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1 Introduction

We analyze the trade-o¤ between the bene�t of �nancial innovation in terms of gains from

trade and its cost in terms of �nancial instability.1 The bene�t arises since �nancial inno-

vation enhances hedging opportunities between agents with di¤erent risk-bearing capacities.

The cost arises when hedging creates hidden leverage that increases risk-taking incentives.

We build on this trade-o¤ to develop an incentive-based rationale for margins and their

substitutability or complementarity with capital requirements.2

We model �nancial innovation as the design of an optimal contract between a risk-averse

buyer of insurance who seeks protection against a risk exposure and a risk-neutral seller of

insurance who provides the protection. An important example of such trade is o¤ered by

credit default swaps (CDS).

Financial institutions selling protection have their own risky assets and liabilities, i.e.,

they are exposed to balance sheet risk. Controlling balance sheet risk is costly. For example,

�nancial institutions must devote resources to scrutinize the default risk of their borrowers

and to manage their maturity mismatch.3 Not controlling balance sheet risk (risk-taking) can

lead to the failure of the protection seller and to the default on his contractual obligations.

Protection buyers are therefore exposed to counterparty risk. For example, Lehman Brothers

and Bear Stearns defaulted on their CDS derivative obligations because of losses incurred

on their other investments, in particular sub-prime mortgages.

Our main assumption is that the care with which �nancial institutions manage their

balance sheet risk is unobservable to outsiders and that �nancial institutions are protected

by limited liability. This creates a moral hazard problem between the buyer and seller of

1Rajan (2006) notes that while innovation enhances risk-sharing opportunities it can also create new
risk-taking venues.

2Our focus on the trade-o¤ between bene�ts and costs of �nancial innovation is in line with Allen and
Carletti (2006), Parlour and Plantin (2008) and Parlour and Winton (2008). But the economic mechanisms
we analyze are entirely di¤erent from those studied in these papers.

3For example, in the wake of the 2007-09 crisis many �nancial institutions �nanced themselves through
short-term debt. While such �nancing was relatively easy to establish, it left these institutions exposed to
the risk of not being able to qucikly roll-over their liabilities (Brunnermeier and Oehmke, 2009; Acharya et
al., 2009).
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protection. In this context, we show that �nancial innovation designed to hedge risk creates

hidden leverage: Ex-ante, when entering the position, the hedge trade is neither an asset

nor a liability for the protection seller. For example, the seller of a credit default swap pays

the buyer in case of credit events (default, restructuring) but collects an insurance premium

otherwise. On average, for the seller to be willing to enter the position, she must at least

break even. But, if the protection seller observes negative information about the hedged risk

after entering the deal, then the position becomes an o¤-balance sheet liability. For instance,

after bad news about the future solvency of �rms, the seller of a CDS is more likely to pay

out the insurance than after good news. This liability undermines the protection seller�s

incentive to control her balance sheet risk.4 This is because she bears the full cost of risk

control while the bene�t accrues in part to the protection buyer.5

Given the incentives of the protection seller, the buyer faces a trade-o¤ between risk-

sharing and risk-taking. If he wants to curb risk-taking incentives, he must reduce the

hidden leverage by accepting an incomplete hedge. Since such under-insurance is costly, he

may instead opt for a complete hedge, recognizing that it will encourage risk-taking and lead

to counterparty risk.

Our analysis thus identi�es a channel through which �nancial innovation together with

asymmetric information can lead to systemic risk. In the absence of a moral hazard problem,

the risk the protection buyer is hedging and the balance sheet risk of the protection seller

are independent. The counterparty risk that arises endogenously when the hidden leverage

leads to risk-taking is a form of contagion. Advance negative news about the risk of the

protection buyer propagates to the protection seller whose default risk increases.6

We use the model to develop an incentive-based theory of margins. When a market

4Holmström and Tirole (1998) show how liquidity shocks can weaken incentives to exert e¤ort. In contrast,
in the present analysis, we show how information shocks can weaken incentives.

5This is in line the debt-overhang e¤ect identi�ed by Myers (1977). Note, however, that instead of
exogenous debt, we have endogenous liabilities emerging from optimal contracting.

6Our approach di¤ers from other models of systemic risk, see, e.g., Freixas, Parigi and Rochet (2000),
Cifuentes, Shin and Ferrucci (2005), and Allen and Carletti (2006), since in our analysis contagion arises
because of incentive problems.
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infrastructure such as a central counterparty (CCP) exists, the buyer and seller of protection

can agree as part of their hedging transaction that the seller deposit cash upfront with the

CCP as an initial margin. This is costly since she must liquidate some of her assets to

deposit them with the CCP, where they will earn a lower rate of return. The bene�t is that

the cash deposited is ring-fenced from risk-taking. The initial margin thus reduces the size

of the moral hazard problem between the protection buyer and seller. It therefore makes a

more complete hedge incentive-compatible. However, margins have a potential downside. By

insuring against counterparty risk, the protection buyer is more willing to accept risk-taking

by the protection seller. Our analysis thus provides some support, but also shows some of

the limitations, of the view that market infrastructures could reduce the vulnerability of the

�nancial system to systemic risk.7

When the failure of �nancial institutions a¤ects third parties, privately optimal hedging

arrangements that entail risk-taking, including those with initial margins, are not socially

optimal. In that case, one way to mitigate systemic risk is to impose capital requirements.

Requiring a �nancial institution to hold capital in proportion to its hedging activities counters

the hidden leverage embedded in these activities. Extra capital strengthens the balance

sheet of the protection seller for a given amount of hedging. Having more to lose in case

of default (�skin in the game�) reduces her risk-taking incentives. By extension, �nancial

institutions that opt out of such capital requirements should not be allowed to undertake

hedging activities.

The remainder of the paper is organized as follows. In Section 2, we describe the model

setup. In Section 3, we analyze the benchmark case in which e¤ort is observable and there is

no moral hazard. In Section 4, we analyze the optimal contract when e¤ort is unobservable.

We characterize when the two counterparties choose a contract with risk-taking following

bad news about the hedged risk. In Section 5, we discuss the implementation of the optimal

contract. In Section 6, we provide an incentive-based theory of margin requirements. In

7See, for example, Pirrong (2009).
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Section 7, we examine regulatory interventions when there is a wedge between private and

social welfare. Section 8 concludes. Proofs are in the appendix.

2 The model

There are three dates, t = 0; 1,2, and two agents, the protection buyer and the protection

seller, who can enter a hedging contract at t = 0.

Protection buyer. The protection buyer is risk-averse with twice di¤erentiable concave

utility function, denoted by u. At t = 0 he is endowed with a risky exposure of size I whose

per unit return is ~�. The return is realized at t = 2. It can take on two values: �� with

probability � and
�
� with probability 1 � �. Moreover, the buyer has an amount C of cash

which has zero net return. He seeks insurance to hedge the risk ~�.

Protection seller. The protection seller is risk-neutral. At time t = 0 she has an

amount K of assets in place which have an uncertain per unit return ~R at t = 2 (balance

sheet risk).

