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1 Introduction

Economic institutions are widely believed to play a crucial role for economic growth. In particular,

there is now considerable evidence that financial institutions, once considered a “sideshow” (Robinson

(1952)), promote economic growth by relaxing constraints undermining the efficiency of investments.

In this paper, we analyze the role of one such institution, the stock market, in alleviating one such

constraint, investors’ inability to perfectly communicate their private information. Economists have

long argued that stock prices improve the allocation of capital by aggregating dispersed information

and pointing to the most promising investment opportunities. While several aspects of the relation

between the stock market and the real economy have been examined, “existing theories have not yet

assembled the links in the chain from the functioning of stock markets, to information acquisition, and

finally to aggregate long-run economic growth” (Levine (1997)).1 This paper assembles these links.

We present a fully integrated model of information acquisition and dissemination through prices,

capital allocation and economic growth. A competitive stock market in the spirit of Grossman and

Stiglitz (1980) is embedded into a neoclassical growth economy. The economy is composed of firms

that raise capital on the stock market, and overlapping generations of workers who invest their labor

income in them. Firms’ productivity is unknown but agents can collect private signals about it at a

cost. Specifically, they are endowed with one unit of free time which they can devote either to analyzing

stocks or to enjoying leisure. Agents’ information is reflected in stock prices, but only partially so

because of the presence of noise. Prices in turn guide investors in their portfolio allocations.

The only friction in the model stems from agents’ inability to contract on the precisions of their

signals (in particular, there is no short-sales constraint, nor minimum investment requirement). If they

could, then the first best outcome would be achieved: agents would commit to infinitesimal precisions

(arbitrarily close but not equal to zero), pool their signals and discover firms’ productivity thanks to

the Law of Large Numbers (signal errors are uncorrelated across agents and each generation consists

of a continuum of agents).2 Unfortunately, this outcome is not a Nash equilibrium when precisions are

1Page 695. More recently, Levine (2005) confirms this assessment: “While some models hint at the links between
efficient markets, information and steady-state growth, existing theories do not draw the connection between market
liquidity, information production and economic growth very tightly” (page 9). See Levine (1997, 2005) for reviews of the
empirical and theoretical literatures on finance and growth.

2Reaching the first best does not require all agents to select non-zero precisions. A randomly chosen subset sufficies.
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not contractible, as assumed here. Indeed, agents’ best response is to set their precisions to zero and

report noise, which results in no learning.

The stock market provides the means to share private information in an incentive-compatible way.

For example, when agents receive optimistic signals about a firm, they buy its shares and bid up its

stock price. The high stock price in turn indicates that investors collectively believe the firm to have

good prospects. Thanks to stock prices, agents are better informed even though no new information

is actually produced. Naturally, the effectiveness of the stock market is limited by the very existence

of informative prices which undermines the incentive to collect costly information in the first place.

Indeed, investors’ cannot fully appropriate the benefit of their signals as they are leaked to competitors

through prices (the Grossman-Stiglitz paradox). Thus, informative stock prices have an impact that is

beneficial ex post but detrimental ex ante to capital efficiency. Noise trading provides the smoke screen

behind which investors can conceal their informed trades and reap some benefit. We show that agents,

though they reduce the precision of their private signals in response to a decline in the intensity of noise

trading, are nevertheless better informed on the whole thanks to the increased accuracy of stock prices.

That is, the information sharing benefit outweighs the disincentive cost. As a result, the allocation of

capital improves. Moreover, it converges to the first best as the intensity of noise trading approaches

zero. These findings illustrate the real effects of the stock market.

To a first approximation, income in the stock market economy is governed by a standard neoclassical

law of motion similar to that which obtains under the first best: income grows at a decreasing rate until

it reaches a steady-state in which it no longer grows.3 The learning process has no bearing on long

run growth — it does not counter the diminishing returns to capital, but it does influence the long run

level of income and therefore its transitory growth rate. Learning may intensify or weaken along the

growth path depending on two competing forces. On one hand, agents with a higher wage retire with

more of the consumption good because they invested more, which reduces its marginal utility. Hence,

they would rather consume more leisure and collect less information (the substitution effect). On the

other hand, information generates increasing returns to scale — its benefit, unlike its cost, rises with the

amount to be invested. The substitution effect leads wealthier agents to learn less while the scale effect

3There is no technological progress nor population growth in the model.
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of information induces them to learn more.

If the scale effect of information dominates the substitution effect, then investors produce more

private information as their income grows, and, as a result, they allocate their labor income more

efficiently across the various firms. This enhances the marginal product of labor and makes the next

generation of workers richer. In this case, income grows at an accelerated rate. That is, the growth rate

of income falls less quickly than in a standard neoclassical economy. If instead the substitution effect

dominates, wealthier investors collect less private information and invest less efficiently so the growth

rate of income is reduced.4

In either case, information production is more responsive to income when stock prices reveal more

information: in the presence of informative stock prices, the precision of information grows faster with

income if the scale effect dominates, and declines faster with income if the substitution effect dominates.

Indeed the efficiency of the capital allocation, and therefore next period’s income, increase with the

precision of investors’ private signals directly, but also indirectly through the informativeness of stock

prices (recall that the information sharing benefit outweighs the disincentive cost). So the stock market

strengthens the link between income and information production.

Several aspects of the model are broadly consistent with the evidence, assuming that the scale effect

of information dominates the substitution effect. First, the stock market develops (e.g., as measured by

the time spent analyzing stocks) in tandem with income, contributes to economic growth and its effect

is transitory. Empirically, Levine and Zervos (1998), Rousseau and Wachtel (2000) and Carlin and

Mayer (2003) document that income grows faster in countries with better functioning stock markets.

Atje and Jovanovic (1993) estimate that this growth effect is permanent, but Harris (1997) finds that

it is only transitory after controlling for possible endogeneity problems. The model also implies that

the stock market processes information only when income exceeds a threshold, again a consequence

of the increasing returns to information. This is consistent with the casual observation that financial

institutions only emerge once a critical level of income has been reached.

We derive additional observable properties of the economy during its transition to the steady-

state, starting from an initial wage below its steady-state level. As the economy grows, (i) capital

4We derive simple conditions on preferences which specify which effect dominates.
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is more efficiently allocated across firms, i.e. more (less) capital is channelled to more (less) productive

firms. This superior efficiency leads to higher total factor productivity (TFP), even though there is no

technological progress.5 (ii) The economy specializes as it grows. Indeed, agents invest more selectively,

leading capital and profits to become more concentrated across firms. (iii) Income inequality follows

a “Kuznets curve”, widening at first and then narrowing. (iv) Stock market liquidity (the inverse of

the sensitivity of stock prices to uninformative noise shocks) and the share turnover (the ratio of the

value of shares traded to the total capitalization of the market) increase at first and then decrease.

Inequality, liquidity and turnover display similar non-monotonic behaviors because all three are driven

by the extent to which investors disagree about stocks. At the early stage of development, agents follow

mostly price signals since their private signals are imprecise, so disagreement is low. As their private

signals become more accurate, agents rely more on them, so disagreement, inequality, trading volume

and liquidity rise with income. But they begin to decrease beyond a level of income because private

signals that are more precise are also more similar. (v) The volatility of stock prices rises with income

as they track technology shocks more closely. As a result, stock returns, which absorb residual shocks,

fluctuate less, as reflected in their idiosyncratic and total volatility. In contrast, the volatility of the

market is constant. It follows that the cross-correlation of stock prices falls, while that of stock returns

rises to offset, respectively, the rise in the volatility of individual stock prices and the reduction in the

volatility of individual stock returns.6

The first three predictions are, by and large, consistent with the data. (i) Wurgler (2000) documents

that investments are more responsive to value added in more financially developed countries, and in

particular in countries with a more informative stock market.7 Furthermore, Levine and Zervos (1998)

show that stock markets promote TFP growth, rather than capital growth.8 (ii) Imbs and Wacziarg

5TFP, also known in the growth literature as the “Solow residual”, is defined as the residual from a regression of income
growth on factor growth. It encompasses any factor, beyond labor growth and the capital growth, that contributes to
output growth. Empirically, most of the differences in income across countries and periods stem from differences in TFP
(e.g. Jorgenson (1995, 2000), Prescott (1998), Hall and Jones (1999) and Harberger (1998)).

6The opposite patterns obtain for (i) through (v) if the substitution effect dominates the scale effect.
7Wurgler (2000) constructs cross-country estimates of the elasticity of investments to value added by regressing, for each

country, growth in industry investment on growth in industry value added. As a proxy for stock market informativeness,
he uses a measure developed by Morck, Yeung and Yu (2000) who estimate the extent to which stocks move together and
argue (in line with our model) that prices move in a more unsynchronized manner when they incorporate more firm-specific
information.

8These findings are consistent with those of Caballero and Hammour (2000), Restuccia and Rogerson (2003) and Hsieh
and Klenow (2006) who show that variations in the allocation of resources account for a large fraction of the cross-country
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(2003) report that countries go through two stages of sectoral diversification. Diversification increases

at first, but beyond a certain level of income, the process is reversed and economic activity starts

concentrating. The pattern of specialization among advanced countries is consistent with our model

as we show that private information is collected only once a critical level of income has been reached.

In a similar vein, Kalemli-Ozcan, Sørensen and Yosha (2003) report that industrial specialization in a

sample of developed countries is positively related to the share of the financial sector in GDP, a proxy

for financial development.

The evidence on the remaining implications is mixed. (iii) Though Kuznets (1955) found support in

the data for the hypothesis that inequality widens, peaks and then narrows, more recent studies report

ambiguous findings (e.g. Acemoglu and Robinson (2002) for a review of the evidence). (iv) Levine and

Zervos (1998) and Rousseau and Wachtel (2000) report that the share turnover on the stock market is

positively related to output growth but do not document (nor test for) a non-monotonic pattern. (v)

Morck, Yeung and Yu (2000) show that stock prices are less synchronous in richer economies. Campbell,

Lettau, Malkiel and Xu (2001) document a strong increase in idiosyncratic return volatility in the U.S.

from 1962 to 1997, while the volatility of the market remained stable.

The remaining of the paper is organized as follows. Section 2 positions the paper in the literature.

