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Abstract

We study a dynamic model in which the interaction between debt ac-
cumulation and asset prices magnifies credit booms and busts. We show
that these feedback effects create an externality since borrowers do not
internalize their contribution to aggregate volatility and therefore take on
excessive leverage. As a result the economy suffers from excessive volatil-
ity, i.e. large booms and busts in both credit flows and asset prices. We
propose a Pigouvian tax on borrowing that induces agents to internalize
their externalities. In a sample calibration, the optimal magnitude of this
tax is 2.41%. Our paper also develops a new numerical method of solving
models with occasionally binding endogenous constraints.

1 Introduction

The interaction between debt accumulation and asset prices contributes to mag-
nify the impact of booms and busts. Increases in borrowing and in collateral
prices feed each other during booms. In busts, the feedback turns negative,
with credit constraints leading to fire sales of assets and further tightening of
credit. It has been suggested that prudential policies could be used to mitigate
the build-up in systemic vulnerability during the boom. However, there are few
formal welfare analyses of the optimal policies to deal with booms and busts in
credit and asset prices.

This paper makes a step toward filling this gap with a dynamic optimizing
model of collective and collateralized borrowing. We consider a group of indi-
viduals (the insiders) who enjoy a comparative advantage in holding an asset
and who can use this asset as collateral on their borrowing from outsiders. The
borrowing capacity of insiders therefore depends on asset prices.
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Asset prices in turn are driven by the insiders’ demand for loans, which is
a function of their borrowing capacity. This introduces a mutual feedback loop
between asset prices and credit flows: small financial shocks to insiders can
simultaneously lead to large booms and busts in asset prices and booms and
busts in credit flows.

The model attempts to capture, in a stylized way, a number of economic
settings in which the systemic interaction between credit and asset prices may
be important. The insiders could be interpreted as a group of entrepreneurs who
have more expertise than outsiders to operate a productive asset, households
putting a premium on owning their own homes, or a group of investors who
enjoy an informational advantage in dealing with a certain class of financial
assets. Alternatively, the group of insiders could also be interpreted, in an open
economy context, as the residents of a country borrowing from foreign lenders.
One advantage of studying these situations with a common framework is to
bring out the commonality of the problems and of the required policy responses
(although, in the real world, those policies pertain to different areas such as
financial regulation, individual and corporate taxation, or capital controls).

Our main result is that such feedback loops in financial markets entail ex-
ternalities that lead insiders to undervalue the benefits of conserving liquidity
as a precaution against busts: an insider who has one more dollar of liquid net
worth when the economy experiences a bust not only relaxes his private bor-
rowing constraint, but also mitigates the feedback effects that worsen the bust,
which relaxes the borrowing constraints of all other insiders. Not internalizing
this spillover effect, the insider takes on too much debt during good times. In a
benchmark calibration of our model, we find that it would be optimal to impose
a 2.41 percent tax on borrowing by leveraged insiders to prevent them from
taking on socially excessive debt.

Our model is related to the positive study of financial accelerator effects
in closed and open economy macroeconomics. In DSGE models in the closed
economy, Carlstrom and Fuerst (1997) and Bernanke, Gertler and Gilchrist
(1999) show that financial frictions amplify the response of an economy to fun-
damental shocks. However, models in this literature are traditionally solved by
linearization, making them more appropriate to analyze regular business cycle
fluctuations than systemic crises. In the open economy literature, Mendoza
(2005) and Mendoza and Smith (2006), among others, have studied the non-
linear dynamics arising from financial accelerator effects during sudden stops in
emerging market economies. All these papers provide a positive analysis of how
financial frictions can amplify shocks to the economy, but do not characterize
welfare-maximizing policies. The central focus of our paper is to fill this gap.

This paper is also related to analyses of the ongoing world-wide credit crisis
that emphasize the amplifying mechanisms involving asset price deflation and
deleveraging in the financial sector (e.g., Adrian and Shin, 2009; Brunnermeier,
2009). Some earlier contributions have clarified the externalities involved in
credit booms and busts and drawn some implications for policy in the context
of very stylized two- or three-period models (Korinek, 2008, 2009). By contrast,
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this paper gives a more realistic and quantitative flavor to the analysis, by con-
sidering an infinite-horizon model. This is particularly relevant for determining
the optimal magnitude of regulatory measures in practice.

Benigno et al (2009) and Bianchi (2009) also characterize welfare-maximizing
policies in dynamic optimization models with collateralized debt for policy anal-
ysis. Their papers focus on the role of exchange rate depreciations in emerging
market crises. Our paper attempts to capture the essence of the problem in a
more generic setting involving asset price deflation.