At t = 1 the protection seller has to exert costly unobservable e¤ort e to manage the

risk of her assets. To capture the moral hazard problem in the simplest possible way, we

assume that the protection seller can choose between e¤ort, e = 1, and no e¤ort, e = 0. If

she exerts e¤ort, we assume that K ~R(e = 1) = KR > K. If she does not exert e¤ort, then

K ~R(e = 0) = KR with probability p and K ~R(e = 0) = 0 with probability 1 � p .8 That

is, if the seller does not manage risk, her assets are wiped out with probability 1 � p. In

this case, the seller is protected by the limited liability and she defaults on her obligations

(counterparty risk). If the seller does not exert e¤ort, she obtains a private bene�t B per

unit of assets. Note that the impact of the seller�s e¤ort on ~R does not depend on the return

of the buyer�s asset ~�.

We assume that the opportunity cost of not exerting e¤ort is higher than the private

8In Section 7, we consider a case when losses L � 0 are incurred if the protection seller does not exert
e¤ort.
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bene�t: (1� p)R > B. Hence, the protection seller prefers e¤ort to no e¤ort if she is solely

concerned with managing the risk of her assets.

Advance information. Information about the risk ~� underlying the hedge is publicly

revealed at t = 0:5, before the seller makes her e¤ort decision at t = 1. Speci�cally, a signal

~s about the return ~� is observed. Let � be the probability of a correct signal:

� = prob[�sj��] = prob[
�
sj
�
�]

The probability � is updated to �� upon observing �s and to
�
� upon observing

�
s, where

�� = prob[��j�s] = prob[�sj��]prob[��]
prob[�s]

=
��

�� + (1� �)(1� �)

�
� = prob[��j

�
s] =

prob[
�
sj��]prob[��]
prob[

�
s]

=
(1� �)�

(1� �)� + �(1� �)

according to Bayes�Law.

We assume that � � 1
2
. If � = 1

2
, �� = � =

�
� and the signal is completely uninformative.

It is as if there was no advance information about the hedged risk. For � > 1
2
, �� > � >

�
�,

observing �s increases the probability of ~� = �� (good signal) whereas observing
�
s decreases

the probability of ~� = �� (bad signal). If � = 1, the signal is perfectly informative and it is

as if the realization of ~� was already observed at t = 0:5.

Contract. The contract speci�es a transfer � from the protection seller to the protection,

conditional on all contractible information (in case � < 0, the buyer pays the seller). For

simplicity we assume the realization of ~�, the return on the seller�s assets ~R and the advance

signal ~s are all publicly observable and contractible. Hence, the contract is given by � =

�(~�; ~R; ~s). The contract must also be consistent with the limited liability of the protection

seller, so that K ~R > �(~�; ~R; ~s). We assume KR > I��, which implies that as long as the

agent exerts e¤ort, the limited liability constraint does not bind, as shown below.

The sequence of events is summarized in Figure 1 below.
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-
timet=0 t=0.5 t=1 t=2

Risk-averse protection
buyer seeks insurance
from a risk-neutral
protection seller.

Advance information
about the hedged risk is
observed.

Protection seller chooses
whether or not to exert
e¤ort to manage the risk
of her assets.

Risk underlying the
hedge realizes.

Shock to the return of
the seller�s assets real-
izes.

Contract is settled.

Figure 1: The timing of events

3 First-best: observable e¤ort

In this section we consider the case where the protection buyer can observe the e¤ort level

of the protection seller so that there is no moral hazard problem. While implausible, this

benchmark case will enable us to identify the ine¢ ciencies generated by moral hazard.

Consider the case where the protection buyer instructs the protection seller to exert

e¤ort after both a good and a bad signal. In that case the seller�s assets always return

~R(1) = R. Hence we don�t need explicitly write ~R when writing the variables upon which �

is contingent. Also, as will be clear below, under our assumption thatKR > I��, the limited

liability constraint of the agent does not bind when he exerts e¤ort. Hence, for simplicity

we neglect that constraint.

The protection buyer solves

max
�(��;�s);�(

�
�;�s);�(��;

�
s);�(

�
�;
�
s)
��u(C + I�� + �(��; �s)) + (1� �)(1� �)u(C + I

�
� + �(

�
�; �s)) (1)

+�(1� �)u(C + I�� + �(��;
�
s)) + (1� �)�u(C + I

�
� + �(

�
�;
�
s))

subject to the seller�s participation constraint

��[KR� �(��; �s)] + �(1� �)[KR� �(��;
�
s)] + (1� �)�[KR� �(

�
�;
�
s)]

+ (1� �)(1� �)[KR� �(
�
�; �s)] � KR
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The expression on the right-hand side is seller�s payo¤ if she does not enter the hedge. It is

given by the return on her capital, KR.

The participation constraint can be written as

0 � �
�
��(��; �s) + (1� �)�(��;

�
s)
�
+ (1� �) [��(

�
�;
�
s) + (1� �) �(

�
�; �s)] = E[� ] (2)

where the expectation is over ~� and ~s. The protection seller agrees to the contract as long as

the average payment to the buyer is non-positive. The proof of Proposition 1 in appendix

gives the solution of this maximization problem. It is easy to show that the corresponding

value function is greater than what would be obtained if e¤ort was not always requested.

Thus, we can state our �rst result.

Proposition 1 (First-best contract) When e¤ort is observable, the optimal contract en-

tails e¤ort after both signals, provides full insurance, and is actuarially fair. The transfers

are given by:

�FB(��; �s) = �FB(��;
�
s) = �(1� �)I�� = I(E[~�]� ��) < 0 (3)

�FB(
�
�; �s) = �FB(

�
�;
�
s) = �I�� = I(E[~�]�

�
�) > 0 (4)

In the �rst-best contract, the consumption of the protection buyer is equalized across

states (full insurance). The contract does not react to the signal. Expected transfers are

zero (the contract is actuarially fair) and there are no rents to the protection seller. The

seller pays the buyer if ~� =
�
� and vice versa if ~� = ��. The payments are proportional to the

size of the hedged position I and to its riskiness, measured by ��.

It is optimal for the protection buyer to demand e¤ort after both signals. He is fully

insured and the seller�s assets are safe so there is no counterparty risk. If there was no

e¤ort, the buyer would be exposed to counterparty risk and full insurance would no longer

be possible.
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Finally, note that the values of the transfers given in the proposition con�rms our initial

claim that, under our assumption that KR > I��, the limited liability condition does not

bind.

4 Second-best: unobservable e¤ort

4.1 E¤ort after both signals

We now turn to the case where the e¤ort level of the protection seller is not observable by

the buyer. We �rst characterize the optimal contract inducing e¤ort of the seller after both

a good and a bad signal.

As the protection buyer expects the seller to always exert e¤ort, he expects that ~R is

always equal to R. From his perspective, when writing the objective, there is no need to

account for variability in ~R, which for simplicity can be omitted from the contract. Thus, the

protection buyer solves (1) subject to (2) and the seller�s incentive compatibility constraints.

Since the signal about the hedged risk is observed before the e¤ort decision is made, the

incentive constraints are conditional on the realization of the signal.

Suppose a good signal, ~s = �s, is observed. Then, the incentive-compatibility constraint

is given by

��[KR� �(��; �s)] + (1� ��)[KR� �(
�
�; �s)] �

��[p(KR� �(��; �s))] + (1� ��)[p(KR� �(
�
�; �s))] +BK

The expression on the right-hand side is seller�s (out�of�equilibrium) expected payo¤ if she

does not exert e¤ort. With probability 1� p, the seller defaults. In this case, the protection

seller cannot make any positive payment to the protection buyer and the latter has no interest

in making payment to the former since such transfers would be lost to both parties. Hence

�(~�; ~s jdefault) = 0. The incentive-compatibility constraint after a bad signal, ~s =
�
s, is
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derived analogously.