Section 3 describes the economy. Section 4 studies a benchmark economy in which the first best is

achieved. Section 5 characterizes the equilibrium. Section 6 discusses the role of the stock market.

Section 7 examines the dynamics of income and other variables. Section 8 shows how the economy

can emerge from or fall into a no-information regime. Section 9 concludes. Proofs are featured in the

appendix.

2 Related Literature

Our work relates to three main strands of theory. First and foremost, it contributes to the theoretical

literature on finance and growth.9 Most closely related is the seminal paper by Greenwood and Jovanovic

differences in TFP.
9Many papers highlight the different functions fulfilled by financial institutions, such as monitoring managers, improving

risk management, mobilizing savings and facilitating the exchange of goods and services. An important function consist in
identifying the best investment opportunities, as in our paper. For example, King and Levine (1993), Acemoglu, Aghion
and Zilibotti (2003) and Morales (2003) argue that financial intermediaries such as banks promote growth by selecting the
best entrepreneurs. These papers do not deal specifically with stock markets and their information processing role.
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(1990). In their setup, investors choose whether to invest directly in their own project or through a

financial intermediary in exchange for a fee. The intermediary pools numerous individual projects and

discovers the state of the economy. Thanks to its superior information and its ability to eliminate

project-specific risks, it offers a higher return and a lower risk on capital, thereby promoting growth.

Greenwood and Jovanovic (1990) show that economic and financial development feed on each other, as

in our model. There are three main differences between the present paper and Greenwood and Jovanovic

(1990). First and most importantly, Greenwood and Jovanovic do not specify where investors’ private

signals (projects) come from, nor how they are pooled. In particular, they do not study agents’ incentives

to produce and communicate private information. In contrast, we explicitly address these issues: we

model how investors make their decisions to collect costly signals, and how the stock market aggregates

and transmits these signals. Putting it differently, Greenwood and Jovanovic (1990) examine an economy

free from contracting frictions, while we consider an economy in which these frictions are so severe that

eliciting effort from investors is impossible. Moreover, we can characterize the evolution of several

observable features of the stock market as the economy grows, such as the volatility of stock returns

and the trading intensity. Second, the cost of financial intermediation in Greenwood and Jovanovic

(1990) is a fixed fee akin to our information cost. This fee is constant, while our cost of information

grows with income. Indeed, information is produced at the expense of leisure whose value rises with

income. As a result, the financial sector in Greenwood and Jovanovic (1990) always develops with

income, when in our setting, it does so only if the value of information increases faster than its cost.

Finally, we differ from Greenwood and Jovanovic (1990) in that they obtain a permanent growth effect

while we do not. But this is only because they assume that capital displays constant returns to scale

while we assume that it is subject to diminishing returns.

Second, our work is connected to the endogenous growth literature (e.g. Romer (1986, 1990), Aghion

and Howitt (1992), Grossman and Helpman (1991)). This literature models the discovery of technologies

by profit-maximizing agents. In contrast to this literature, we endow the economy with technologies and

focus instead on their selection by investors trading on the stock market. Similar issues arise nonetheless.

In particular, technical innovations and information about stocks both give rise to increasing returns
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to scale, limited by the incomplete appropriability of the rents generated.10 Whether long-run growth

is possible or not depends essentially on the law of motion postulated for technological progress rather

than on the structure of the models.11 When technological progress is assumed away, we find that the

information technology cannot generate any permanent growth effect. Finally, our work belongs to the

body of research, too large to reference, on trading under endogenous and asymmetric information. A

subset emphasizes the real benefits of informational efficiency. Our model contributes to this literature

by developing a rational expectations framework in which income and learning interact dynamically.

3 Economic Environment

We embed a competitive stock market à la Grossman and Stiglitz (1980) into Diamond’s (1965) neo-

classical growth economy. The economy is composed of two sectors — a final and an intermediate goods

sector, and overlapping generations of agents. Firms in the intermediate goods sector raise capital on

the stock market by issuing claims to their future profits. Young agents save by purchasing these claims.

3.1 Agents

The economy is populated by overlapping generations of agents who live for two periods. There is no

population growth. Each generation consists of a continuum of agents with mass L indexed by l ∈

[0, L]. Young agents are each endowed with one unit of labor time and one unit of free time. Utility,

derived from the consumption of the final good g and leisure j, is represented by a function U(g, j),

increasing and concave in each argument and with a positive cross-derivative, ∂2U/∂g∂j. Two aspects

of preferences are of particular relevance to our analysis: risk aversion and the degree of substitutability

10Unlike standard goods, information is non-rival, i.e. it is costly to generate but costless to replicate. This property,
which applies to financial information (information about stock returns) as well as to technological knowledge (such as the
design for a new good), leads to increasing returns: the cost of information is fixed while its benefit rises with the scale
of its applications (the number of shares traded or the number of goods sold). See Jones (2004) for an overview of the
importance of this insight for endogenous growth theory. For applications to finance, see Acemoglu and Zilibotti (1999),
Arrow (1987), Peress (2008) and Van Nieuwerburgh and Veldkamp (2006a, 2006b), Veldkamp (2005a, 2005b, 2006) and
Zeira (1994). While models of endogenous growth and models of stock selection incorporate the scale effects of information,
they differ in the way they preserve incentives to do research. The former grant some market power to innovators, while
the latter introduce noise into the price system.
11For example, if the rate of growth of technological knowledge, dA/dt, increases linearly with the level of technological

knowledge, A, as in Romer (1990), then the economy grows without bound. Otherwise, growth is only transitory. As
Romer (1990, page 84) puts it, “linearity in A (in the equation for dA/dt) is what makes unbounded growth possible, and,
in this sense, unbounded growth is more like an assumption than a result of the model”.

7



between final goods and leisure. We define the following functions:

τ(g) ≡ −

∂U

∂g
(g, 1)

∂2U

∂g2
(g, 1)

and ρ(g) ≡

∂U

∂j
(g, 1)

∂U

∂g
(g, 1)

.

τ(g) measures the absolute risk tolerance of an agent consuming g units of the final good and one unit

of leisure. Attitudes toward risk are entirely determined by the curvature of the utility function with

respect to the consumption of the final good, because leisure consumption is not uncertain in our setting.

We assume that τ is increasing in g, an assumption that is supported by most empirical studies. The

function ρ measures the marginal rate of substitution between final goods and leisure, again for an agent

consuming g units of the final good and one unit of leisure. Naturally, ρ is increasing in g because the

marginal utility of the final good declines while that of leisure rises when more final goods are consumed.

For example, U(g, j) ≡ ($gσ + (1−$)jσ)1/σ , where $ is in (0, 1) and σ < 1, displays a con-

stant elasticity of substitution (CES). The case σ = 0 corresponds to Cobb-Douglas utility (U(g, j) ≡

g$j1−$). Under these preferences, τ(g) = g($gσ +1−$)/(1− σ)/(1−$) and ρ(g) = g1−σ(1−$)/$

— the elasticity of substitution between goods and leisure equals 1/(1− σ).

Young agents are employed in the final good sector, to which they supply their unit of labor time

inelastically for a competitive wage wt, so aggregate labor supply equals L. They save their entire

labor income by investing in the stock market to consume in the next period when they are old.12 They

divide their unit of free time between enjoying leisure and analyzing stocks. There are no short-sales

constraints, and no riskless asset.13

3.2 Technologies

3.2.1 Final Good Sector

The final good is produced according to a riskless technology that employs labor and intermediate

goods:

Gt ≡ L1−β
MX
m=1

(Y mt )
β,

12Thus the saving rate is exogenously set to one. We make this assumption not only to simplify the model but also
because the evidence suggests that financial development enhances growth through higher productivity rather than through
higher saving rates (Levine and Zervos (1998), Beck, Levine and Loayza (2000)).
13We assume that there is no storage technology and that final wealth is not verifiable. The latter assumption implies

that a bond market cannot be set up because the probability that final wealth equals zero is strictly positive in our setting.
Borrowers would simply claim that they cannot repay their loans.
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where Gt is final output, L is labor, M is the number of types of intermediate goods, Y mt is the

employment of the m0th type and 0 < β < 1 is the factor share of intermediate goods in the production

of the final good. The production function follows Spence (1976), Dixit and Stiglitz (1977) and Romer

(1987, 1990) among others. Many identical firms compete in the final good sector and aggregate to one

representative firm. The final good is used as the numeraire. It can be consumed by agents or invested

to produce intermediate goods in the following period.

3.2.2 Intermediate Good Sector

M firms operate in the intermediate goods sector. Firm m is the exclusive producer of good m. Its

production is determined by a risky technology that displays constant returns to capital:

eY mt+1 ≡ eAmt Km
t for m = 1, ...,M

where eY mt+1 is the quantity of intermediate goods produced in period t + 1 by firm m net of capital

depreciation, eAmt is its random productivity and Km
t is the amount of capital (which consists of final

goods) it raises in period t. Tildes denote random variables not yet realized. Firms are liquidated

immediately after production.14

The productivity shocks eAmt are log-normally distributed and independent from one another and over
time. Because there is no closed-form solution to investors’ portfolio choice under general preferences,

we resort to a small-risk expansion to solve the model. We consider small productivity shocks and log-

linearize the return on investors’ portfolio (e.g. Campbell and Viceira (2002)). Specifically, we assume

that ln eAmt ≡ eamt z where eamt z is normally distributed with mean eαmt z and variance σ2az, eαmt is normally
distributed with mean 0 and variance σ2α and z is a scaling factor. The model is solved in closed-form by

driving z toward zero. Throughout the paper, we assume that z is small enough for the approximation

to be valid.15

14Assuming firms are liquidated just after production simplifies the dynamics of the economy and allows to focus on the
early stage of a firm’s development. It is well known that young firms, because they have little retained earnings, are more
dependent on external financing than mature firms. Several empirical studies confirm that financial development fosters
growth mainly through the former (Rajan and Zingales (1998), Kumar, Rajan and Zingales (1999), Demirgüç-Kunt and
Maksimovic (1998), Beck, Demirgüç-Kunt and Maksimovic (2001), Love (2003), Brown, Fazzari and Petersen (2008)).
15Rational expectations models of competitive stock trading under asymmetric information typically conjecture that

equilibrium stock prices are linear functions of random variables. This conjecture is not valid in a neoclassical framework
because productivity and capital interact multiplicatively in the production of goods, and capital itself is a function of
stock prices.
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Firms raise capital in the stock market. Firm m issues one perfectly divisible share — a claim to

its entire future profit, for a price Pmt . The productivity shock eamt is not observed at the time agents

invest but they can learn about its average eαmt as we describe next.
3.2.3 Information Technology

At the time they invest, agents do not observe intermediate firms’ productivity. Instead, they receive

private signals about its mean. The private signal sml,t received by agent l in period t about firm m0s

average productivity shock is given by:

sml,t = βeαmt + eεml,t,
where eεml,t is an agent-specific disturbance independent of eamt , eαmt , across firms and time. eεml,t is normally
distributed with mean 0 and variance 1/xml,t (precision x

m
l,t). Investors choose the precision of their

signals before the stock market opens. Observing a signal of precision xml,t costs C(x
m
l,t)z units of

free time, where C is continuous, increasing, convex and C(0) = C 0(0) = 0. We emphasize that the

information technology does not lead to the discovery of new physical technologies nor improve existing

ones. Instead, it allows to allocate capital more efficiently to the physical technologies.