Finally, our paper makes an important technical contribution to the liter-
ature on DSGE models with occasionally binding endogenous constraints. We
develop a new numerical solution method that allows us to solve such models
in a very efficient novel way. We term this procedure the “endogenous grid-
point bifurcation method,” which extends the endogenous gridpoints method of
Carroll (2006) to an environment with endogenous constraints. This technical
innovation enables us to analyze more complex models with more state variables
than what has been computationally feasible in the existing DSGE literature
with endogenous constraints, ultimately basing our policy guidance on richer
and more realistic models of the economy.

2 The model

We consider a group of identical and atomistic individuals in infinite discrete
time t = 0, 1, 2, .... The utility of the representative individual at time t is given
by,

Ut = Et

(
+∞∑
s=t

βs−tu(cs)

)
, (1)

where u(·) is strictly concave and satisfies the Inada conditions. We will gener-
ally assume that utility has constant relative risk aversion

u(c) =
c1−γ

1− γ
.

These individuals (the insiders) receive two kinds of income, the payoff of an
asset that can serve as collateral, and an endowment income. The representative
insider maximizes his utility under the budget constraint

ct + dt + θt+1pt = et + θt(pt + yt) +
dt+1

R
, (2)

where ct is his consumption, dt his ”outside debt” which we assume default-
free, R is the riskless interest factor at which outsiders lend, pt is the price
of the asset, θt is the insider’s holdings of the asset, et is the non-pledgeable
endowment income, and yt is the payoff of an asset that can be pledged as
collateral in period t. We assume that yt follows a stationary Markov process
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that will be specified later.1 Furthermore, the endowment et = e is constant
(more generally, we could assume a stochastic process for et that covaries with
yt without affecting our qualitative findings).

The collateral asset can be exchanged between insiders in a perfectly com-
petitive market. However, it cannot be sold to outsiders: θt must be equal to 1
in equilibrium. We do not allow insiders to sell the asset to outsiders and rent it
back – insiders derive important benefits from the control rights that ownership
provides. This assumption is of course extreme, and will be relaxed in later
work (we will allow for 1 ≥ θt ≥ θ for some θ > 0). But it is important to have
positive asset holdings for insiders to issue collateralized debt and to be prone
to debt deflation.

Furthermore, we assume that the only financial instrument which can be
traded between insiders and outsiders is uncontingent debt. This assumption
can be justified e.g. on the basis that shocks to the insider sector might not
be perfectly observable to outsiders and therefore cannot be used to condition
payments. This feature also corresponds to common practice across a wide range
of financial relationships. More generally, the findings of Korinek (2009) suggest
that our results on excessive exposure to binding constraints would continue to
hold when insiders have access to state-contingent financial contracts.

The value of the collateral asset determines how much of insiders’ short-
term debt lenders are willing to roll over. Outside lenders do not roll over more
than a fraction φ of the value of the collateral asset observed in the period that
borrowing takes place

dt+1

R
≤ φθtpt. (3)

A micro-justification – along the lines of Kiyotaki and Moore (1997)
and others – would be that an indebted insider can walk away from the debt he
just issued, in which case lenders can seize a fraction φ of his asset and sell it in
the market. Equation (3) is then the incentive compatibility condition ensuring
that debtors do not walk away from their debt.2

3 Laissez-faire equilibrium

3.1 Equilibrium conditions

The first-order conditions (derived in the appendix) are

u′(ct) = λt + βREt [u′(ct+1)] , (4)

1We could introduce growth at a rate G into the model. If the detrended payoff is Markov
stationary and utility is CRRA, the model with growth, once detrended, is isomorphic to the
model presented here with an interest rate of RG1−γ .

2The constraint could involve the end-of-period holding of asset, θt+1. Appendix A.3
derives the equilibrium conditions in this case. More generally, the right-hand side could
involve a constant term or be a nonlinear increasing function of pt. The only important
assumption, to obtain the debt deflation and asset price deflation mechanism at the core of
the model, is that it depend on the price pt.
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pt =
βEt [u′(ct+1)(yt+1 + pt+1) + φλt+1pt+1]

u′(ct)
, (5)

where λt is the costate variable for the borrowing constraint. The asset-pricing
equation has a λt+1 term in the numerator, which reflects the asset’s extra utility
as collateral in the next period. Using (2) and θ = 1 and defining beginning-of-
period liquid net wealth mt = e + yt − dt the collateral constraint (3) can also
be written,

ct ≤ mt + φpt. (6)

The state of the economy at the beginning of period t is summarized by
(mt, yt). The equilibrium is characterized by three non-negative functions,
c(mt, yt), p(mt, yt) and λ(mt, yt) such that

u′(c(m, y)) = λ(m, y) + βRE [u′(c(m′, y′))] , (7)

p(m, y) = β
E [u′(c(m′, y′))(y′ + p(m′, y′)) + φλ(m′, y′)p(m′, y′)]

u′(c(m, y))
, (8)

λ(m, y) > 0⇒ c(m, y) = m+ φp(m, y), (9)

where next-period values are denoted with primes, and the transition equation
for liquid net wealth is

m′ = e+ y′ +R (m− c(m, y)) . (10)

Naturally, if y is i.i.d. the policy functions depend solely on m.