Simplifying the incentive constraint for each realization of the signal, we get:

P � ���(��; �s) + (1� ��)�(
�
�; �s) = E[� j�s] � �� (5)

P �
�
��(��;

�
s) + (1�

�
�)�(

�
�;
�
s) = E[� j

�
s] �

�
� (6)

where

P = K
�
R� B

1� p

�
(7)

denotes �pledgeable income�(or incentive-compatible hedging capital). Available pledgeable

income puts an upper bound on the expected transfer to the protection buyer, conditional

on the observed signal. Note that P > 0 since we assumed (1� p)R > B.

When the signal is informative, � > 1
2
, we have the following result.

Lemma 1 (First-best attainable) When e¤ort is not observable and the signal is infor-

mative, the �rst-best can be achieved if and only if the protection seller has enough pledgeable

income, i.e., for P > (� �
�
�)I�� = I(E[~�]� E[~�j

�
s]).

For su¢ ciently high pledgeable income levels, incentive-compatibility constraints are not

binding and the �rst-best allocation can be reached even when e¤ort is not observable.

The threshold level of pledgeable income beyond which the �rst-best is attainable, (� �

�
�)I��, is proportional to the size of the hedged position I, to its riskiness ��, and to the

informativeness of the signal � (which induces a higher wedge between the prior and the

updated probability). We can state the following corollary.

Corollary 1 When the signal is uninformative, the �rst-best is always reached: P > (� �

�
�)I�� = 0.

Consider the case when the signal is informative and the pledgeable income is small

enough so that the �rst-best is not attainable. To ensure that the protection seller always
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exerts e¤ort, the optimal contract must satisfy two incentive-compatibility constraints. The

next lemma states that only one of them will be binding.

Lemma 2 (Incentives given the signal) When e¤ort is not observable and the �rst-best

is not attainable, P < (��
�
�)I��, the incentive constraint after a good signal is slack whereas

the incentive constraint after a bad signal is binding.

Ex ante, before the signal is observed, the hedging position is neither an asset nor a

liability for the protection seller. After observing a good signal about the underlying risk,

the hedge is more likely to be an asset for the seller. He is more likely to be paid by the

buyer than the other way around. Thus, good news do not generate incentive problems.

Negative news, on the other hand, make it more likely that the hedge moves against the

seller. Now it is the seller who is more likely to pay the buyer. For P < (� �
�
�)I��, this

undermines her incentives to exert e¤ort. She has to bear the full cost of e¤ort while the

bene�t accrues in part to the protection buyer. This is reminiscent of the debt-overhang

e¤ect (Myers, 1977). The hedge contains hidden leverage that a¤ects seller�s incentives to

control her balance sheet risk when she has limited pledgeable income.

The following proposition characterizes the second-best contract with e¤ort after both

signals.

Proposition 2 (Second-best contract with e¤ort) When e¤ort is not observable and

the �rst-best is not attainable, P < (��
�
�)I��, the optimal contract that induces e¤ort after

both signals provides full insurance conditional on the signal and is actuarially fair. The

transfers are given by:

�SB;e=1(��; �s) = �(1� ��)I�� � prob[�s]
prob[�s]

P = I(E[~�j�s]� ��)� prob[�s]
prob[�s]

P < 0

�SB;e=1(
�
�; �s) = ��I�� � prob[�s]

prob[�s]
P = I(E[~�j�s]�

�
�)� prob[�s]

prob[�s]
P > 0

�SB;e=1(��;
�
s) = �(1�

�
�)I�� + P = I(E[~�j

�
s]� ��) + P < 0

�SB;e=1(
�
�;
�
s) =

�
�I�� + P = I(E[~�j

�
s]�

�
�) + P > 0
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As in the �rst-best contract, expected transfers are zero (the contract is actuarially fair)

and there are no rents to the protection seller (the participation constraint is binding). The

protection seller pays the protection buyer if ~� =
�
�, while the reverse holds true when ~� = ��:

�(
�
�; ~s) > 0 > �(��; ~s)

The key di¤erence between the �rst-best contract and the second-best contract with e¤ort

is that the former does not depend on the signal, while the latter does:

�SB;e=1(~�;
�
s) < �FB(~�;

�
s) = �FB(~�; �s) < �SB;e=1(~�; �s)

To preserve the seller�s incentives to exert e¤ort, the buyer must reduce the hidden leverage

by accepting that the hedge does not provide full insurance. In particular, the incentive-

compatible amount of insurance is smaller following a bad signal. Hence, the protection

buyer must bear signal risk. Correspondingly, the protection seller must be left with some

rent after a bad signal in order to induce e¤ort. The protection buyer �reclaims�this rent

after a good signal so that the expected rent to the seller is zero. Conditional on the signal,

the second-best contract provides full insurance against the underlying risk ~�:

�(
�
�; �s)� �(��; �s) = �(

�
�;
�
s)� �(��;

�
s) = I�� > 0

In sum, when pledgeable income is below a certain threshold, the non-observability of

e¤ort leads to limited risk-sharing. Since such under-insurance is costly for the risk-averse

protection buyer, he may instead opt to not induce seller�s e¤ort all the time. If the seller

does not exert e¤ort, the buyer is exposed to counterparty risk. Hence, the choice between

a contract with and without e¤ort entails a trade-o¤ between signal and counterparty risk.

We next investigate the properties of the contract that does not always induce e¤ort.
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4.2 No e¤ort after a bad signal

The protection buyer may �nd the reduced risk-sharing in the contract with e¤ort after both

signals too costly. He may instead choose to accept risk-taking by the protection seller in

exchange for a more complete hedge. Since it is always in the interest of the seller to exert

e¤ort after a good signal, risk-taking can only occur after a bad signal. In this subsection, we

characterize the optimal contract with e¤ort after good news and no e¤ort after bad news.

The objective function of the protection buyer is then given by:

max
�(��;�s);�(

�
�;�s);�(��;

�
s);�(

�
�;
�
s)
��u(C + I�� + �(��; �s)) + (1� �)(1� �)u(C + I

�
� + �(

�
�; �s)) (8)

+�(1� �)[pu(C + I�� + �(��;
�
s)) + (1� p)u(C + I��)]

+(1� �)�[pu(C + I
�
� + �(

�
�;
�
s)) + (1� p)u(C + I

�
�)]

The contract entails risk-taking following a bad signal. With probability 1� p the seller

may default. Since the seller�s default is a contractible event, it is privately optimal to set

the transfers equal to zero. The transfer can only be from the buyer to the seller and the

buyer is better o¤ not making any transfer to the seller.9

The incentive-compatibility constraints are given by

P � �� (9)

P <
�
� (10)

The seller exerts e¤ort after a good signal. Following a bad signal, she prefers to run the

risk of default when the expected transfers to the buyer are su¢ ciently high.