3.2.4 Noise Trading

Agents know that stock prices reflect other investors’ private information in equilibrium, and they learn

from them. Some noise is needed to blur price signals and avoid the Grossman-Stiglitz paradox, that

is, preserve incentives to collect costly information. We assume that a fraction q of agents form their

portfolio guided by exogenous shocks. The source of these shocks is not specified. They could stem from

liquidity needs, preference shifts, random stock endowments, private risky investment opportunities, or

some form of irrationality. Specifically, noise traders believe that the expected return on stock m equalseθmt , where eθmt is normally distributed with mean 0 and variance σ2θ, and is independent of eamt , eεml,t, across
firms and time.16

16Some comments on the formulation of noise traders’ beliefs may be useful. First, their accuracy is arbitrary and does
not affect our findings. Second, including an agent-specific component to these beliefs has no incidence on the equilibrium.
Third, the intensity of noise trading remains commensurate with that of rational trading as the economy grows. As equation
9 below shows, portfolio holdings are scaled by a function of income, τ(ϕ(w))/ϕ(w). If for example this function increases
with income (e.g. σ > 0 under CES utility), then trades, both rational and noise-motivated, grow with the economy. If
we assumed instead that noise trades equal an exogenous constant, then they would shrink relative to rational trades.
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3.3 Timing

The timeline is summarized in figure 1. An agent lives one period as a young agent (as a worker, then

as an investor) and one period as an old agent (as a consumer). After earning a wage and before the

stock market opens, workers choose how to divide their free time between stock analysis and leisure,

by setting the precision of their signals. Then, they invest their wage across the different stocks, guided

by stock prices and their private signals. In the following period, the young become old, productivity

shocks are revealed, final goods are produced, and old agents consume their share of profits.

3.4 Notation

For any firm-specific variable ψmt , ψt denotes its average across firms and ∆ψ
m
t its deviation from the

average:

ψt ≡
1

M

MX
m=1

ψmt and ∆ψmt ≡ ψmt − ψt.

The variable enclosed in brackets, {ψmt } , represents the vector of stacked variables for m = 1 to M.

Finally, we adopt the following notation to keep track of the quality of the approximation: o(1), o(z)

and o(z2) capture respectively terms of an order of magnitude smaller than 1, z and z2.

3.5 Equilibrium Concept

We describe the equilibrium concept working backwards from production in period t + 1, to capital

allocation and information acquisition in period t. The gains from trade depend on howmuch information

is collected in aggregate and revealed through prices. We denote Xm
t ≡

R
l x
m
l,t/L the average precision of

private information about firmm. A rational expectations equilibrium satisfies the following conditions.

1. Market clearing in the intermediate goods sector

Final goods producers maximize their profit. Since labor and intermediate goods trade in competitive

markets and aggregate labor supply equals L, the following equilibrium factor prices obtain in period

t+ 1 :

ewt+1 = (1− β)
MX
m=1

(eY mt+1/L)β and eρmt+1 = β(L/eY mt+1)1−β, (1)

This would mechanically make stock prices more informative and the allocation of capital more efficient, and reinforce the
usefulness of the stock market.
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where eρmt+1 denotes the price of intermediate good m in period t + 1 and eΠmt+1 = eρmt+1eY mt+1 is firm m’s

profit.

2. Capital allocation

Let fml,t denote the fraction of her wage that agent l invests in stock m in period t or her ‘portfolio

weights’. She sets
n
fml,t

o
to maximize her expected utility, guided by stock prices and private signals,

and taking as given her income wt, her leisure time jt, the precision of her signals
n
xml,t

o
, the average

precisions {Xm
t } , share prices and capital stocks:

max
{fml,t}

E [U(egl,t+1, jt) | Fl,t] subject to

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

egl,t+1 = wt eRl,t+1eRl,t+1 = MP
m=1

fml,t
eRmt+1

MP
m=1

fml,t+1 = 1

, (2)

where Fl,t ≡ {sml,t, Pmt for m = 1 toM}, egl,t+1, eRl,t+1 and eRmt+1 = eΠmt+1/Pmt denote respectively agent l0s

information set, her consumption of the final good, the return on her portfolio and the return on stock

m. The time subscripts on jt and egl,t+1 make clear that leisure time is set at t before private signals are
observed, while the consumption of final goods is determined at t+ 1, once the return on the portfolio

is realized. We call U0({xmt ,Xm
t } , jt, wt) the value function for this problem.

In equilibrium, prices clear the stock market. Since each firm issues one share, its capital stock

coincides with its stock price: Formally,Z
l
wtf

m
l,t = K

m
t = Pmt for m = 1, ...,M,

where the integral sums up the demand emanating from rational and noise traders.

3. Precision choice

An agent’s optimal precisions xml,t = x(wt, {Xm
t }) maximize her ex ante expected utility subject to

her free time budget constraint, taking her income wt and the average precisions {Xm
t } as given:

max
{jt≥0, xml,t≥0}

E[U0(
©
xml,t,X

m
t

ª
, jt, wt)] subject to

MX
m=1

C(xml,t)z + jt = 1,

where C(xml,t)z is the time spent investigating stock m and 1−
PM
m=1C(x

m
l,t)z is the time left for leisure.

In equilibrium, the average and optimal precisions must be consistent:

Xm
t = x(wt, {Xm

t }) for m = 1, ...,M.
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4 First Best

Before we proceed to the general case, we describe the first-best outcome, in which agents perfectly

share their private information. It will serve as a benchmark when we examine the role of the stock

market. The first-best is achieved when signal precisions are contractible. In that case, agents all

commit to infinitesimal precisions — very close but not equal to zero, and reveal their private signals to

a central planner who invests on their behalf. The central planner can perfectly infer productivity shocks

thanks to the Law of Large Numbers because there is a continuum of signals with finite variances and

uncorrelated errors (
R
l ε
m
l,t+1 = 0). The central planner chooses capital allocations

©
KmFB
t

ª
to maximize

agents’ expected utility subject to an economy-wide resource constraint, taking as given their income

wt:

max
{KmFB

t }
E [U(egl,t+1, 1) | {eαmt }] subject to

⎧⎪⎪⎨⎪⎪⎩
egl,t+1 = MP

m=1

eΠmFBt+1 /L

MP
m=1

KmFB
t = Lwt

, (3)

where eΠmFBt+1 = βL1−β( eAmt KmFB
t )β denotes the profit generated by firm m, to be divided equally

between agents. The following lemma describes the capital allocation in this economy.

Lemma 1 In the first-best outcome, firm m’s capital stock equals KmFB
t = Lwt

M exp(∆kmFBt z) where

∆kmFBt =
1

1− β
∆βeαmt + o(1). (4)

When z, the factor that scales shocks, equals zero, the firms are perfectly identical so capital is equally

distributed across them, each firm receiving Lwt/M units of goods.17 When z > 0, the allocation

depends on firms’ productivity relative to one another. The more productive firms (higher ∆eαmt ≡eαmt −eαt) receive more capital. The elasticity of investments to productivity shocks, ∂(lnKmFB
t )/∂eαmt =

(1−1/M)β/(1−β), captures the efficiency of the capital allocation. It increases with β, the factor share

of capital because a higher β indicates that firms’ marginal profits decline with their stock of capital at

a slower rate, so more capital can be invested in the better firms without immediately damaging their

return. It also increases with the number of stocksM because there is a wider choice of uses for capital.

17Firm m’s marginal profit, ∂ΠmFB
t+1 /∂KFBm

t = ∂[βL1−β(Amt K
FBm
t )β ]/∂Km

t = β2L1−βAmβ
t KFBm

t
β−1, is a decreasing

function of KFBm
t . Hence, if firms are identical, the central planner distributes capital equally across the M firms.

13



Given its capital stock, firm m produces eY mt+1 = eAmt KmFB
t intermediate goods. As a result, the

number of final goods produced is:

eGt+1 = Lwβ
tM

1−βexp
¡
β(eamt z + kmFBt z)

¢
,

and the wage equals:

ewt+1 = (1− β) eGt+1/L = (1− β)wβ
tM

1−βexp
¡
β(eamt z + kmFBt z)

¢
.

The wage is random as it depends on the realizations of the productivity shocks. The following lemma

characterizes the dynamics of the economy along its average path, i.e. assuming that the wage realized

in any period equals its mean. This is a good description of the economy if the number of firms is large.

