and income. 

In Figure 1 we present the time path of κt according to this model, along with the NBER 

recession periods. This figure confirms that the time variation in the conditional copula 
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parameter is essentially unrelated to the business cycle. 

It should be noted that for us to conclude with certainty that the dependence structure 

between these variables is independent of the business cycle we would need to try all possible 

functions of the business cycle index variable, not just the quadratic specification used above. It 

is of course possible that some other function of the business cycle index variable does influence 

the conditional dependence structure. Further, the results may be sensitive to the choice of Bt 

versus, say, Bt-1, or any other lag of Bt, or possibly the vector [Bt, Bt-1, �, Bt-p]. While we found 

no evidence that Bt affected the conditional copula, in unreported results we did find some 

evidence that Bt-1 was important for the conditional copula. Thus our conclusion is affected by 

the choice of lag on the business cycle index variable. 

Overall, our preliminary results on this question give some support to the claim that the 

impact of the business cycle on the joint distribution of consumption and income is through the 

marginal distributions and not through their dependence structure, making it a �common factor in 

distribution� for consumption and income. 

7.0 Conclusion 

The paper proposes a definition for common factors in conditional distributions that is the 

analogy to that used in the linear context of the first and second moments.  A wide variety of 

possible dominant factors are suggested and an application is presented concerning the income 

and consumption relationships over the business cycle.  We find some evidence that a business 

cycle indicator variable is a common factor in the distribution of consumption and income. Many 

questions in this are remain unresolved, both concerning testing and also some properties of the 

common factor representation in particular cases.  They are left for further research. 
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Appendix A: Marginal distribution specification test results 

 

Before proceeding to model the conditional copula, it is critical to test the goodness-of-fit 

of the models employed for the conditional marginal distributions. Mis-specification in the 

marginal densities implies that the probability integral transforms, denoted Ut and Vt above, will 

not be uniformly distributed on (0,1), and thus any copula will automatically be mis-specified. 

Mis-specification in the dynamics of the conditional marginal distribution models can lead to 

spurious findings for the dynamics of the conditional copula.  

A simple test for a density specification (ignoring the impact of estimation error) is the 

Kolmogorov-Smirnov test, see Shao (1999). Applying this test to the series Ut and Vt we obtain 

test statistics (p-values) of  0.0228 (0.9834) and 0.0246 (0.9650), suggesting that both densities 

are well-specified. 

To test jointly for the adequacy of the dynamics and the density specifications in the 

marginal distribution models we employ a test discussed in Patton (2002), variations of which 

were also presented in Clements (2002) and Wallis (2002). This test divides the support of the 

density into regions, Ri, and then applies interval forecast evaluation techniques to each region 

separately, and then all regions jointly. If the entire density is well-specified, then the derived 

interval forecast in each region should also be well-specified. We break the support of U and V 

into 5 regions: [0,0.1], (0.1,0.25], (0.25,0.75] , [0.75,0.9) and [0.9,1]. We construct �hit� variables 
for each region, as }RU{1Hit it

U
t,i ∈=  and }RV{1Hit it

V
t,i ∈= , which take the value 1 if the 

realized value is in the region, and 0 otherwise. Under the null of correct specification, each of 

these Hit variables should be iid Bernoulli(U-L), where L and U are the lower and upper 

boundaries of the region. 

To test individual regions we estimate a logistic regression of the hit variables on a 

constant and variables that should, if the model is well specified, have no influence on the hit 
variable. We used the first lag of the both hit variables for the same region (ie, both U

1t,iHit − and 
V

1t,iHit − ) to capture serial correlation, and the lagged business cycle index variable in levels and 
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squares4 to capture any information in this variable that may have been omitted from the model. 

Under the null hypothesis that the density models are well specified the test statistic is a χ5
2 

random variable.  

To test all regions jointly we estimate a multinomial logit model, with the same 

specifications for each region as for the individual tests. The test statistic for the joint test is a 

χ20
2 under the null hypothesis. The p-values for each test statistic are presented below. 

 

Region Ut Vt 

[0,0.1] 0.5935 0.9824 

(0.1,0.25] 0.5320 0.3008 

(0.25,0.75] 0.5343 0.5794 

[0.75,0.9) 0.6833 0.4782 

[0.9,1] 0.2264 0.1801 

Joint test 0.6395 0.7116 

 

This table shows that both specifications pass all of the individual region tests (p-values 

are all greater than 0.05) and the joint test. We thus conclude that these specifications are 

adequate representations of the conditional marginal distributions, and move on to modeling the 

copula. 

                                                           
4 We also tried adding other variables, which counted the number of hits over the past 6 and/or 12 periods, to capture 
higher-order serial dependence. Further, we tried using only levels of the business cycle variable, and only using 
�own� lagged hits. None of these changes affected the final conclusion. 
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 Figure 1: This figure shows the time path of the Gumbel copula parameter using the model in 

equation 17, along with its value in the constant conditional copula model. The vertical dotted 

lines are the NBER recession periods. 