9Note, however, that if the default of the seller entails costs to third parties, a positive transfer from the
buyer in the default state may be optimal from a social point of view. Such a transfer induces the buyer to
internalize the costs stemming from the risk-taking by the seller. We return to this issue in Section 7.
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The seller�s participation constraint is

prob[�s](KR� ��) + prob[
�
s][p(KR�

�
�) +KB] � KR

or, equivalently,

�prob[
�
s](1� p)P � prob[�s]�� + prob[

�
s]p
�
� (11)

The expected transfer from the seller to the buyer (right-hand side) is negative. If seller

enters the hedge, she must be compensated for the potential loss of pledgeable income due

to the lack of e¤ort after bad news (left-hand side). Note that higher pledgeable income

makes it more di¢ cult for a protection seller to accept a contract with no e¤ort. Higher

returns on seller�s assets KR increase the outside opportunity of the seller, and they may

not materialize in the hedging contract. Similarly, a smaller private bene�t B reduces the

value of the contract by reducing the bene�t of not exerting e¤ort after a bad signal.

The following proposition characterizes the second-best contract with e¤ort after a good

signal and no e¤ort after a bad signal.

Proposition 3 (Second-best contract with risk-taking) When e¤ort is not observable

and the �rst-best is not attainable, P < (� �
�
�)I��, the optimal contract with risk-taking

after a bad signal provides full insurance conditional on no default and is actuarially unfair.

The transfers are given by:

� e=1;e=0(��; �s) = � e=1;e=0(��;
�
s) = � (1� �) I��1� prob[�sj��](1� p)

1� prob[
�
s](1� p) �

Pprob[
�
s](1� p)

1� prob[
�
s](1� p) < 0

� e=1;e=0(
�
�; �s) = � e=1;e=0(

�
�;
�
s) = �I��

1� prob[
�
sj��](1� p)

1� prob[
�
s](1� p) �

Pprob[
�
s](1� p)

1� prob[
�
s](1� p) > 0

As in the �rst- and second-best contract with e¤ort, there are no rents to the protection

seller (the participation constraint is binding). Again, the seller pays the buyer if ~� =
�
� and

vice versa if ~� = ��:

� e=1;e=0(
�
�; ~s) > 0 > � e=1;e=0(��; ~s)
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There are three di¤erences between the second-best contract with e¤ort and the contract

with risk-taking after bad news. First, the contract with risk-taking does not react to the

signal:

� e=1;e=0(~�; �s) = � e=1;e=0(~�;
�
s)

As long the protection seller does not default, the consumption of the buyer is equalized

across states (as in the �rst-best contract). Second, unlike in the contract with e¤ort, the

buyer is now exposed to counterparty risk. He is completely unhedged in the default state.

Third, the contract with no e¤ort after a bad signal is not actuarially fair (the expected

transfers from the seller to the buyer are negative, see equation (11)).

In sum, in the second-best contract with risk-taking, the protection buyer can get more

risk-sharing from the hedge by accepting counterparty risk.

4.3 Risk-sharing and risk-taking

The contract with e¤ort after both signals entails limited risk-sharing but no risk-taking,

while the contract with no e¤ort after a bad signal entails full risk-sharing but allows risk-

taking after bad news. In this section, we examine under what conditions it is privately

optimal to allow risk-taking.

Proposition 4 (Endogenous counterparty risk) Suppose e¤ort is not observable and

the �rst-best is not attainable, P < (� �
�
�)I��. If the probability of default is su¢ ciently

small, the contract with no e¤ort after a bad signal is optimal for low levels of pledgeable

income P.

The key factor in the choice between the second-best contract with and without risk-

taking is whether counterparty or signal risk is more costly for the protection buyer. For

low levels of pledgeable income, the moral hazard problem is severe. Providing incentives

to avoid risk-taking after a bad signal, requires a considerable reduction in hidden leverage.

The buyer then has to bear a lot of signal risk. If, at the same time, default is unlikely (p

14



is high), the counterparty risk under the risk-taking contract is small. It is then optimal for

the protection buyer to allow risk-taking by the protection seller.

Counterparty risk thus arises endogenously due to moral hazard. �Fat�tails are generated

through the incentive structure rather than by assumption. Note that pledgeable income P

is increasing in the return of seller�s assets, R. Hence, privately optimal hedging contracts

are more likely to allow risk-taking in an environment of low returns (endogenous �search

for yield�).

In sum, under the conditions in the proposition, the privately optimal contract entails no

e¤ort after a bad signal. For higher levels of pledgeable income, the moral hazard problem

diminishes allowing for more risk-sharing under e¤ort. The second-best contract with e¤ort

becomes optimal. For P � (� �
�
�)I��, the �rst-best is reached.

5 Implementation

Suppose pledgeable income P is su¢ ciently high so that the �rst-best is attainable, P �

(��
�
�)I��. Then, the optimal contract can be implemented with a forward contract. Recall

that if the signal is completely uninformative, the condition above is satis�ed and hence a

forward always implements the optimal contract.

For pledgeable income levels such that 0 < P < P̂, where P̂ denotes the threshold level of

pledgeable income below which the optimal contract allows risk-taking, a forward contract

with the added feature of freeing the protection buyer from the obligation to honor the

forward if the seller defaults implements the optimal contract.

For pledgeable income levels such that P̂ � P < (� �
�
�)I��, a simple forward contract

does not implement the optimal contract. The transfers under a �plain vanilla�forward do

not depend on advance information about the hedged risk. However, the optimal contract

does react to such information to preserve the incentives of protection sellers to control their

balance sheet risk. Furthermore, the participation constraint with the optimal contract
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always binds. It eliminates rents by enabling cross-subsidization across signals. With a

simple forward, such cross-subsidization is not feasible and protection sellers will obtain

rents.

6 Initial margins

Suppose a market infrastructure exists that enables implementation of initial margins, i.e., a

requirement for the protection seller to deposit some cash with a central counterparty (CCP)

when the contract is signed. Such an infrastructure changes the technology that agents have

access to. It makes some choices of the seller observable and contractible. In this section, we

analyze the incentive e¤ects of initial margins. In case of the contract with e¤ort, in which

risk-sharing is limited by the incentive constraint of the seller, we examine whether initial

margins can help increase the amount of insurance for the protection buyer. In case of the

contract with risk-taking, in which the buyer is exposed to counterparty risk, we examine

the role of initial margins in providing insurance against the seller�s default.

Consider a contract with initial margins. It speci�es a set of transfers, �(~�; ~s), and a

fraction � of assets to be deposited as cash with the CCP.

If the seller exerts e¤ort, her participation constraint is given by:

�K + (1� �)KR� E[� ] � KR

or, equivalently,

E[� ] � �K (1�R) (12)

The expression on the right-hand side is negative and represents the opportunity cost of

depositing cash with the CCP. The seller forgoes the net return of assets over cash, R �

1. since expected transfers are no longer equal to zero, a contract with margins will be

actuarially unfair. Placing a higher initial margin � makes it more di¢ cult for the protection
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seller to accept the contract.

The incentive-compatibility constraint after a bad signal is given by:

�K + (1� �)KR�
�
� � p [�K + (1� �)KR�

�
� ] + (1� �)BK

If the seller does not exert e¤ort (right-hand side), she earns the private bene�t B only on

the assets she still controls. There is no private bene�t associated with the cash deposited

with the clearing house. Higher margins thus reduce the private bene�t of risk-taking: the

cash is ring-fenced from moral hazard. In case of default, the seller loses the cash deposited

as it is transferred to the buyer. We can re-write the incentive constraint as

�K + (1� �)P �
�
� (13)

where P denotes, as before, the pledgeable income. For K > P, the initial margin relaxes

the incentive constraint. As for the incentive constraint after a good signal, we know from

our previous analysis that it will not bind.