Lemma 2 In the first-best outcome, average income evolves according to the following equation:

E( ewt+1) = Λ exp ¡λFBz2¢wβ
t , (5)

where Λ and λFB are two positive constants given by:

Λ ≡ (1− β)M1−β exp

µ
1

2
β2(σ2az + σ2αz

2)

¶
, (6)

and

λFB ≡ M − 1
M

β3

(1− β)2

µ
1− β

2

¶
σ2α + o(1). (7)

Average income converges to a steady-state, wFB, given by:

wFB = Λ1/(1−β) exp

µ
λFB

1− β
z2
¶
. (8)

The average wage evolves according to a standard neoclassical law of motion. The marginal

product of labor increases with current income (assuming income is initially below its steady-state

value) but at a decreasing rate, until it reaches a steady-state in which it no longer grows. The

growth rate of income is given by ΓFB(wt) ≡ E( ewt+1)/wt = Λw−(1−β)t exp
¡
λFBz2

¢
. It declines at

the rate −(1 − β), i.e. d lnΓFB(wt)/d lnwt = −(1 − β). The steady-state level of income wFB solves

wFB = ΛwFBβ exp
¡
λFBz2

¢
, which leads to equation 8. The dashed curves in figures 6 and 7 illustrate

the dynamics of income in the first best. Steady-state income increases with the number of interme-

diate goods M as the production possibility set expands, and with the variance of productivity shocks

σ2az + σ2αz
2 because output is a convex function of these shocks — a positive shock increases eGt+1 more

14



than a negative shock decreases it. It decreases with the factor share of intermediate goods β as the

marginal product of labor is reduced.

The first best obtains in particular in Greenwood and Jovanovic (1990). In their model, a financial

intermediary pools numerous projects (signals) supplied by individuals and discovers the state of the

economy. The reason the first best is achieved in their equilibrium is that agents are endowed with

a project rather than produce it at a cost. Here in contrast, the first-best is not achievable because

agents cannot commit to strictly positive signal precisions. Indeed, suppose all investors do agree to

acquire some information about a stock, however imprecise, and to report it to the central planner.

This will allow the planner to learn the stock’s productivity shock. Given that the cost of information

is not zero, the optimal strategy for an agent is to deviate from the agreement, i.e. to not collect any

information and make a random announcement to the central planner. But if all agents make random

announcements, then the productivity shock cannot be learned. Thus, the first-best outcome cannot be

reached if signal precisions are not contractible.

5 Equilibrium Characterization

The remainder of the paper assumes that signal precisions are not contractible and that some trades are

motivated by noise. In that case, the stock market offers a way to share information, albeit imperfectly.

We characterize first investors’ portfolios and the allocation of capital, then various aspects of the

economy, and finally information acquisition decisions. Throughout this section, we take as given

investors’ income wt which we endogenize in section 7.

5.1 Capital Allocation

We follow the usual method for solving a noisy rational expectations equilibrium: We guess that capital

is a log-linear function of shocks, solve for portfolio, derive the equilibrium capital allocation, and check

that the guess is valid. The following lemma displays investors’ portfolio composition for the conjectured

capital allocation.

Lemma 3 Assume that firm m0s capital stock takes the form Km
t = Lwt

M exp(∆kmt z) where k
m
t ≡

kmαt(β∆eαmt + μmt ∆
eθmt ) + o(1) and μmt is a deterministic scalar. The portfolio weights for agent l are
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given by:

fml,t =
1

M
+

τ(ϕ(wt))

ϕ(wt)β
2σ2az

E(∆ lnRmt+1 | Fl,t) + o(1), (9)

where ϕ(w) ≡ βM1−βwβ. (10)

• For a rational agent who receives private signals of precision {xml,t}, weights equal:

fml,t =
1

M
+

τ(ϕ(wt))

ϕ(wt)β
2σ2a

(
xml,t

H(μmt ) + x
m
l,t

∆sml,t +

Ã
1

(H(μmt ) + x
m
l,t)μ

m2
t σ2θk

m
αt

− (1− β)

!
∆kmt

)
+o(1).

(11)

where H(μ) ≡ 1

β2σ2α
+

1

μ2σ2θ
. (12)

• For a noise trader, weights equal:

fmt =
1

M
+

τ(ϕ(wt))

ϕ(wt)β
2σ2a
∆eθmt + o(1). (13)

Stock m’s portfolio weight equals the weight it would receive if firms were identical, 1/M , tilted

by a measure of the stock’s expected excess performance relative to the market, E(∆ ln eRmt+1 | Fl,t) ≡
E(ln eRmt+1 − lnRt+1 | Fl,t). The deviation from equal portfolio shares is more pronounced when stocks

are less risky (lower β or σ2a), or when agents are relatively more risk tolerant. τ(ϕ(wt)) measures

investors’ absolute risk tolerance in a neighborhood of their consumption — to a first approximation

(at the order 0 in z), they consume ϕ(wt) units of the final good. Relative risk tolerance, the ratio

of absolute risk tolerance to consumption, τ(ϕ(wt))/ϕ(wt), determines how aggressively investors trade

on their information. Though absolute risk tolerance τ(ϕ(w)) rises with income by assumption, this

need not be the case for relative risk tolerance, τ(ϕ(w))/ϕ(w). For example, under CES preferences

τ(ϕ(w))/ϕ(w) = ($βσMσ(1−β)wσβ + 1 − $)/(1 − σ)/(1 − $). If σ > 0 (< 0), then τ(ϕ(w))/ϕ(w)

increases (decreases) with income, and wealthier investors’ portfolio weights deviate more (less) from

equal shares. If σ = 0 (Cobb-Douglas utility), then τ(ϕ(w))/ϕ(w) is a constant, 1 − $, so portfolio

weights are independent of wealth as in the case of constant relative risk aversion.

Equation 11 expresses portfolio weights as a combination of the stock price (the ∆kmt term) and

the relative private signal (the ∆sml,t term). In this expression, the stock price plays a dual role: it

clears the stock market and provides information about the firm’s productivity. Given our conjecture,

observing stock prices is equivalent to observing β∆αmt + μmt ∆θ
m
t for each firm, a signal about β∆α

m
t

16



with error μmt ∆θ
m
t . Thus, μ

m
t represents the noisiness of stock m’s price. The function H(μ

m
t )+ x

m
l,t =

1/V ar(βαmt | Fl,t) measures the total precision of an investor’s information about a stock. She receives

information from three sources: her priors (the 1/(β2σ2α) term), the price (the 1/(μ
m2
t σ2θ) term) and her

private signal (the xml,t term), and their precisions simply add up. The next proposition describes the

equilibrium allocation of capital for an arbitrary level of noisiness μmt . Equivalently, the equilibrium can

be characterized in terms of the average precisions about stocks Xm
t since Xm

t and μmt are connected

one for one (equation 16).

Proposition 4 Let μmt (>
q

1− q ) be the noisiness of stock m’s price. There exists a log-linear ratio-
nal expectations equilibrium in which firm m0s capital stock and its share price equal Km

t = Pmt =
Lwt
M exp(∆kmt z) where:

∆kmt ≡ kα(μmt )(β∆eαmt + μmt ∆
eθmt ) + o(1), (14)

kα(μ) ≡
1

1− β

µ
1− 1

β2σ2α (H(μ) +X(μ))

¶
> 0, (15)

and X(μ) ≡ H(μ)
1− q
q

μ− 1
. (16)

The proposition establishes that capital and stock prices are approximately log-linear functions of

productivity and noise shocks. As in the first best, they equal those that would obtain if firms were

identical (Lwt/M), disturbed by an order-z function of relative shocks. Productivity shocks appear

directly in the price function though they are not known by any agent, because individual signals,

esml,t, once aggregated, collapse to their mean, βeαmt . Noise traders’ introduce noise eθmt into the price

system through their trades. For simplicity, the conditions that characterize kα and X (equation 15 and

16) are stated under the assumption that signal precisions are identical across agents for any stock m

(xml,t = X
m
t for all l), a property which holds when signal precisions are chosen optimally (see lemma 5

below). Equation 31 in the appendix displays these conditions for arbitrary precisions. As mentioned,

the average precision Xm
t and stock price noisiness μmt are related one for one through equation 16. A

higher noisiness μmt corresponds to a lower average precision X
m
t , as figure 2 illustrates.

Proposition 4 outlines the allocative role of the stock market. Equation 14 implies that capital and

technology shocks are positively correlated. The key parameter is kα, which controls the elasticity of

investments to productivity shocks, ∂(lnKm
t )/∂eαmt = (1−1/M)βkα. kα is positive, meaning that funds

flow to the most productive firms, and monotonically increasing with the quality of information. It starts
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from zero when there is no information (μmt is infinite andX
m
t = 0), so capital is allocated independently

from productivity shocks, and reaches 1/(1− β) under perfect information (μmt = q/(1− q) and Xm
t is

infinite), so the elasticity coincides with that of the first best.

5.2 Impact of Noisiness on Properties of the Economy

In this section, we describe how information about firms influences real and financial aspects of the

economy, holding income fixed. The following two lemmas characterize the efficiency and concentration

of the capital allocation.

Lemma 5 The elasticity of investments to productivity shocks and TFP are higher when information
is more accurate (noisiness is lower).

Better-informed agents distribute capital more efficiently across firms, leading to a higher elasticity

of investments to productivity shocks, ∂ lnKm
t /∂eαmt . This superior efficiency translates into higher

TFP, defined from the following economy-wide production function:

E( eGt+1) = ML1−βE[( eAmt Km
t )

β]

= ML1−βE( eAmβ
t )E(Km

t )
β exp[Cov(βeamt z,β∆kmt z)− β(1− β)V ar(∆kmt )/2].

We interpret the factor exp[Cov(βeamt z,β∆kmt z) − β(1 − β)V ar(∆kmt )/2] as TFP. It captures the ad-

ditional output obtained from distributing capital in relation to productivity shocks, in comparison

to an economy in which capital is arbitrarily allocated. We examine next the concentration of eco-

nomic activity, measured using Herfindhal indices, Her(Km
t ) ≡ E(Km2

t )/[E(Km
t )]

2 and Her(eΠmt+1) ≡
E(eΠm2t+1)/[E(eΠmt+1)]2.
Lemma 6 Capital and profits are more concentrated across firms when information is more accurate
(noisiness is lower).

Better informed agents invest more selectively. They channel more (less) capital to the more (less)

productive firms, so fewer firms account for a larger fraction of the economy’s stock of capital. Profits

tend to be even more concentrated than capital because they compound the effect of a high productivity

shock with that of a large capital stock. The next lemma presents the impact of noisiness on the next

generation’s expected income, E(wt+1).
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Lemma 7 Income is larger on average in the next period when information is more accurate (noisiness
is lower), for a given level of current income:

More accurate information leads to more efficient investments and hence to a larger supply of

intermediate goods on average in the subsequent period. This in turn increases the marginal product of

labor and the next generation’s average income. We turn to the impact of noisiness on wealth inequality.