3.2 Deterministic case with βR = 1

We look at the equilibrium where e and y are deterministic and constant. This
special case brings out, in a relatively simple context, some issues in the de-
termination of the equilibrium that will also matter in more general and less
tractable cases. We first assume βR = 1 since if there is no demand for precau-
tionary savings one does not need to consider an impatient consumer in order
to obtain a well-defined long-run steady state. We will look at the case βR < 1
in a second step.

Unconstrained equilibrium In an unconstrained steady state we have

punc =
β

1− β
y.

Starting from the initial condition d1 (the debt due in period 1) the economy
immediately settles in a steady state if

d1

R
≤ φpunc,
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that is, if debt is lower than the maximum steady state debt level d̄ of the
economy, which is a threshold that is increasing in y and β,

d1 ≤ d̄ ≡
φy

1− β
. (11)

Since y is constant we can write the policy function in terms of liquid net
wealth m only. For debt lower than this threshold, the consumption policy
function takes a simple linear form

c(m) = β(e+ y) + (1− β)m for m ≥ m̄ = e+ y − d̄ (12)

Constrained equilibrium If wealth is below the thresholdm1 < m̄ or, equiv-
alently, if the debt due in period 1 is above the threshold d1 > d̄, the borrowing
constraint on d2 will be binding. If the economy is constrained in period 1,
the debt level satisfies d2 ≤ d̄. This implies that from period 2 onwards, the
economy continues in an unconstrained steady state as described by equation
(12), and that the economy is constrained only for a single period, i.e., period
1.

Whether or not the economy is constrained in period 1, we thus have d2 ≤
d̄. Conversely, to any d2 ≤ d̄ we can associate an unconstrained period 1
equilibrium with

Sunc

{
cunc
1 = c2 = e+ y − (1− β) d2,

munc
1 = cunc

1 − d2/R = e+ y − d2.

Note that both cunc
1 and munc

1 are strictly decreasing in d2. Furthermore to
any d2 ∈

[
0, d̄
]
, i.e. any debt level that is both smaller than the threshold d̄

and positive, we can associate a constrained period-1 equilibrium through the
following equations

d2

R
= φpcon

1 = φβ
u′ (c2)
u′ (ccon

1 )
(y + punc)

mcon
1 = ccon

1 − d2/R,

where c2 = e+ y − (1− β)d2.
After simple manipulations of the first equation this can be re-written

Scon

{
ccon
1 = [e+ y − (1− β) d2]

(
d2/d̄

)1/γ
,

mcon
1 = ccon

1 − d2/R.

We depict both systems as a function of d2 in figure 1. The two downward-
sloping linear curves represent m1 (d2) and c1 (d2) over the unconstrained re-
gion. The two upward-sloping concave lines represent the two functions over
the constrained region. We indicate the maximum debt level d2 by a vertical
dotted line, and we truncate the m1 and c1 functions at that threshold.

Let us consider the constrained system. If d2 is equal to zero, ccon
1 and mcon

1

are also both equal to zero. If d2 converges toward d̄ (dotted vertical line), ccon
1
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Figure 1: Systems Sunc and Scon as a function of d2

and mcon
1 respectively converge to e+y (1− φ) and m̄ = e+y− d̄, and so do cunc

1

and munc
1 , i.e. the constrained and the unconstrained functions intersect. Thus

a necessary condition for c(m1) to be increasing along the constrained branch
is m̄ > 0, or

d̄ < e+ y (13)

If this condition was not satisfied, then the constrained branch of c(m1) would
be downward-sloping over some range and there would be multiple equilibria:
the same level of beginning-of-period wealth m1 could be associated with two
levels of consumption – one constrained and one unconstrained.

Conversely, assume that condition (13) is satisfied. Then, c(m1) is increasing
with m1 on the constrained branch if ccon

1 and mcon
1 are both increasing with

d2. We have

∂ccon
1

∂d2
=
[

1
γd2
− 1− β
e+ y − (1− β)d2

]
ccon
1 =

[
e+ y − (1− β) (1 + γ) d2

γd2 [e+ y − (1− β)d2]

]
ccon
1 ,

which is always positive in the relevant interval if this is true for d2 = d̄, that is
if

d̄ <
e+ y

(1− β)(1 + γ)
.

This condition is weaker than (13) for typical values of β and γ. Next, mcon
1 is

increasing with d2 if

∂mcon
1

∂d2
=

∂ccon
1

∂d2
− 1/R

or
e+ y − (1− β) (1 + γ) d2

γ
(
d̄
)1/γ · (d2)

1−γ
γ > 1/R = β
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This condition cannot be satisfied for d2 close to 0 if γ < 1 (because the l.h.s.
is close to 0). Thus one must have γ ≥ 1. Conditional on this the l.h.s. is
decreasing with d2 so one simply needs to check that the condition is satisfied
for d2 = d̄, that is

d̄ ≤ e+ y

1 + γ − β
.