Let g denote the per unit size of pledgeable income, g � P
K
. The next lemma states the

conditions when margins are not used, i.e., when �� = 0 is optimal.

Lemma 3 (No margins) When the �rst-best is attainable, g � (� �
�
�) I

K
��, or when the

pledgeable income is higher than the assets in place, g � 1, margins are not used.

Margins are costly (cash a has lower return than other assets) and tighten the partici-

pation constraint (12). They can, however, relax the incentive-compatibility constraint (13)

by reducing the bene�t from risk-taking. When the �rst-best is attainable, the incentive

constraint does not bind. When g � 1, margins do not relax the incentive constraint. In

either case, initial margins will not be used. Hence, they can only be bene�cial if

g < min

�
(� �

�
�)
I

K
��; 1

�
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We �rst characterize the optimal contract with margins and e¤ort after both signals. We

then investigate the optimal contract with margins and risk-taking.

6.1 Margins and e¤ort

We know that the optimal contract will provide full insurance to the protection buyer con-

ditional on the signal. Thus, we can state his objective function in terms of the expected

transfers conditional on the signal. When the protection seller exerts e¤ort, the objective

function of the protection buyer is given by

max
�;��;

�
�
prob[�s]u(C + IE[~�j�s] + ��) + prob[

�
s]u(C + IE[~�j

�
s] +

�
�)

The seller�s participation and incentive constraints are given by (12) and (13), respectively.

The following proposition characterizes the optimal contract with margins and e¤ort after

both signals.

Proposition 5 (Optimal margins with e¤ort) Let �u0(��) and
�
u0(
�
�) denote the buyer�s

marginal utilities conditional on the good and the bad signal, respectively. Margins are used,

�� > 0, if and only if:

�
u0(
�
�(��))

�u0(��(��))
� 1 + R� 1

prob[
�
s] (1� g) (14)

with equality for 0 < �� < 1. Margins are not used, �� = 0, if the reverse inequality holds in

(14) at � = 0. The expected transfers are given by:

�
� = ��K + (1� ��)P

�� = ���K (R� 1) + prob[�s] (K � P)
prob[�s]

� P prob[�s]
prob[�s]

:

The bene�t of margins is improved risk-sharing via the transfers ��(��) and
�
�(��). The

margin itself is never paid to the the protection buyer since the protection seller does not

default when she exerts e¤ort. The �rst-best would be obtained when �
u0(
�
�)

�u0(��) = 1 so that there
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is full insurance against signal risk. In the �rst-best,

�
� � �� = I(E[~�j�s]� E[~�j

�
s]) (15)

But to preserve the seller�s incentives to exert e¤ort when the �rst-best is not attainable, the

protection buyer must bear signal risk and the left-hand side of (15) is bigger than the right-

hand side (due to (14)). Since @��
@�� < 0 and @

�
�

@�� > 0, higher margins reduce the left-hand

side, moving the transfers closer to the full insurance.

The cost of margins is that they make the contract with e¤ort actuarially unfair. The

optimal margin balances enhanced insurance against signal risk and actuarial fairness. The

right-hand side of (14) gives the rate at which the trade-o¤ occurs. The numerator of the

fraction, R � 1, is the opportunity cost of foregone asset return and a measure of actuar-

ial unfairness of the contract. The denominator, 1 � g, represents the e¤ect of improved

incentives. It gives the extent to which margins relax the incentive constraint after a bad

signal.

6.2 Margins and risk-taking

If the protection seller does not exert e¤ort after a bad signal and engages in risk-taking, she

defaults with probability 1 � p. If she defaults, the margin is transferred to the protection

buyer.

The participation constraint of the protection seller is now given by

�(1� p)prob[
�
s](�K + (1� �)P) + �K (1�R) � prob[�s]�� + prob[

�
s]p
�
� (16)

The left-hand side is the sum of the loss conditional on default and the ex-ante opportunity

cost due to the foregone asset return R � 1. The right-hand side is the expected transfer

from the protection seller to the buyer. It is the same as in the case without margins (see

(11)).
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The objective function of the protection buyer is given by

max
�;��;

�
�
prob[�s]u(C+IE[~�j�s]+��)+prob[

�
s]
h
pu(C + IE[~�j

�
s] +

�
�) + (1� p)E[u(C + I~� + �K)j

�
s]
i

In case the protection seller defaults, the protection buyer obtains the cash deposit, �K.

The following proposition characterizes the optimal contract with margins and risk-taking

after a bad signal.

Proposition 6 (Optimal margins with risk-taking) Let u0d and u
0
nd denote the buyer�s

marginal utilities when the seller defaults and when she does not, respectively. Margins are

used, �� > 0, if and only if:

prob[
�
s](1� p)E[u

0
d(�

�)j
�
s]

u0nd(�
�)

� R� 1 + prob[
�
s](1� p)(1� g) (17)

with equality for 0 < �� < 1. Margins are not used, �� = 0, if the reverse inequality holds in

(17) at � = 0. The expected transfers are given by (15) and

�
� = ���K(R� 1) + prob[�s](1� p)(K � P)

1� prob[
�
s](1� p) +

prob[�s]I(E[~�j�s]� E[~�j
�
s])� prob[

�
s](1� p)P

1� prob[
�
s](1� p)

(18)

As in the risk-taking contract without margins, the protection buyer gets full insurance

when the seller does not default. In this case, his consumption is given by C + I
�
� +

�
�(��)

where the latter is given by (18). He is, however, exposed to counterparty risk since the

seller may default with probability 1� p after a bad signal.

The bene�t of a margin under the risk-taking contract is the insurance it provides against

counterparty risk (left-hand side of (17)). The wedge between the marginal utilities under

default and no default is reduced. Margins increase the buyer�s expected consumption if the

seller defaults, which happens with probability prob[
�
s](1�p). At the same time, they reduce

his consumption when there is no default since @
�
�

@�� < 0. The protection buyer requires a
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smaller transfer after a bad signal since this is the state in which the margin may be paid to

him.

The cost of margins has two components. First, there is the ex-ante opportunity cost,

R � 1. Second, there is the loss of income in case of default. The optimal margin under

risk-taking balances these costs with the bene�t of protecting the buyer from counterparty

risk.

6.3 Margins, risk-sharing and risk-taking

If a market infrastructure exists that enables the buyer and the seller to use initial mar-

gins (CCP), it is privately optimal to do so whenever �� > 0. There is no need to force

participation. When the contract with margins entails no risk-taking, the margin acts as

a commitment device for the protection seller not to take risks once she observes negative

news about hedged risks. When the contract entails risk-taking, the margin protects the

buyer against the default of the seller.

The choice between the contract with margins and e¤ort and the contract with margins

and risk-taking depends again on whether counterparty or signal risk is more costly for the

protection buyer. As in Section 4.3, the contract with risk-taking may be chosen when

pledgeable income is low and the moral hazard problem is severe.

The overall e¤ect of margins on risk-taking, and hence counterparty risk, is ambiguous.