Lemma 8 Wealth inequality widens at first and then narrows as information improves (noisiness de-
clines).

Final wealth i.e., consumption egl,t+1, is unequal because agents, guided by their private signals,
choose different portfolios. Two forces work in opposite directions when information improves. On

one hand, agents put more weight on their private signals relative to public information, which tends

to increase portfolio heterogeneity. On the other hand, idiosyncratic signal errors shrink so private

signals, and therefore portfolios, are less diverse across agents.18 The first effect tends to dominate

for low precisions (high noisiness) and the second for high precision (low noisiness), so inequality is

non-monotonic in precision.

We conclude with three financial variables, the trading intensity, stock market liquidity and the

volatility of stock returns. The value of shares traded equals
PM
m=1

R
l |fml,twt|/2 where the factor 2

avoids double counting matching buys and sells. We measure the trading intensity as the share turnover,

defined as the ratio of the value of shares traded to the total capitalization of the market,
PM
m=1K

m
t .

Lemma 9 Trading on the equity market intensifies at first and then weakens as information improves
(noisiness declines).

The logic of Lemma 9 mimics that of Lemma 8 on wealth inequality. Agents trade because they

disagree, and their disagreement is a source of inequality. More accurate information leads, on one

hand, to more disagreement because agents use their private signals more aggressively, but on the other

hand, to more consensual private signals. The resulting relation is non-monotonic. We turn to liquidity.

Lemma 10 Stock market liquidity improves at first and then deteriorates as information improves
(noisiness declines).

18According to equation 11 (substituting Xt for x
m
t to obtain equilibrium portfolio weights), an agent’s portfolio weights

are a function of (Xt/h(Xt))∆s
m
l,t = (Xt/h(Xt))∆eεml,t+other terms. When Xt grows (μt falls), on one hand the ratio

of the precision of private signals to the total precision, Xt/h(Xt) = (μt(1 − q)/q − 1)−1, rises, but on the other hand
var(eεml,t) ≡ 1/Xt falls. The two effects exactly cancel out when μ is such that X(μ) + 1/(μ2σ2θ) = 1/(β

2σ2α).
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We use the inverse of sensitivity of stock prices to (uninformative) noise shocks, 1/
³
∂(lnKm

t )/∂(
eθmt z)´ =

1/ ((1− 1/M)kα(μmt )μmt ) , to capture liquidity as is common models with asymmetric information. As

the formula makes clear, there are two components to liquidity. The first reflects the sensitivity to noise

shocks relative to that of technology shocks (the μmt term). Thanks to this factor, liquidity tends to

improves when information is more accurate. The second component is the sensitivity to technology

shocks (the kα term), which, from Lemma 5, rises with information accuracy, thereby reducing liquidity.

As a result, liquidity is non-monotonic in accuracy. The first factor (relative sensitivity) tends to dom-

inate for low precision levels (high noisiness) and the second for high levels. The final lemma considers

volatility.

Lemma 11 When information is more accurate (noisiness is lower), stocks’ prices are more volatile,
while the idiosyncratic and total volatility of their returns are lower. In contrast, the volatility of the
market is unchanged.

Stock prices fluctuate more as they incorporate technology shocks more fully. Returns, which absorb

residual shocks, fluctuate less, whether fluctuations are measured as total or idiosyncratic volatility.

Since the market return (price), in contrast, does not see its volatility change, a rise (decline) in the

cross-correlation of stock returns (prices) offsets the reduction (rise) in individual stock volatility.

5.3 Information Acquisition

We turn to the information acquisition decisions. The following lemma characterizes how much free time

an investor devotes to learning about productivity shocks for an arbitrary level of stock price noisiness

μmt , and given her income wt.

Lemma 12 Let μmt (>
q

1− q ) be the noisiness of stock m
0s price. Investors set the precision of their

private signal about stock m, xmt , such that

ρ(ϕ(wt))C
0 (xmt ) = τ(ϕ(wt))

M − 1
2Mβ2σ2a

1

(H(μmt ) + x
m
t )

2 + o(1). (17)

Investors choose a signal precision that equates the marginal benefit of information to its marginal

cost, taking into account how much is revealed through stock prices. The left hand side of equation 17

represents the marginal cost and can be interpreted as follows. Increasing the precision of a signal from

x to x+δ requires cutting leisure time by C 0(x)δ units and suffering a utility loss of ∂U
∂j C

0(x)δ. The same
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loss would occur if the consumption of the final good were to fall by ∂U
∂j C

0(x)δ/∂U∂g units. Thus, the left

hand side of equation 17 measures the utility cost, denominated in units of the final good, of a marginal

increase in the signal precision. This cost depends on income through the coefficient ρ(ϕ(wt)), which

measures the marginal rate of substitution between goods and leisure in a neighborhood of consumption.

This coefficient, and therefore the cost of information, increase with income because of a substitution

effect : wealthier agents invest more, hence consume more of the final good, which decreases its marginal

utility and makes leisure more enjoyable.

The right hand side of equation 17 represents the utility benefit from a marginal increase in precision,

again denominated in units of the final good. This benefit has the following properties. First, it rises

when public information is less accurate — so private information acts as a substitute for public informa-

tion. This happens when priors are less precise (σ2α larger) or when stock prices are less informative (μ
m
t

or σ2θ larger). Indeed, stock prices reveal private signals, albeit partially, thereby limiting investors’ abil-

ity to appropriate the full benefit from their information expenditures (the ex ante disincentive effect).

Private information is more valuable when it is easier to conceal, i.e. when the price system is more

noisy. Second, the benefit of private information decreases with the conditional variance of productivity

shocks σ2a because agents tilt less their portfolio weights away from equal shares. Last but not least,

it rises with investors’ income through their absolute risk tolerance, τ . Indeed, discriminating across

firms is more valuable when one has more to invest. Thanks to its non-rival nature, information can

be applied to every dollar of investment without requiring its cost to be incurred repeatedly. Putting it

differently, information generates increasing returns with respect to the scale of investments, captured

by τ(ϕ(w)).

Equation 17 admits a unique solution because its left hand side is monotonically increasing in xmt

starting from zero (C 0(0) = 0 by assumption), while its right hand side is monotonically decreasing

towards zero. Moreover, it implies that signal precisions are identical across agents for any stock m

(xml,t = Xm
t for all l). The properties of xmt follow from those of the marginal cost and benefit of

information. xmt rises when σ2α, μ
m
t and σ2θ are larger, and when σ2a and C

0 are lower. Most of these

properties obtain in the usual framework with exponential utility, normally distributed random variables
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and a riskless asset (e.g. Verrecchia (1982)).19

The influence of income on the signal precision depends on which of the marginal rate of substitution

or risk tolerance is the more sensitive to income. It is the subject of Lemma 12 below. The impact

on xmt of the factor share of intermediate goods, β, is complex. First, a lower β reduces investors’

share of GDP and their consumption (the ϕ(wt) term), which enhances the marginal utility of final

goods so both ρ and τ increase. Second, a lower β implies that stocks are less sensitive to productivity

shocks. These shocks have a component that can be learnt (eαmt ) and one that cannot (eamt − eαmt ) so the
implications are twofold. On the one hand, a lower β means that the average productivity shock eαmt
has a smaller impact on a firm’s profit so learning about it is less valuable (the term 1/β2σ2α embedded

in H(μmt ) on the right hand side of equation 17). On the other hand, it implies that stocks are less

risky so investors trade them more aggressively, which makes information more valuable (the β2σ2a on

the right hand side of the equation). The net effect of β depends on the relative magnitude of these

effects. The following proposition characterizes the degree of noisiness in equilibrium, μmt , for a given

level of income wt.

Proposition 13 In equilibrium, the noisiness of stock prices, μt, is the unique solution to:

ρ(ϕ(wt))C
0

⎛⎜⎜⎝ H(μt)
1− q
q

μt − 1

⎞⎟⎟⎠ = τ(ϕ(wt))
M − 1
2Mβ2σ2a

⎛⎜⎝1−
q

(1− q)μt
H(μt)

⎞⎟⎠
2

+ o(1). (18)

The noisiness of prices in equilibrium is determined by observing that the individual and average

precisions, xmt andX
m
t , coincide since agents all choose the same precisions, and by substituting equation

16 which relates Xm
t to μmt into the first-order condition 17 (this procedure amounts to searching for a

fixed point to the system of equations, Xm
t = x(wt, {Xm

t }) form = 1 toM). The resulting noisiness and

average precisions are identical across stocks so we drop the superscript m from now on (Xm
t ≡ Xt and

μmt = μt for all m). This implies further that individual precisions are identical across stocks (x
m
t = xt

for all m). Equation 18 admits a unique solution μt for any level of income wt, because its left hand

19In an economy similar to ours except that i) preferences display constant absolute risk aversion with a coefficient
of absolute risk tolerance τ , ii) stocks have normally distributed payoffs with variance σ2Π and iii) a riskless asset with
gross return Rf is available, the equilibrium precision of private signals solves 2RfC0(xt) = τ/(Ht + xt) where Ht ≡
1/σ2Π + 1/(μ

2
tσ

2
Θ) and σ2Θ is the variance of noise trading. From this equation, xt rises when σ2Π, τ or μ

2
tσ

2
Θ increase or

when C decreases.
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side is monotonically decreasing in μt and spans the entire positive real line, while its right hand side

is monotonically increasing. It is illustrated in figure 3.

The properties of the average precision Xt are identical to those of individual precisions xt, discussed

above. Those of the equilibrium noisiness μt follow. It decreases (i.e. stock prices are more informative)

when priors are more accurate (σ2α smaller), when the variance of noise trades σ
2
θ is larger, when the

conditional variance of productivity shocks σ2a or the marginal cost of information C
0 are lower. In

contrast, μt increases with the fraction of noise traders q. This is because q has a direct effect on μt in

equilibrium that dominates its indirect effect through Xt. We conclude this section with an analysis of

the influence of income on Xt.

Lemma 14 If τ/ρ is an increasing (decreasing) function of consumption, then the noisiness of stock
prices falls (rises) with income.