Since γ ≥ 1 > β this condition is stronger than (13). Using (11) to substitute
out d̄, this condition can be rewrittern in terms of y,

y ≤ 1− β
φγ − (1− φ)(1− β)

e.

Taken together, systems Sunc and Scon constitute a parametric representa-
tion of the equilibrium in period 1 (with d2 as the parameter). This parameter-
ization prefigures our “endogenous gridpoints bifurcation method” – when debt
d2 is negative there is a single solution for the period 1 equilibrium, when d2

turns positive, the set of solution for the period 1 equilibria “bifurcates” into a
constrained arm Scon and an unconstrained arm Sunc. The two systems Sunc

and Scon characterize how c1 varies with m1, i.e., the equilibrium policy func-
tion c(m1). As d2 varies in its possible interval of values, system Sunc gives the
unconstrained branch of this function for all m ≥ m̄ – which we already derived
in (12). The constrained branch of c(m1) for m < m̄ is implicitly defined by
Scon. Our results are summarized in the following proposition.

Proposition 1 If y is constant and βR = 1, the credit constraint binds for
one period at most. The consumption of insiders is a continuous and increasing
function of their wealth c (m) if and only if γ ≥ 1 and

y ≤ 1− β
φγ − (1− φ)(1− β)

e. (14)

If condition (14) is not satisfied, there may be multiple equilibria. Although
self-fulfilling credit and asset price busts are an interesting phenomenon, we
prefer, in the current paper, to limit our attention to the case where the con-
sumption function is ”well-behaved”. Thus in the numerical calibrations we will
assume values that satisfy the conditions in the proposition above.

By inverting the equations for m1 in the systems Sunc and Scon, we arrive at
a function d′ (m1) expressing the next-period debt level, given initial net worth
m1. Given consumption levels c1 = c (m1) and c2 = e+ y − (1− β)d′ (m1), we
obtain the period 1 asset price function p (m1) as

p (m1) =
(

c (m1)
e+ y − (1− β)d′ (m1)

)γ
· punc (15)

We have depicted a sample calibration of the policy functions c (m1) and
d′ (m1) as well as the price function p (m1) in figure 2. The parameter values
used are listed in the following table:
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β R γ e y φ
.96 1/β 2 .8 .2 .09

Table 1: Parameter values for deterministic case with βR = 1

Note the different behavior of the functions in the constrained (m1 < m̄) and
unconstrained regions (m1 ≥ m̄), which are separated by a dotted vertical line.
For low levels of initial liquid net worth 0 ≤ m1 < m̄, debt is constrained by the
low level of asset prices, d2 (m1) /R = φp1 (m1) and there is “debt deflation.”
Over this region, consumption, debt, and asset prices respond strongly to small
changes in m1, as the economy is subject to amplification effects. Assume for
instance a small drop in m1: given the binding constraint, this forces the agent
to reduce consumption, which leads to a feedback spiral of declining asset prices,
falling borrowing limits and debt levels, and further decreases in consumption c1.
As the constraint tightens and the agent borrows less, first period consumption
c1 has to decline whereas consumption in period 2 and after rises because of the
lower level of debt in the future. Both effects reduce the agent’s MRS and push
the asset price lower, as given by equation (15).

On the other hand, if m1 ≥ m̄, the equilibrium is unconstrained and the
economy behaves in the standard way: consumption is perfectly smooth c1 = c2
and the level of asset prices is independent of wealth p (m1) = punc. For lower
levels 0 ≤ m1 < m̄, the borrowing constraint is binding so that c1 < c2 and
there is asset price deflation.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−1

−0.5

0

0.5

1

1.5
c
d
φp

Figure 2: Policy functions for deterministic case with βR = 1
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3.3 General case with βR < 1

Let us go back to the general case. In order to generate a persistent motive for
borrowing, we need to assume that insiders are impatient relative to outsiders,
i.e. βR < 1. (With trend growth at a growth factor G, we could allow for
situations with βR ≥ 1 as long as βRG1−γ < 1.)

We may make conjectures about the form of the solution by analogy with
the deterministic case studied in the previous section. The attention will be
restricted to equilibria in which the consumption function m 7→ c(m, y) is a
continuously increasing function of wealth for any y. Like in the deterministic
case, this rules out multiple equilibria. Let us denote by m(y) the level of wealth
for which consumption is equal to zero for a given y,

c(m(y), y) = 0.

By analogy with the deterministic case, we would expect the insiders to be
credit-constrained in a wealth interval m ∈ [m(y),m(y)], and to be uncon-
strained for m ≥ m(y). The thresholds m(y) and m(y) are key endogenous
variables to determine in deriving the equilibrium.