On the one hand, margins reduce the signal risk faced by the buyer and make risk-control by

the seller more attractive. On the other hand, margins protect the buyer from counterparty

risk and make risk-taking by the seller more attractive. If the latter e¤ect is small, then

margins reduce the risk-taking e¤ect of �nancial innovation. If the buyer bene�ts a lot from

the insurance against counterparty risk, then margins lead to more risk-taking.
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7 Social optimality and regulation

Whenever the privately optimal hedging contract entails risk control by the protection seller,

her assets are safe and there is no default. When the level of pledgeable income is low, the

privately optimal contract, however, entails risk-taking and counterparty risk (see Proposi-

tion 4). Risk-taking by �nancial institutions entails costs for third parties, e.g., bankruptcy

costs or disruptions in payment systems and interbank markets. To examine this possibility,

suppose that the default of the seller leads to losses L � 0. The losses L are a measure

of the externality the default of a protection seller imposes on the �nancial system, i.e., L

measures the systemic importance of a �nancial institution. Since the seller is protected by

limited liability, she does not internalize its systemic relevance.

Social (utilitarian) welfare is given by the sum of the buyer�s utility and the seller�s pro�ts

net of losses L. Social welfare decreases with losses and there exists a threshold level of L,

L�, such that for losses larger than L�, social optimality requires the avoidance of risk-taking

even though it may be privately optimal. The con�ict between private and social optimality

opens up the scope for regulating systemically relevant �nancial institutions that are engaged

in �nancial innovation.

One way to mitigate risk-taking incentives is to impose capital requirements on protection

sellers. For a given amount of hedging activities, extra capital strengthens their balance

sheets by increasing pledgeable income. This counters the hidden leverage embedded in

�nancial innovation. Thus, requiring �nancial institutions to hold capital in proportion to

their derivative exposures reduces risk-taking. By extension, (systemically relevant) �nancial

institutions that opt out of such capital requirements should not be allowed to undertake

hedging activities.

Our analysis shows that �nancial market infrastructures have an important e¤ect on sys-

temic risk. For example, the clearing of derivative contracts by a central counterparty (CCP)

makes margin requirements possible. As long as margins are privately optimal, the clearing

need not be mandated. As for the e¤ect of margin requirements on risk-taking, we showed
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that it is ambiguous. Margins make risk-taking by the protection seller less attractive but

they introduce complacency of the buyer by insuring him against seller default. If the former

e¤ect dominates, margins and capital requirements are substitutes. Market infrastructures

then allow to economize on the use of costly capital. If the latter e¤ect dominates, margins

and capital requirements are complements. In that case, market infrastructures must be

supported by additional regulation.

Mandating the clearing of derivatives through a CCP can also improve social welfare by

penalizing the protection buyer for his complacency about seller default. We showed that

it is privately optimal to have zero transfers in case the seller defaults (see the discussion

following equation (8)). When the losses L incurred by third parties are high, it is socially

optimal to have the buyer internalize the consequences of being complacent about the seller�s

risk-taking. One way to internalize the losses is to have the CCP collect a payment from the

buyer even if his counterparty is no longer around.

8 Conclusion

We consider a �nancial innovation, whereby a protection seller o¤ers a hedge to a protection

buyer. We show how this innovation, designed to facilitate risk-sharing, can generate incen-

tives for risk-taking. When the position of the protection seller becomes loss-making, this

creates hidden leverage, discouraging the mitigation of risks in the seller�s core business. Such

elevated moral hazard raises the default risk of the protection seller and, correspondingly,

the counterparty risk for the protection buyer. Thus innovation can lead to systemic risk,

in the form of contagion from positions in innovative products to the traditional business of

�nancial institutions.

We show that for well-capitalized institutions, margin requirements mitigate this problem,

by reducing the severity of the moral hazard problem. Therefore, the establishment of CCPs

can be part of an appropriate regulatory response. But, our analysis implies that poorly
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capitalized �rms should be banned from the sale of such protection, even in markets with

CCPs and margin requirements.
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Appendix

Proof of Proposition 1

Let � denote the Lagrange multiplier on the participation constraint 2. The �rst-order
conditions with respect to transfers �(��; �s), �(

�
�; �s), �(��;

�
s) and �(

�
�;
�
s) are given by:

��u0(C + I�� + �(��; �s))� ��� = 0

(1� �)(1� �)u0(C + I
�
� + �(

�
�; �s))� �(1� �)(1� �) = 0

�(1� �)u0(C + I�� + �(��;
�
s))� ��(1� �) = 0

(1� �)�u0(C + I
�
� + �(

�
�;
�
s))� �(1� �)� = 0

It follows that the marginal utility of the buyer of insurance is equalized across (~�; ~s)
states (full insurance) and that the participation constraint is binding:

�u0(�(��; �s)) = �u0(�(��;
�
s)) =

�
u0(�(

�
�;
�
s)) =

�
u0(�(

�
�; �s)) = � > 0 (A.1)

The optimal transfers are obtained by using the fact that the participation constraint is
binding and that consumption is the same across (~�; ~s) states.

Proof of Lemma 1

Let ��s and �
�
s denote the Lagrange multipliers on the incentive compatibility constraints (5)

and (6), respectively (� again denotes the multiplier on the participation constraint (2)).
The �rst-order conditions with respect to transfers �(��; �s), �(

�
�; �s), �(��;

�
s) and �(

�
�;
�
s) are

given by:

��u0(C + I�� + �(��; �s))� ��s�� � ��� = 0

(1� �)(1� �)u0(C + I
�
� + �(

�
�; �s))� ��s(1� ��)� �(1� �)(1� �) = 0

�(1� �)u0(C + I�� + �(��;
�
s))� �

�
s�
� � ��(1� �) = 0

(1� �)�u0(C + I
�
� + �(

�
�;
�
s))� �

�
s(1� ��)� �(1� �)� = 0

We re-write the �rst-order conditions as

�u0(�(��; �s)) = �+ ��s
��

��
(A.2)

�
u0(�(

�
�; �s)) = �+ ��s

1� ��
(1� �)(1� �) (A.3)

�u0(�(��;
�
s)) = �+ �

�
s �

�

�(1� �) (A.4)

�
u0(�(

�
�;
�
s)) = �+ �

�
s

1�
�
�

(1� �)� (A.5)

where we use a shorthand �u0(�(��; ~s)) to denote marginal utility in state �� conditional on the
signal ~s and, similarly,

�
u0(�(

�
�; ~s)) to denote marginal utility in state

�
� conditional on the
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signal ~s.
Since

��

��
=

prob[��j�s]
prob[�� \ �s]

=
1

prob[�s]
1� ��

(1� �)(1� �) =
prob[

�
�j�s]

prob[
�
� \ �s] =

1

prob[�s]

�
�

�(1� �) =
prob[��j

�
s]

prob[�� \
�
s]
=

1

prob[
�
s]

1�
�
�

(1� �)� =
prob[

�
�j
�
s]

prob[
�
� \

�
s]
=

1

prob[
�
s]

holds, it follows that there is full risk-sharing conditional on the signal:

�u0(�(��; �s)) =
�
u0(�(

�
�; �s))

�u0(�(��;
�
s)) =

�
u0(�(

�
�;
�
s))

As in the �rst-best case, we therefore have

�(
�
�; �s)� �(��; �s) = �(

�
�;
�
s)� �(��;

�
s) = I�� > 0 (A.6)

It follows that, conditional on the signal, the transfer to the buyer when the asset return is
low is higher than when the asset return is high, �(

�
�; ~s) > �(��; ~s).