We observed in the discussion following Lemma 11 that current income increases both the marginal

cost of information (through a substitution effect) and its marginal benefit (through a scale effect). The

impact of income on the equilibrium precision of information depends on which of these two effects

dominates. If the scale effect dominates, i.e. the marginal benefit rises with income faster than the

marginal cost does (τ/ρ increasing in consumption), then agents collect more information as they grow

wealthier so dμt/dwt < 0. If instead the substitution effect dominates (τ/ρ decreasing in consumption),

then agents collect less information so dμt/dwt > 0. Under CES utility for example, information

improves with income if σ > 0, but deteriorates if σ < 0. The substitution and scale effects offset

each other exactly under Cobb-Douglas utility (σ = 0, or constant relative risk aversion). In that case,

income has no impact on the quality of information. Under constant absolute risk aversion — preferences

that are usually assumed in rational expectations models of trading under asymmetric information (e.g.

U(g, j) = (− exp(−τg))v(j) or U(g, j) = − exp(−τg) + v(j)), there is no scale effect so the substitution

effect works alone. As a result, the precision of information is a decreasing function of income. Figure

4 illustrates lemma 14.
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6 The Role of the Stock Market

This section delves into the information processing role of the stock market. Stock prices, by aggregating

dispersed private signals about technology shocks into public signals, affect capital efficiency in two

conflicting ways. On one hand, they help investors evaluate firms and deploy their capital. As such, the

stock market can be viewed as a mechanism for sharing costly private information. Importantly, this

mechanism is incentive compatible since investors ‘communicate’ through their trades.20 On the other

hand, the very existence of informative prices undermines the incentive to collect costly information in

the first place. Indeed, investors’ cannot appropriate the full benefit of their signals as they are leaked

to competitors through prices.21 Thus, informative stock prices have an impact that is beneficial ex

post but detrimental ex ante to capital efficiency. Noise trading plays a crucial part in this tradeoff as

its intensity determines how much information is produced and disseminated. By varying the fraction

of noise traders q, one can get a sense of the net informational contribution of the stock market, as in

the next lemma.

Lemma 15 When the fraction of noise traders q decreases, less information is produced but more is
shared through stock prices. The net effect is an improvement in total information, Ht+Xt, and in the
efficiency of investments, captured by a higher elasticity, kαt.

On the one hand, for a given precision of private signals, more information is conveyed through

prices as noise trading weakens (the ex post information sharing effect) so capital is more efficiently

deployed. Formally, ∂μt/∂q > 0, ∂H(μt)/∂q < 0 and ∂kα(μt)/∂q < 0 holding the average precision Xt

fixed, and using respectively equations 16, 12, 15 and 20. On the other hand, agents collect less private

information (the ex ante disincentive effect). This dampens the beneficial influence that information

sharing has on capital efficiency, but does not reverse it. Formally, dμt/dq > 0, d(H(μt)+X(μt))/dq < 0

20This effect can best be understood by comparison to a fictitious economy in which agents collect the same private
signals but stock prices do not reveal any of their content. In such an economy, the average precision X(μmt ) is the same
as in the ‘normal’ economy, but an investor’s total precision is lower because the precision of the price signal, 1/(μm2t σ2θ),
is lost — the total precision equals 1/(β2σ2α) + X(μ

m
t ) < H(μmt ) +X(μ

m
t ). Accordingly, the elasticity of investments to

productivity shocks falls to (1− 1/(1 + β2σ2aX(μ
m
t )))/(1− β) which is below kα(μ

m
t ). The allocation of capital is not as

efficient though the same private signals were produced. Thanks to the stock market, private signals do not only serve
the agents who observe them but benefit all through prices: investors who on average collect private signals of precision
X(μmt ) actually receive signals of precision X(μ

m
t ) + 1/(μ

m2
t σ2θ).

21Again, there is no incentive problem in Greenwood and Jovanovic (1990) because agents are endowed with a private
signal about the state of the economy (a project).
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and dkα(μt)/dq < 0. Consider for example, the net effect on investors’ total precision, H(μt) +X(μt):

d (H(μt) +X(μt))

dq
=

∂Ht
∂μt Xt fixed

∗ ∂μt
∂q Xt fixed

+
∂Ht
∂μt Xt fixed

∗ ∂μt
∂Xt q fixed

∗ dXt
dq

< 0 < 0 > 0 < 0 < 0 > 0

+
dXt
dq
.

> 0

| {z } | {z }
< 0 > 0

Ex post information sharing Ex ante disincentive

The ex post information sharing effect more than compensates for the ex ante disincentive effect.22

The following lemma compares the allocation of capital achieved through the stock market to the

first best. Since noise trading was introduced into the stock market economy to avoid the Grossman-

Stiglitz paradox, we make the comparison in the limiting situation in which noise vanishes, i.e. as the

fraction of noise traders goes to zero.

Lemma 16 The allocation of capital achieved through the stock market converges to the first best allo-
cation as the fraction of noise traders goes to zero:

lim
q→0
q>0

kmt = k
mFB
t for m = 1, ...,M.

The lemma establishes that the capital allocation achieved through the stock market can be made

arbitrarily close to the first best allocation by reducing the fraction of noise traders q23 It follows that

the dynamics of income, as described in the next section, can also be made arbitrarily close to those

obtained in the first best economy.24 Lemmas 15 and 16 are illustrated in figure 5 which displays μt,

Xt, Ht +Xt and kαt as a function q under CES utility.

22Only under a linear information cost do these two effects exactly balance out. In that case, the left-hand side of
equation 18 is constant, so must be the right-hand side, which implies that the total precision H(μt) +X(μt) is constant
regardless of q. It should also be noted that higher noise trading can be beneficial to income in spite of making the capital
allocation less efficient. This is because it increases the variability of the capital allocation and therefore the average income,
a convex function thereof, through a Jensen inequality effect (positive noise shocks increase output more than negative
shocks decrease it). We do not elaborate on this effect (reflected in the term μ2tσ

2
θ in equation 20 below) because it is a

direct consequence of the presence of noise in agents’ beliefs, rather than the result of the information processing role of
the stock market.
23However, q cannot exactly equal zero, else there is no equilibrium (the Grosssman-Stiglitz paradox). The beneficial

impact of higher noise trading on income resulting from a Jensen inequality effect (see previous footnote) vanishes as q
approaches zero.
24The steady-state level of income and its transitory growth rate converge to those achieved in the first best: limq→0

q>0
w∗ =

wFB and limq→0
q>0

Γ(wt) = Γ(wt)
FB.
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7 Dynamics

In this section, we tie together learning, investments and income, analyze the evolution of the economy

along its average path and discuss the empirical evidence.

7.1 Observable Properties of the Growth Path

The following proposition determines the dynamics of income by combining lemmas 7 and 14.

Proposition 17 Average income evolves according to the following equation:

E( ewt+1) = Λ exp ¡λ(wt)z2¢wβ
t , (19)

where

λ(wt) ≡
M − 1
M

β2
µ
kα(μt)βσ

2
α +

kα(μt)
2

2
(β2σ2α + μ2tσ

2
θ)

¶
+ o(1) > 0, (20)

and Λ, kα and μt = μ(wt) are defined respectively in equations 6, 15, and 18.

• The economy converges to a steady-state in which it no longer grows. The steady-state level of
income w∗ is given by:

w∗ = wFB exp

Ã
−
λFB − λ

¡
(1− β)1/(1−β)M

¢
1− β

z2

!
< wFB. (21)

• If τ/ρ is an increasing (decreasing) function of consumption, then λ increases (decreases) with
income. Moreover, if limg→u τ(g)/ρ(g) =∞, then limwt→u λ(wt) = λFB. For example under CES
preferences, λ is an increasing function of income and limwt→∞ λ(wt) = λFB if σ > 0, while λ is
a decreasing function and limwt→0 λ(wt) = λFB if σ < 0.

To a first approximation (at the order 0 in z), the dynamics of income are similar to those obtained

under the first-best: income grows at a declining rate until it reaches a steady-state w∗ (assuming the

wage is initially below w∗). Thus, the dynamics of income continue to be dominated by the neoclassical

force of diminishing returns to capital — learning only generates a deviation of order z2 from the neoclas-

sical path. Though this is the case by construction in our model — learning about productivity shocks

generates benefits that are small since we assume these shocks to be small, we conjecture that this

property extends to large shocks since income admits the first-best as an upper bound (starting from

the same arbitrary level of income, income in the next period is lower than in the first-best in which

capital is more efficiently allocated) and income in the first-best eventually reaches a steady-state.

Proposition 17 is illustrated in figure 6 which displays the law of motion of income along the econ-

omy’s average path under CES utility (equation 19). The solid (dotted) curve corresponds to σ = 0.5
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(σ = −0.5), in which case information improves (deteriorates) with income. The steady-state is located

at their intersection with the 45◦ line (solid line). If initial income w0 is below (above) w∗, then the

wage increases (decreases) until it reaches w∗.

The effect of learning on income is captured by the function λ, illustrated in the bottom right panel

of figure 4. The steady-state level of income is lower than in the first-best. Its growth rate during the

transition to the steady-state, Γ(wt) ≡ E( ewt+1)/wt, is also lower than in the first best, by a factor
exp

£
−(λFB − λ(wt))z

2
¤
. Figure 7 depicts Γ(wt) for various utility functions as well as in the first-best

economy. When the scale effect of information dominates the substitution effect (e.g., when σ > 0

under CES utility), investors collect more information as the economy grows, which contributes to

growth further. As a result, the growth rate of income declines less quickly than in the first best:

d lnΓ(wt)

d lnwt
= −(1− β) +

dλ(wt)

d lnwt
z2 > −(1− β),

where −(1−β) = d lnΓFB(wt)/d lnwt is the change in the growth rate of income in the first-best. Thus

in this case, learning has a transitory beneficial effect on growth, that mitigates the negative neoclassical

force. When the scale effect of information dominates the substitution effect (e.g., when σ < 0 under

CES utility), investors collect less information as the economy grows, which slows down growth. So, the

growth rate of income falls at a faster rate than in the first best:

d lnΓ(wt)

d lnwt
= −(1− β) +

dλ(wt)

d lnwt
z2 < −(1− β).

We derive various observable properties of the economy during its transition to the steady-state (for

an initial wage below its steady-state level), by combining Lemmas 5 to 11 with Lemma 14. They are

summarized in the following proposition.