It is not difficult to see that the lower threshold must be equal to zero,

∀y, m(y) = 0.

This results from the facts that c(m, y) ≤ m+ φp, and that p converges to zero
as c goes to zero (by equation (5)). Since m = e+y−d must always be positive
and the level of debt is set before the realization of y, we must have

d ≤ e+ min y′|y,

where min y′|y is the lowest possible realization of y′ in the following period.
The upper threshold, m(y), must be determined computationally.

The numerical resolution method that we develop here is an extension of the
endogenous grid points method of Carroll (2006) to the case with endogenous
credit constraints. The basic idea of Carroll (2006) is to perform backwards
time iteration on the agent’s optimality conditions, i.e. to define a grid dg of
next period debt levels d′ and combine the next period policy functions with
agent’s optimality conditions to obtain current period policy functions until the
resulting functions converge. As we illustrated in section 3.2, when the agent’s
next period debt level d′ turns positive in a model of endogenous borrowing
constraints, there is a bifurcation in the solution for the current period policy
functions, i.e., there is a constrained and an unconstrained arm. We there-
fore term the following solution method the “endogenous gridpoints bifurcation
method.” Note that as the standard endogenous gridpoints method of Carroll
(2006), our solution method is very efficient since it avoids computationally
intensive numerical rootfinding operations.

The state of the economy in a given time period is fully captured by the pair
(d′, y). We therefore define a grid dg of debt levels and a grid yg containing the
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possible realizations of the output shock. Furthermore, we define dg+ = dg ∩<+
0

the set of all non-negative gridpoints in dg.
In iteration step k, we start with a triplet of functions c̃k (m, y), p̃k (m, y)

and λ̃k (m, y) where the beginning-of-period liquid net worth m = e + y − d
and where c̃k (m, y) and p̃k (m, y) are weakly increasing in m and λ̃k (m, y) is
weakly decreasing in m for a given y. For each d′ ∈ dg and y ∈ yg we solve the
system of optimality conditions from section 3.1 under the assumption that the
borrowing constraint is loose, noting that m′ = e′ + y′ − d′:

cunc (d′, y) = βRE
{
c̃k(m′, y′)−γ |y

}− 1
γ ,

punc (d′, y) =
βE
{
c̃k(m′, y′)−γ · [y′ + p̃k (m′, y′)] + φλ̃k (m′, y′) p̃k (m′, y′) |y

}
cunc(d′, y)−γ

,

λunc (d′, y) = 0,

munc (d′, y) = cunc(d′, y)− d′

R
.

Lemma 2 For suitable parameter values (in particular low φ), it can be shown
that the unconstrained functions cunc (d′, y), punc (d′, y) and munc (d′, y) are de-
creasing in d′ for a given y.

Proof. [tk]
By the same token, we can solve for the constrained branch of the system for

each non-negative d′ ∈ dg+ and y ∈ yg under the assumption that the borrowing
constraint is binding in the current period as

pcon (d′, y) =
d′

φR
,

ccon (d′, y) =

βE
{
c̃k(m′, y′)−γ · [y′ + p̃k (m′, y′)] + φλ̃k (m′, y′) p̃k (m′, y′) |y

}
pcon(d′, y)

−
1
γ

,

λcon (d′, y) = ccon (d′, y)−γ − βRE
[
c̃k(m′, y′)−γ |y

]
,

mcon (d′, y) = ccon(d′, y)− d′

R
.

Lemma 3 For suitable parameter values (in particular low φ), the functions
ccon (d′, y), pcon (d′, y) and mcon (d′, y) are increasing in d′ for a given y, and
the function λcon (d′, y) is decreasing in d′.

Proof. [tk]
We determine for each level of y ∈ yg the next period debt threshold d̄′ (y)

s.t. the borrowing constraint in the unconstrained system is just marginally
binding, i.e., such that

d′

R
= φpunc (d′, y)
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This is the highest possible debt level d′ that the economy can support for a given
level of y. By construction of this threshold, the unconstrained and constrained
arms of consumption coincide cunc

(
d̄′ (y) , y

)
= ccon

(
d̄′ (y) , y

)
and similarly for

the other policy variables. This threshold debt level corresponds to a beginning-
of-period liquid net wealth m (y) = munc

(
d̄′ (y) , y

)
= mcon

(
d̄′ (y) , y

)
. The

lowest possible level of m is m(y) = mcon (0, y). Given our monotonicity results
above, we can construct for each y the step k+ 1 policy function c̃k+1 (m, y) for
the intervalm(y) ≤ m < m (y) by interpolating on the pairs {(ccon(d′, y),mcon(d′, y))}y∈yg,d′∈dg+,,d′≤d̄′(y)

where 0 ≤ d′ < d̄′ (y), and then for the interval m ≥ m (y) by interpolating on
the pairs {(cunc(d′, y),munc(d′, y))}y∈yg,d′∈dg,d′≤d̄′(y) for d′ < d̄′ (y). The re-
sulting consumption function c̃k+1 (m, y) is again monotonically increasing in
m. We proceed in the same manner for the policy functions p̃k+1 (m, y) and
λ̃k+1 (m, y), which are, respectively, monotonically increasing and decreasing in
m for a given y. The iteration process is continued until the distance between
two successive iterations c̃k(m, y) and c̃k+1(m, y) (or other policy functions) is
sufficiently small.