Next, we show that the participation constraint must bind. Suppose not, i.e. � = 0.
Then, equations (A.2) and (A.3) imply that ��s > 0. Similarly, (A.4) and (A.5) imply that
�
�
s > 0. Both incentive constraints bind so that P = �� = �� . Since the participation constraintis slack, it must be that

0 > E[� ] � prob[�s]�� + prob[
�
s]
�
�

= P (prob[�s] + prob[
�
s])

= P

which contradicts P > 0. Hence, the participation constraint binds, E[� ] = 0.
It follows that at least one incentive constraint must be slack. If not, then �� =

�
� = P > 0,

which contradicts E[� ] = 0.
Suppose both incentive constraints are slack, ��s = �

�
s = 0. Then, we obtain full insurance

as in (A.1) and the contract is given by proposition 1 (�rst-best). The conditions under which
the incentive constraints are indeed slack are given by:

P > ���FB(��; �s) + (1� ��)�FB(
�
�; �s) = (� � ��)I��

P >
�
��FB(��;

�
s) + (1�

�
�)�FB(

�
�;
�
s) = (� �

�
�)I��

When the signal is informative, � > 1
2
, we have �� > � >

�
�. The result in the lemma

follows.
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Proof of Lemma 2

We have shown above that at least one incentive constraint must be slack. They cannot
both be slack since we assume that P < (� �

�
�)I��. We now show that it is the incentive

constraint following a bad signal that is binding. Suppose not, so that P = �� > 0 >
�
� where

the last inequality follows from E[� ] = 0. Then, �
�
s = 0 and ��s � 0 and equations (A.2)

through (A.5) yield

�u0(�(��;
�
s)) =

�
u0(�(

�
�;
�
s)) = � � �u0(�(��; �s)) =

�
u0(�(

�
�; �s))

Comparing the �rst with the third term and the second with the fourth term yields

�(��;
�
s) � �(��; �s)

�(
�
�;
�
s) � �(

�
�; �s)

Using �(
�
�; ~s) > �(��; ~s) (equation (A.6)) and �� >

�
�, we can write

0 < �� � ���(��; �s) + (1� ��)�(
�
�; �s)

<
�
��(��; �s) + (1�

�
�)�(

�
�; �s)

�
�
��(��;

�
s) + (1�

�
�)�(

�
�;
�
s) �

�
�

But
�
� < 0, a contradiction. Hence, only the incentive constraint after a bad signal binds.

Proof of Proposition 2

The optimal contract is given by the binding incentive constraint following a bad signal:

P =
�
� ;

the binding participation constraint

prob[�s]�� + prob[
�
s]
�
� = 0;

and full risk-sharing conditional on the signal (A.6).

Proof of Proposition 3

Let ��s denote the Lagrange multiplier on the incentive constraint following a good signal and
let � denote the multiplier on the participation constraint (11). The �rst-order conditions
with respect to transfers �(��; �s), �(

�
�; �s), �(��;

�
s) and �(

�
�;
�
s) are:
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�u0(�(��; �s)) = �+
��s

prob[�s]
(A.7)

�
u0(�(

�
�; �s)) = �+

��s
prob[�s]

(A.8)

�u0(�(��;
�
s)) = � (A.9)

�
u0(�(

�
�;
�
s)) = � (A.10)

The last two conditions imply that the participation constraint binds as � > 0. Moreover,
we again have full sharing of the ~� risk conditional on the signal, except for a default state:

�u0(�(��; �s)) =
�
u0(�(

�
�; �s))

�u0(�(��;
�
s)) =

�
u0(�(

�
�;
�
s))

and hence
�(
�
�; ~s)� �(��; ~s) = I�� > 0 (A.11)

Next, we show that the incentive constraint after a good signal (9) is slack, implying
��s = 0. Suppose that the constraint is not slack and P = �� < �� . Since P > 0, both expectedtransfers are positive, which violates the participation constraint.
Since incentive constraints are slack, the �rst-order conditions become

�u0(�(��; �s)) = �u0(�(��;
�
s)) =

�
u0(�(

�
�;
�
s)) =

�
u0(�(

�
�; �s)) = � (A.12)

Conditional on no default, there is full insurance, as in the �rst-best case (A.1):

�(~�; �s) = �(~�;
�
s) (A.13)

The buyer is, however, exposed to counterparty risk.
The optimal contract with no e¤ort after a bad signal is given by (A.12) and the binding

participation constraint. We now check under what condition the incentive constraint fol-
lowing a bad signal (10) is indeed slack. Starting with the binding participation constraint
and using (A.11) and (A.13), we get

�prob[
�
s](1� p)P = prob[�s][���(��; �s) + (1� ��)�(

�
�; �s)] + prob[

�
s]p[
�
��(��;

�
s) + (1�

�
�)�(

�
�;
�
s)]

= prob[�s][�(
�
�; �s)� ��I��] + prob[

�
s]p[�(

�
�;
�
s)�

�
�I��]

= �(
�
�;
�
s)[prob[�s] + prob[

�
s]p]� I��[prob[�s]�� + prob[

�
s]p
�
�]

Using Bayes�Rule and simplifying, we arrive at

�prob[
�
s](1� p)P = �(

�
�;
�
s)[1� prob[

�
s](1� p)]� I���[1� prob[

�
sj��](1� p)]

Hence,

�(
�
�;
�
s) = �I��

1� prob[
�
sj��](1� p)

1� prob[
�
s](1� p) � P

prob[
�
s](1� p)

1� prob[
�
s](1� p) (A.14)

30



Since
�
� = �(

�
�;
�
s)�

�
�I��, for the incentive constraint after a bad signal to be slack, it must

be that
P < �(

�
�;
�
s)�

�
�I��

Substituting for �(
�
�;
�
s) and simplifying yields

P < (� �
�
�)I�� � (1� p)I��[�prob[

�
sj��]�

�
�prob[

�
s]]

or, equivalently,
P < (� �

�
�)I��

This is the same condition as in Lemma 1. The incentive constraint after a bad signal is
slack when the �rst-best is not attainable.

Proof of Proposition 4

The proof proceeds in three steps. First, we show that the expected utility of the contract
with e¤ort after both signals is increasing in P:

@EU e=1

@P = �prob[�s]
prob[�s]

�
���u0(�(��; �s)) + (1� �) (1� �)

�
u0(�(

�
�; �s))

�
+� (1� �) �u0(�(��;

�
s)) + (1� �)�

�
u0(�(

�
�;
�
s))

= prob[
�
s]
�
�u0(�(��;

�
s))� �u0(�(��; �s))

�
> 0

since �(��;
�
s) < �(��; �s) due to the signal risk.