Proposition 18 Suppose that the scale effect of information dominates the substitution effect (e.g.
σ > 0 under CES utility). As the economy grows:

• The elasticity of investments to productivity shocks and TFP increase,

• Capital and profits are more concentrated across firms,

• Income inequality widens at first and then narrows,

• Trading on the equity market intensifies at first and then weakens,

• Stock market liquidity improves at first and then deteriorates,
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• The volatility of stock prices rises, the idiosyncratic and total volatility of stock returns fall and
the volatility of the market is constant.

The opposite patterns obtain if instead the substitution effect dominates (e.g. σ < 0 under CES
utility).

The predictions of Proposition 18 for a growing economy when the scale effect dominates can be

interpreted as follows. (i) Capital is more efficiently allocated across firms, i.e. more (less) capital is

channelled to more (less) productive firms. This superior efficiency leads to higher TFP, even though

there is no technological progress. (ii) The economy specializes, as agents invest more selectively, leading

capital and profits to become more concentrated across firms. (iii) Income inequality follows a “Kuznets

curve”, widening at first and then narrowing. (iv) Stock market liquidity and the share turnover increase

at first and then decrease. Inequality, liquidity and turnover display similar non-monotonic behaviors

because all three are driven by the extent to which investors disagree about stocks. At the early stage of

development, agents follow mostly price signals since their private signals are imprecise, so disagreement

is low. As their private signals become more accurate, agents rely more on them, so disagreement,

inequality, trading volume and liquidity rise with income. But they begin to decrease beyond a level of

income because private signals that are more precise are also more similar. (v) The volatility of stock

prices rises with income as they track technology shocks more closely. As a result, stock returns, which

absorb residual shocks, fluctuate less, as reflected in their idiosyncratic and total volatility. In contrast,

the volatility of the market is constant. It follows that the cross-correlation of stock prices falls, while

that of stock returns rises to offset, respectively, the rise in the volatility of individual stock prices and

the reduction in the volatility of individual stock returns.

7.2 Evidence

Several aspects of the model are broadly consistent with the evidence, assuming that the scale effect of

information dominates the substitution effect. First, Levine and Zervos (1998), Rousseau and Wach-

tel (2000) and Carlin and Mayer (2003) document that income grows faster in countries with better

functioning stock markets.25 Atje and Jovanovic (1993) estimate that this growth effect is permanent,

25Levine and Zervos (1998) and Rousseau and Wachtel (2000) proxy for stock market development using measures of
market capitalization trading volume, while Carlin and Mayer (2003) use accounting standards.
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but Harris (1997) finds that it is only transitory after controlling for possible endogeneity problems.26

These observations support the notion developed in section 6 that the stock market, by aggregating and

transmitting private information, contributes to the level of income in the long-run and to its growth

rate during the transition.

Second, Proposition 18 predicts that allocative efficiency and TFP grow with income. Wurgler

(2000) constructs cross-country estimates of the elasticity of investments to value added, our parameter

kα. He finds that this elasticity increases with the country’s degree of financial development, and in

particular with the informativeness of its stock market. That is, countries with more informative stock

markets increase investments more in their growing industries, and decrease investments more in their

declining industries, than countries with less informative stock markets.27 These countries also tend to

display higher TFP. Indeed, Levine and Zervos (1998) show that stock markets promote growth in total

factor productivity.28 We stress that TFP grows in our model though there is no technological progress

(the distribution of productivity shocks and the cost of information are stationary), thanks to a more

efficient allocation of capital.

Third, Proposition 18 implies that the economy specializes as it grows. Empirically, Imbs and

Wacziarg (2003) document that countries go through two stages of sectoral diversification. Diversi-

fication increases at first, but beyond a certain level of income, the process is reversed and economic

activity starts concentrating. This pattern is consistent with our model to the extent that it applies

to more advanced economies — an extension presented in the next section shows that more information

is produced as incomes grows, only if income is above a threshold. In a similar vein, Kalemli-Ozcan,

26Aghion, Howitt and Mayer-Foulkes (2005) also document that financial development only has a transitory growth
effect for sufficiently advanced economies using measures of financial intermediation such as private credit rather than
measures of stock market development. They propose a model of agency problems and credit constraints to explain their
findings.
27Wurgler (2000) uses a proxy for informativeness developed by Morck, Yeung and Yu (2000). They measure the extent

to which stocks move together and argue that prices move in a more unsynchronized manner when they incorporate more
firm-specific information. This is indeed the case in the present model (see Lemma 11). Durnev, Morck and Yeung (2004)
and Durnev, Morck, Yeung and Zarowin (2003) report that the synchronicity measure is related to accounting estimates
of stock price informativeness as well as to the efficiency of corporate investments captured by Tobin’s q.
28Levine and Zervos (1998) measure stock market development using the ratio of market capitalization to GDP, the

ratio of the value of trades to GDP and the ratio of the value of trades to market capitalization. Their finding is consistent
with those of Caballero and Hammour (2000), Restuccia and Rogerson (2003) and Hsieh and Klenow (2006) who show
that variations in the allocation of resources account for a large fraction of the cross-country differences in total factor
productivity. Moreover, Henry (2003) confirms that countries that liberalize their stock market experience a rise in total
factor productivity, and Bertrand, Schoar and Thesmar (2005), Galindo, Schiantarelli and Weiss (2005) and Chari and
Henry (2006) that their allocative efficiency improves.
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Sørensen and Yosha (2003) report that industrial specialization in a sample of developed countries is

positively related to the share of the financial sector in GDP. This fact too is consistent with Proposi-

tion 18 to the extent that this share is positively related with information expenditures about public

companies.

Fourth, Proposition 18 predicts that wealth inequality conforms to a ”Kuznets curve”, widening at

first and then narrowing. In his seminal study, Kuznets (1955) found support for his hypothesis using

both cross-country and time-series data. This pattern has been extensively examined since using new

data and statistical techniques and the evidence is now mixed (e.g. Acemoglu and Robinson (2002) for

a review of the evidence).

Fifth, according to Proposition 18, the trading activity and liquidity are inverted U-shape functions

of income. Empirically, Levine and Zervos (1998) and Rousseau and Wachtel (2000) report that the

share turnover on the stock market is positively related to output growth but do not document (nor

test for) a non-monotonic pattern.

Finally, Proposition 18 implies that the volatility of stock prices rises, the idiosyncratic and total

volatility of stock returns fall, the volatility of the market is constant, the cross-correlation of stock

prices falls, and the cross-correlation of stock returns rises. Empirically, Morck, Yeung and Yu (2000)

show that stock prices are less synchronous in richer economies. Campbell, Lettau, Malkiel and Xu

(2001) document a strong increase in idiosyncratic return volatility in the U.S. from 1962 to 1997, while

the volatility of the market remained stable.

8 No-Information Trap

In the model, agents always collect private signals. This is because the cost of learning is assumed to

satisfy C 0(0) = 0, i.e. an infinitesimal amount of private information is costless. Empirically however,

financial institutions only emerge once a critical level of income has been reached. In this section, we

assume that C 0(0) > 0 and show that information production only takes place for sufficiently developed

economies. The following proposition describes how investors’ learning decisions are altered.

Proposition 19

Suppose that C 0(0) > 0. Investors collect information if and only if
τ(ϕ(wt))

ρ(ϕ(wt))
>
2Mσ2a(σ

2
α)
2

(M − 1)β2
C 0(0). In

that case, its precision is the unique solution to equation 18.
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If C 0(0) > 0, then equation 18 that determines the equilibrium precision may admit no solution.

For example, when ρ(ϕ(wt) is large relative to τ(ϕ(wt)), the marginal cost of information (the left-hand

side of equation 18) may exceed its marginal benefit (the right-hand side) for all levels of noisiness. In

that case, no information is collected in equilibrium as it is too costly to be profitable. The condition

on τ/ρ for learning to take place leads to a condition on income. This can easily be seen in the case of

CES utility, as the following lemma shows.

Lemma 20 Suppose that C 0(0) > 0 and that utility is CES. Let

w ≡
Ã
1−$
2$

Ãs
1 +

8$(1− σ)Mσ2a(σ
2
α)
2

(1−$)(M − 1)β2
C 0(0)− 1

!!1/σ
.

When σ > 0, investors collect information if and only if their income exceeds the threshold w.
When instead σ < 0, they collect information if and only if their income is below the threshold w.

The threshold w is the unique income level such that τ(ϕ(w))/ρ(ϕ(w)) = C 0(0)2Mσ2a(σ
2
α)
2/(M −

1)/β2. When σ > 0, the scale effect of information dominates so wealthier investors collect information

only if their income wt is large enough. When σ < 0, the substitution effect dominates so investors stop

collecting information when their income exceeds w. The properties of w mirror those of the equilibrium

precisionXt : the factors that increase (decrease)Xt tend to decrease (increase) w. Assuming that σ > 0

and that w∗ > w > w0 where w0 is the initial level of income, the economy goes through two stages

of development. At first, it behaves as the standard neoclassical economy with no information. Once

income reaches a threshold, agents start collecting privates signals and growth accelerates by a factor

exp
¡
λ(wt)z

2
¢
. Thus in this case, the stock market only operates as an information processor if the

economy is sufficiently developed. If instead w0 < w
∗ <w, then no information is ever collected.

9 Conclusion

A competitive stock market is embedded into a neoclassical growth economy to analyze the interplay

between the acquisition of information about firms, its partial revelation through stock prices, capital

allocation and income. The stock market allows investors to share their costly private signals in an

incentive-compatible way when the signals’ precision is not contractible. It contributes to economic

growth, but its impact is only transitory. Several predictions on the evolution of real and financial
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variables are derived, including capital efficiency, total factor productivity, industrial specialization,

wealth inequality, stock trading intensity, liquidity and return volatility.
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Proof of Lemma 1

We solve for the capital allocation
©
KmFB
t

ª
chosen by a central planner who can perfectly infer the

average productivity shocks {eαmt }. We first note that, when z = 0, there are no productivity shocks

so firms are identical. In that case, given the diminishing marginal product of intermediate goods, the

central planner distributes capital equally across theM firms: each firm is allocated K0
t ≡ Lwt/M units

of capital, and consumption per capita equals g0 ≡ β eGt+1/L = MβL−βK0β
t . When z > 0, firm m’s

capital stock can therefore be expressed as KmFB
t = K0

t exp(
bkmFBt z) where bkmFBt is determined next.