3.3.1 Simulation of deterministic case

We first simulate the deterministic case where y is constant, maintaining the
assumption that βR < 1. The parameter values for this case are given in the
following table:

β R γ e y φ
.94 1.04 2 .9 .1 .20

Table 2: Parameter values for deterministic case with βR < 1

Figure 3 depicts a graph of the resulting policy functions. (In this and future
graphs, we denote insiders’ debt level in terms of their liquid net worth w = −d
to correspond to the standard notation in the literature.)

As in the deterministic example with βR = 1, the policy functions of insiders
are “kinked” at the threshold level of debt d̄′ at which borrowing constraints
become binding. For debt above this level, the economy experiences debt defla-
tion; consumption and asset prices decline rapidly; and the constrained amount
of debt that can be carried into the next period d′ = −w′ = φRp shrinks.
For debt below the threshold, the economy behaves similarly to a neoclassical
economy.

In figure 4, we magnify part of the graph to focus on the dynamics in the
sector. We assume that insiders start out in autarky with d = 0 and, thanks
to financial liberalization, obtain access to borrowing, subject to the financial
constraint. Since βR < 1, insiders have an incentive to take on debt. We
illustrate the path of the economy by the zigzag line in the figure starting at
zero.

Figure 5 depicts the resulting path of consumption, debt and the asset price,
where we have indicated the time of financial liberalization by the vertical dotted
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Figure 3: Policy functions for deterministic case with βR < 1

−0.3 −0.25 −0.2 −0.15 −0.1 −0.05 0

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

c
φp
w’
m

Figure 4: Endogenous cycle dynamics for deterministic case with βR < 1

13



line. Right after financial markets are opened, insiders’ consumption (top line)
spikes up – this raises their debt level over time (bottom line) until the borrowing
constraint is hit.

When the constraint becomes binding, the asset price declines and insiders’
maximum debt level falls, leading to a lower level of debt and higher asset prices
next period. In the long run, the economy oscillates between the constrained
state and the unconstrained state – an endogenous cycle emerges. Starting
from a situation in which insiders have no debt (d1 = 0) one converges toward a
situation in which the consumption of insiders is both lower and more volatile.
Along the adjustment path they benefit from a temporary consumption boom
financed by debt.
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Figure 5: Path of consumption and debt after financial liberalization

The existence of an endogenous cycle depends on the slope of the w′-curve
in the constrained region. Specifically, if the downward-sloping part of the w′-
curve is steeper than −1, the system possesses a steady state with an endogenous
cycle and will converge to this steady state with probability one. There is also
an unstable deterministic equilibrium at the intersection of the w′-curve with
the 45◦ line. If insiders starts out in that equilibrium, they will remain there
indefinitely in the absence of shocks, but the probability that this equilibrium is
reached for different starting values of w is zero. If the w′-curve is flatter than
−1, the deterministic equilibrium is the unique equilibrium and the system
converges to this equilibrium from any admissible initial level of wealth. The
slope of the w′-curve depends chiefly on the parameter φ.

Proposition 4 If βR < 1 and output y is constant, the economy possesses a
deterministic steady state at w′ = w. This is the only steady state for φ < φ̂. For
a looser borrowing constraint φ ≥ φ̂, the deterministic steady state is unstable
and the economy converges with probability one towards a stochastic steady state
in which constrained and unconstrained periods alternate.
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3.3.2 Simulation of stochastic case

Consider now the case where y is stochastic. Booms and busts can be modeled
by assuming a simple two-state Markov process for y. Assume that the return
on the collateral asset can be high, y = yH , or low, y = yL and that booms are
likely to persist for some time, i.e., there is a high probability of staying in the
high state. We assume the following parameter values for our simulation, where
we denote P the matrix of transition probabilities:

β R γ e yL yH P φ

.94 1.04 2 .9 .08 .12
(
.9 .1
.5 .5

)
.20

Table 3: Parameter values for stochastic simulation with βR < 1

The resulting debt and consumption dynamics are shown in figure.
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Figure 6: Policy functions for stochastic case with βR < 1.

When y = yH , the price of collateral is high, allowing insiders to increase the
level of their debt. There is a credit boom. During the boom, debt converges
to a level that keeps insiders unconstrained (they keep a precautionary margin
of safety if the risk of a bust is not too small). If the boom is long enough, debt
exceeds the threshold that makes the economy vulnerable to a credit crunch if y
falls to yL. When y falls, there is a bust with a sharp contraction of credit and
downward overshooting in the price of the asset. The economy then oscillates
between the constrained and the unconstrained state (like in the deterministic
case)—until y goes back up to yH , allowing a new boom to take place.