Second, we show that the expected utility of the contract with no e¤ort following a bad
signal is decreasing in P:

@EU e=1;e=0

@P = � prob[
�
s] (1� p)

1� prob[
�
s] (1� p)

�
���u0(�(��; �s)) + (1� �) (1� �)

�
u0(�(

�
�; �s))

+ � (1� �) p�u0(�(��;
�
s)) + (1� �)�p

�
u0(�(

�
�;
�
s))
�

= � prob[
�
s] (1� p)

1� prob[
�
s] (1� p)

�
�(�+ p(1� �))�u0(�(��; �s))

+(1� �)((1� �) + p�)
�
u0(�(

�
�; �s))] < 0

Third, we provide su¢ cient condition for EU e=1 (P = 0) < EU e=1;e=0 (P = 0) so that no
e¤ort after a bad signal is optimal for low P.
We have

EU e=1 (P = 0) = [��+ (1� �) (1� �)]u (C + I
�
� + ��I��) + [� (1� �) + (1� �)�]�

u (C + I
�
� +

�
�I��)

= prob[�s]u (C + I
�
� + ��I��) + prob[

�
s]u (C + I

�
� +

�
�I��)

= prob[�s]u(C + IE[~�j�s]) + prob[
�
s]u(C + IE[~�j

�
s]) (A.15)
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and

EU e=1;e=0 (P = 0) = (prob[�s] + pprob[
�
s])u

�
C + I

�
� + �

1� prob[
�
sj��](1� p)

1� prob[
�
s](1� p) I��

�
+(1� p)

�
�(1� �)u(C + I��) + (1� �)�u(C + I

�
�)
�

= (prob[�s] + prob[
�
s]p)u

�
C + IÊ[~�]

�
+prob[

�
s](1� p)

�
�
�u(C + I��) + (1�

�
�)u(C + I

�
�)
�

(A.16)

where
Ê[~�] = �̂�� + (1� �̂)

�
�

and

�̂ = �
1� prob[

�
sj��](1� p)

1� prob[
�
s](1� p)

Note that
�� > �̂ > � >

�
� (A.17)

for p 2 (0; 1). Note that �� = �̂ for p = 0 and that �̂ = � for p = 1. The �rst two inequalities
follow from the fact that prob[

�
s] >prob[

�
sj��] for � > 1

2
(informative signal). Hence,

1� prob[
�
sj��](1� p)

1� prob[
�
s](1� p) � 1

Combining (A.15) and (A.16), we have that no e¤ort after a bad signal dominates e¤ort
(when P = 0) if and only if

prob[�s]u(C + IE[~�j�s]) + prob[
�
s]u(C + IE[~�j

�
s])

< (prob[�s] + prob[
�
s]p)u(C + IÊ[~�]) + prob[

�
s](1� p)EU

�
(C + I~�)j

�
s
�

where
EU

�
(C + I~�)j

�
s
�
=
�
�u(C + I��) + (1�

�
�)u(C + I

�
�)

After collecting terms, we have

prob[�s]
h
u(C + IE[~�j�s])� u(C + IÊ[~�])

i
+ prob[

�
s]
h
u(C + IE[~�j

�
s])� EU

�
(C + I~�)j

�
s
�i

< prob[
�
s]p
h
u(C + IÊ[~�])� EU

�
(C + I~�)j

�
s
�i

All the di¤erences in the square brackets are positive. The �rst one due to (A.17), the second
one due to the concavity of u, and the third one due to both the concavity of u and (A.17).
Rearranging, we arrive at

prob[�s]
prob[

�
s]

u(C + IE[~�j�s])� u(C + IÊ[~�])
u(C + IÊ[~�])� EU

�
(C + I~�)j

�
s
�+u(C + IE[~�j�s])� EU

�
(C + I~�)j

�
s
�

u(C + IÊ[~�])� EU
�
(C + I~�)j

�
s
� < p (A.18)
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It is clear that the left-hand side is strictly positive so that seller�s e¤ort dominates when p
is small. The left-hand is, however, also strictly smaller than one so that no e¤ort after a
bad signal dominates when p is large.10

The condition

prob[�s]
prob[

�
s]

u(C + IE[~�j�s])� u(C + IÊ[~�])
u(C + IÊ[~�])� EU

�
(C + I~�)j

�
s
� + u(C + IE[~�j�s])� EU

�
(C + I~�)j

�
s
�

u(C + IÊ[~�])� EU
�
(C + I~�)j

�
s
� < 1

simpli�es to

prob[�s]u(C + IE[~�j�s]) + prob[
�
s]u(C + IE[~�j

�
s]) < u(C + IÊ[~�])

By concavity,

prob[�s]u(C + IE[~�j�s]) + prob[
�
s]u(C + IE[~�j

�
s]) < u(C + IE[~�])

and so the condition holds when

u(C + IE[~�]) � u(C + IÊ[~�])

which is always the case due to (A.17).
Hence, whenever EU e=1 (P = 0) < EU e=1;e=0 (P = 0) holds, the privately optimal con-

tract entails no e¤ort after a bad signal for low levels of pledgeable income P. For levels
of P � P̂ where P̂ is given by EU e=1

�
P̂
�
= EU e=1;e=0

�
P̂
�
and P̂ < (� �

�
�)I��, the

optimal contract is the second-best contract with e¤ort. For P > (� �
�
�)I��, the �rst-best

is reached.

Proof of Lemma 3

Let g denote the per unit size of pledgeable income so that g � P
K
. Recall that �rst-best

is attainable for P � (� �
�
�)I�� (lemma 1). Hence, if g � (� �

�
�) I

K
��, margins would

only imply the opportunity cost of forgoing a pro�table investment opportunity. It is thus
optimal to set �� = 0.
For g � 1, we have that P � K. In this case, the incentive constraint in (13) cannot be

relaxed using initial margins. Hence, they will not be used.
In sum, for

g � min
�
(� �

�
�)
I

K
��; 1

�
it is not optimal to use initial margins and �� = 0.

10Note that this inequality is evaluated at P = 0 and P is a function of p. There is, however, an open set
of parameters for which no e¤ort after a bad signal dominates.
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Proof of Proposition 5

Let � and �
�
s denote the Lagrange multipliers on the participation and incentive-compatibility

constraints (12) and (13), respectively. Furthermore, let �0 and �1 be the Lagrange multi-
pliers on the feasibility constraints � � 0 and � � 1. The �rst-order conditions with respect
to expected transfers �� ,

�
� and initial margin � are:

�u0(��) = � (A.19)

�
u0(
�
�) = �+

��s
prob[

�
s]

(A.20)

��s (K � P) + �0 = �K (R� 1) + �1 (A.21)

where �u0(��) and
�
u0(
�
�) denote the marginal utility conditional on the good and the bad signal,

respectively.
The �rst condition implies that � > 0 and the participation constraint binds. Substituting

(A.19) and (A.21) into (A.20), we arrive at:

�
u0(
�
�)

�u0(��)
= 1 +

K (R� 1)
prob[

�
s] (K � P) +

�1 � �0
�u0(��)prob[

�
s] (K � P)

When margins are not used, �1 = 0. If they are used, then �0 = 0 and equation (A.21)
implies that the incentive-compatibility constraint binds, ��s > 0 (since R > 1 and K > P).
Then,

�
� = �K + (1� �)P

and

�� = ��K (R� 1) + prob[�s] (K � P)
prob[�s]

� P prob[�s]
prob[�s]

Proof of Proposition 6

Let � denote the Lagrange multiplier on the participation constraint (16). Furthermore, let
�0 and �1 be the Lagrange multipliers on the feasibility constraints � � 0 and � � 1. The
�rst-order conditions with respect to expected transfers �� ,

�
� and initial margin � are:

�u0(��) = �

�
u0(
�
�) = �

prob[
�
s](1� p)KE[u0dj�s] + �0 = � [K (R� 1) + prob[

�
s](1� p) (K � P)] + �1

where E[u0dj�s] denotes the expected marginal utility in case the protection seller defaults:

E[u0dj�s] � ��u
0(C + I�� + �K) + (1�

�
�)u0(C + I

�
� + �K)

The �rst two �rst-order conditions yield �u0(��) =
�
u0(
�
�) � u0nd. Plugging into the third �rst-

order condition gives (17). Since the contract does not depend on the signal, the transfers
satisfy (15). Combining (15) and the participation constraint (16) yields (18).
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