Starting from a situation with no debt, there will be a period during which
consumption is both higher on average and less volatile (honeymoon of financial
liberalization), but in the long run consumption may be made more volatile
(with a fat tail on the downside) by credit crunches and procyclical credit flows.
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4 Social planner

4.1 The social planner solution

We assume that the social planner of the economy determines the amount of
insiders’ borrowing, but does not directly interfere in asset markets—that is,
the social planner takes as given that insiders trade the collateralizable asset at
a price that is determined by their private optimality condition (5). The social
optimum differs from the laissez-faire equilibrium because the social planner
internalizes that future asset prices and insiders’ borrowing capacity depend on
the aggregate level of debt accumulated by insiders. A possible motivation for
this setup is that decentralized agents are better than the planner at observing
the fundamental payoffs of financial assets, while only the social planner has
the capacity of internalizing the costs of debt deflation dynamics that may arise
from high levels of debt.

In period t, the social planner chooses the debt level of the representative
insider, dt+1, before the asset market opens at time t. The asset market remains
perfectly competitive, i.e., individual market participants optimize on θt+1 sub-
ject to (2), yielding the optimality condition (5). We look for time-consistent
equilibria in which the social planner optimizes on dt+1 taking the future policy
functions c(m, y) and p(m, y) as given. (Although we do not change the nota-
tion, those policy functions are not the same as in the laissez-faire equilibrium.)

We define a new function that says how the current price level depends on
the beginning-of-period state, (m, y), and on the level of debt chosen by the
social planner,

p (m, y, d′) = β
E [u′(c (m′, y′))(y′ + p (m′, y′)) + φλ(m′, y′)p(m′, y′)|y]

u′(m+ d′/R)
, (16)

where m′ = e + y′ − d′. This function has the same form as (8), reflecting the
fact that the asset market remains perfectly competitive. The only difference
is that the social planner internalizes that he can affect the price of the asset
through his decision on the current level of aggregate debt. Increasing d′ lowers
the marginal utility of consumption (the denominator in (16)), which tends to
increase the price of the asset.3

Since insiders can still not borrow more than a fraction φ of the value of
their asset holdings, the social planner sets d′ subject to the constraint

d′

R
≤ φp (m, y, d′) , (17)

where m is the insiders’ aggregate wealth. The right-hand side may be increasing
in d′, in which case the social planner relaxes the credit constraint by increasing
aggregate debt. However, if φ is small enough, the right-hand side increases
less with d′ than the left-hand side, so that this inequality determines an upper
bound on aggregate debt. We assume that this is the case (otherwise (17) would
determine a lower bound on aggregate debt).

3The sign of the variation of the numerator with d′ is however ambiguous.
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The social planner’s credit constraint can be rewritten in reduced form,

d′

R
≤ φp(m, y), (18)

where p(m, y) is the level of p (m, y, d′) such that (17) is an equality. This
function is increasing in m because p (m, y, d′) is increasing in m for any y and
d′ (as can be readily seen from (16)). Note that per the definition of the function
p(·, ·), we have p(m, y) = p(m, y) for all the states (m, y) in which the social
planner’s constraint is binding.

The social planner solves the same optimization problem as decentralized
agents, except that he takes θt = 1 as given in the aggregate budget constraint,
and that his credit constraint is given by (18), which internalizes the feedback
effects of changes in consumption on the level of asset prices. As shown in the
appendix, the social planner’s Euler equation is,

u′(ct) = λt + βREt

(
u′(ct+1) + λt+1φ

∂pt+1

∂mt+1

)
. (19)

The derivative of the next-period asset price with respect to aggregate wealth,
∂pt+1/∂mt+1, is positive. Comparing (4) and (19), this implies that the social
planner favors more saving (less consumption and less debt) than in the decen-
tralized equilibrium. The saving wedge is proportional to the expected product
of the shadow cost of the credit constraint times the derivative of the debt ceil-
ing with respect to wealth. This reflects that the social planner internalizes the
endogeneity of next period’s asset price and credit constraint to this period’s
aggregate saving.

Decentralized agents are aware of the risk of credit crunch and maintain a
certain amount of precautionary savings (they issue less debt than if this risk
were absent), but they do not internalize the contribution of their precautionary
savings to reducing systemic risk. With the social planner, precautionary sav-
ings is augmented by a systemic component (i.e., the social planner implements
a policy of systemic precautionary saving).

4.1.1 Simulation of deterministic case

We simulate the deterministic case for the same parameter values as what is
given in table 2. Figure 7 below shows the amount of next-period wealth w′

chosen by decentralized agents and by the social planner as a function of current-
period wealth. The social planner consumes less and borrows less for a given
level of initial wealth. In fact, in the given example, the social planner will
reduce insiders’ exposure to binding borrowing constraints sufficiently so that
the oscillating equilibrium disappears and the economy converges to a stable
steady state.
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Figure 7: Optimal borrowing choices of decentralized insiders and social planner

4.1.2 Simulation of stochastic case

4.1.3 Pigouvian taxation

The social planner’s Euler equation also provides guidance for how the socially
optimal equilibrium can be implemented via taxes on external borrowing. De-
centralized agents undervalue the social cost of debt by the term φEt

[
λt+1

∂pt+1
∂mt+1

]
on the right-hand side of the social planner’s Euler equation (19), which de-
pends on the state of the economy (mt, yt). The planner’s equilibrium can be
implemented by a Pigouvian tax τ t = τ (mt, yt) on borrowing that introduces
a wedge in insiders’ Euler equation and that is rebated as a lump sum transfer
Tt = τ twt+1/R:

ct = et + yt + wt −
wt+1

R
(1 + τ t) + Tt

This modifies insiders’ Euler equation to

u′(ct) = λt + (1 + τ t)βREt [u′ (ct+1)]

The tax replicates the constrained social optimum as chosen by the constrained
planner if it is chosen such that

(1 + τ t)Et [u′(ct+1)] = Et

[
u′(ct+1) + λt+1φ

∂pt+1

∂mt+1

]
or τ (mt, yt) =

λt+1φ
∂pt+1
∂mt+1

Et [u′(ct+1)]

where all variables are evaluated at the social optimum.
The tax would be levied at time t when the borrowing decision wt+1 for next

period is made; therefore such a measure avoids any commitment problems. A
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Ramsey-equivalent approach would be to impose a tax whenever borrowing
constraints are binding and the externality materializes. However, this would
potentially face two important political economy constraints: First, it would
require that higher taxes are imposed in the midst of large downturns – precisely
when consumption among insiders falls sharply. Secondly, it would create a
commitment problem for the planner – the measure is only effective if insiders
in period t when borrowing choices are made believe that the tax will indeed be
imposed in period t+ 1.

In our simulations, we find that the optimal magnitude of this tax is on
average 2.41%.

5 Model with Capital

6 Extensions

6.1 Debt moratorium and bailouts

6.2 FDI Liberalization

6.3 Debt maturity

6.4 Endogenous return

7 Conclusion

This paper has developed a simple model to study the optimal policy response
to booms and busts in credit and asset prices. We found that decentralized
agents do not internalize that their borrowing choices in boom times render the
economy more vulnerable to credit and asset price busts involving debt deflation
in bust times. Therefore their borrowing imposes an externality on the economy.

In our baseline calibration, a social planner would impose an ex-ante tax of
2.41% per dollar on insider borrowing so as to reduce the debt burden of insiders
and mitigate the decline in consumption in case of crisis.
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A Solution of Benchmark Model

A.1 Laissez-faire

Decentralized agents solve the Lagrangian

Lt = Et

+∞∑
s=t

βt−s
{
u

(
es + θs(ys + ps) +

ds+1

R
− ds − θs+1ps

)
+ λs

[
φθsps −

ds+1

R

]}
,

Given CRRA utility, this implies the first-order conditions

FOC (ds+1) : c−γs = βREs
[
c−γs+1

]
+ λs,

FOC (θs+1) : psc
−γ
s = βEs

[
c−γs+1(ys+1 + ps+1) + φλs+1ps+1

]
.

A.2 Social planner

The social planner maximizes the utility of the representative insider subject to
the budget constraint (2) taking θt = 1 as given, and to the credit constraint
(18). The Lagrangian of the social planner is

LSPt = Et

+∞∑
s=t

βt−s
{
u

(
e+ ys +

ds+1

R
− ds

)
+ λs

[
φp̄(e+ ys − ds, ys)−

ds+1

R

]}
,

FOC(dt+1):

u′(ct) = λt + βREt

[
u′(ct+1) + φλt+1

∂p̄(mt+1, yt+1)
∂m

]
.

Using the fact that p̄(·, ·) = p(·, ·) in the constrained states, we have

λt+1
∂p̄(mt+1, yt+1)

∂m
= λt+1

∂p(mt+1, yt+1)
∂m

,

so that the Euler condition can be written like (19).

A.3 Alternative Specification of Constraint

If the collateral constraint in subsection A.1 was written in terms of future asset
holdings

ds+1

R
≤ φθs+1ps,

the second first-order condition would read as

ps(c−γs − φλs) = βEs
[
c−γs+1(ys+1 + ps+1)

]
.
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In this case, we would have

ps =
Es
[
c−γs+1(ys+1 + ps+1)

]
c−γs − φλs

,

As long as φ < 1, there is again a positive feedback effect from cs to ps, giving rise
to debt deflation dynamics that are equivalent to our benchmark specification.
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