The Lagrangian for the central planer’s problem is:

E [U(egl,t+1, 1) | {eαmt }] + ςFBt (Lwt −
MX
m=1

KmFB
t ),

where ςFBt is the Lagrange multiplier on the resource constraint and egl,t+1 = β eGt+1/L = MP
m=1

βL−β( eAmt KmFB
t )β

denotes consumption per capita. The first-order condition with respect to KmFB
t follows:

ςFBt = E

∙
∂U

∂g
(egl,t+1, 1).β2L−β eAmβ

t K
mFB(β−1)
t | {eαmt }¸ .

The first-order condition can be expressed as:

ςFBt K
0(1−β)
t Lβ/β2 = E

h
∂U
∂g (egl,t+1, 1). exp(βeamt z + (β − 1)bkmFBt z) | {eαmt }i

= E
h
∂U
∂g (egl,t+1, 1).³1 + βeamt z + (β − 1)bkmFBt z + 1

2V ar(βeamt z | {eαmt }) + o(z)´ | {eαmt }i
= E

h
∂U
∂g (egl,t+1, 1).³1 + βeamt z + (β − 1)bkmFBt z + β2σ2az/2 + o(z)

´
| {eαmt }i .

We expand ∂U
∂g (egl,t+1, 1) in a Taylor series in a neighborhood of z = 0, i.e. for egl,t+1 around g0 :

∂U

∂g
(egl,t+1, 1) = ∂U

∂g
(g0, 1) +

∂2U

∂g2
(g0, 1)(egl,t+1 − g0) + o(z),

where

egl,t+1 − g0 = MP
m=1

βL−β
h
( eAmt KmFB

t )β −K0β
t

i
= βL−βK0β

t

MP
m=1

h
exp(βeamt z + βbkmFBt z)− 1

i
= βL−βK0β

t

MP
m=1

(βeamt z + βbkmFBt z + 1
2V ar(βeamt z | {eαmt })) + o(z)

= βL−βK0β
t

MP
m=1

(βeamt + βbkmFBt + β2σ2a/2)z + o(z).

As a result, the first-order condition can be written as:

ςFBt K
0(1−β)
t Lβ/β2 = E

∙µ
∂U
∂g (g0, 1) +

∂2U
∂g2
(g0, 1)βL

−βK0β
t

MP
m=1

(βeamt + βbkmFBt + 1
2β

2σ2a)z

¶
.
³
1 + βeamt z + (β − 1)bkmFBt z + 1

2β
2σ2az

´
| {eαmt }i+ o(z).
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Isolating the order-z terms and denoting ςFB1t z the order-z component of the Lagrange multiplier yields:

ςFB1t zK
0(1−β)
t Lβ/β2 = E

h
∂U
∂g (g0, 1)

³
βeamt z + (β − 1)bkmFBt z + β2σ2az/2

´
+∂2U

∂g2
(g0, 1)βL

−βK0β
t

MP
m=1

(βeamt + βbkmFBt + β2σ2a/2)z | {eαmt }¸
= ∂U

∂g (g0, 1)
³
βeαmt + (β − 1)bkmFBt + β2σ2a/2

´
+ ∂2U

∂g2
(g0, 1)βL

−βK0β
t M(βeαt + βbkFBt + β2σ2a/2).

Averaging this equation across stocks yields:

ςFB1t K
0(1−β)
t Lβ/β2 = ∂U

∂g (g0, 1)
³
βeαt + (β − 1)bkFBt + 1

2β
2σ2a

´
+∂2U

∂g2
(g0, 1)βL

−βK0β
t M(βeαt + βbkFBt + 1

2β
2σ2a),

and subtracting it form the previous one leads to:

0 =
∂U

∂g
(g0, 1)

³
βeαmt + (β − 1)bkmFBt − βeαt − (β − 1)bkFBt ´

.

A solution to this equation is bkmFBt = 1
1−β∆βeαmt + o(1) since ∆βeαt ≡ 0. Therefore, KmFB

t =

Lwt/M exp(∆kmFBt z) where ∆kmFBt ≡ 1
1−β∆βeαmt + o(1), as stated in lemma 1.

Proof of Lemma 2

The number of final goods produced in the first best is:

eGt+1 = MX
m=1

L1−β( eAmt KmFB
t )β = Lwβ

tM
1−βexp

¡
β(eatz +∆kFBt z)

¢
.

Therefore, the wage and its average equal:

ewt+1 = (1− β) eGt+1/L = (1− β)wβ
tM

1−βexp
¡
βz(eat +∆kFBt )

¢
,

and E( ewt+1) = (1− β)wβ
tM

1−βE
h
exp

¡
βz(eat + kFBt )

¢i
,

where

E
h
exp

¡
βz(eat + kFBt )

¢i
= E

h
exp

³
βz(eamt + 1

1−β∆βeαmt )´i+ o(z)
= exp

h
1
2V ar

³
βz(eamt + 1

1−β∆βeαmt )´i+ o(z)
= exp

n
1
2E
h
V ar

³
βz(eamt + 1

1−β∆βeαmt ) | {eαmt }´i+ 1
2V ar

h
E
³
βz(eamt + 1

1−β∆βeαmt ) | {eαmt }´io+ o(z).
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This expression reduces to:

E
h
exp

¡
βz(eamt + kmFBt )

¢i
= exp

n
1
2E [V ar(βeamt z | {eαmt })] + 1

2V ar
h
βz
³eαmt + 1

1−β∆βeαmt ´io+ o(z)
= exp{12E

£
β2σ2az

¤
+ 1

2V ar[βz(eαmt (1 + β
1−β

M−1
M )− β

1−β
1
M

MP
m0=1
m0 6=m

eαm0
t )]}+ o(z)

= exp{12β
2σ2az +

1
2V ar[βz(eαmt (1 + β

1−β
M−1
M )] + 1

2V ar[
β
1−β

1
M

MP
m0=1
m0 6=m

eαm0
t )]}+ o(z)

= exp
n
1
2β

2σ2az +
1
2β

2σ2αz
2(1 + β

1−β
M−1
M )2 + 1

2σ
2
αz
2( β
1−β )

2M−1
M2

o
+ o(z)

= exp
n
1
2β

2σ2az +
1
2β

2σ2αz
2 + 1

2β
2σ2α

M−1
M

β(2−β)
(1−β)2 z

2
o
+ o(z)

= exp
©
1
2β

2σ2az +
1
2β

2σ2αz
2 + λFBz2

ª
+ o(z) .

Substituting this expression into the equation for E( ewt+1) leads to the law of motion for average income
presented in lemma 2.

Proof of Lemma 3

Given the conjectured capital allocation, observing the M stock prices (or the M capital stocks) is

equivalent to observing ∆ξmt for every firm m where ξmt ≡ βamt +μmt θ
m
t . Similarly, observing the private

signals {sml,t} across the M stocks is equivalent, for an agent l, to observing ∆sml,t for every firm m. The

first step is to relate stock returns to productivity shocks and capital.

• Stock returns

Given its capital stock Km
t , firm m sells eY mt+1 = eAmt Km

t intermediate goods for a profit eΠmt+1 =eρmt+1eY mt+1 = βL1−β eY mβ
t+1 = βL1−β( eAmt Km

t )
β. The gross return on stock m is then eRmt+1 = eΠmt+1/Km

t =

βL1−βK0β−1
t exp[βeamt z−(1−β)∆kmt z] where K

0
t ≡ Lwt/M denotes the firm’s capital stock when z = 0

(when z = 0, firms offer the same return in equilibrium since they are identical to one another, which

implies that they have identical capital stocks) The log return on stock m is ln eRmt+1 = lnR0t + r
m
t+1z

where R0t = βL1−βK0β−1
t = βM1−βwβ−1

t = ϕ(wt)/wt and r
m
t+1z = βeamt z − (1 − β)∆kmt z. We show

below that investors’ portfolio weights depend on expected relative returns E(∆rmt+1z | Fl,t) and on the
variance of returns V ar(rmt+1z | Fl,t). These are given by:

E(∆rmt+1z | Fl,t) = E(β∆eamt z | Fl,t)− (1− β)∆kmt z = E(β∆eαmt z | Fl,t)− (1− β)∆kmt z, (22)

and V ar(rmt+1z | Fl,t) = V ar(βeamt z | Fl,t) = β2σ2az + V ar(βeαmt z | Fl,t) = β2σ2az + o(z). (23)

We note that the variance of returns is constant at the order z since V ar(βeαmt z | Fl,t) is of order z2.
The next step is to estimate the expectation of ∆eαmt using the conjectured prices (or equivalently the

∆ξmt ’s) and private signals s
m
l,t.

• Signal extraction
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For the capital allocation given in equation 14 (∆kmt linear in∆eαmt and∆eθmt with noisiness parameter
μmt ), the conditional mean and variance of ∆eαmt are for agent l, whose private signal has precision xml,t:

E(β∆eαmt z | Fl,t) = cmξt∆ξmt z + cmst∆sml,tz (24)

where bhml,t ≡ H(μmt ) + xml,t, cmξt
bhml,t ≡ 1

μm2t σ2θ
and cmst

bhml,t ≡ xml,t.
E(β∆eαmt z | Fl,t) is a weighted average of priors (which equal 0), public and private signals where the
weight on the private signal is increasing in xml,t and that on the public signal is decreasing in μmt .

• Portfolio weights

We now solve for the optimal portfolio of an investor. An agent with a wage wt and precisionsn
xml,t

o
maximizes E [U(egl,t+1, jt) | Fl,t] , where egl,t+1 = wt eRl,t+1 and jt = 1 −

PM
m=1C(x

m
l,t)z are her

consumption of final goods and leisure. Let rl,t+1z≡ ln eRl,t+1 − lnR0t capture terms of order z and
smaller in her log portfolio return. This log portfolio return can be related to individual stock returns

and portfolio weights as follows:

rl,t+1z = ln

µ
MP
m=1

fml,t
eRmt+1/R0t )¶

= ln

µ
MP
m=1

fml,t exp(r
m
t+1z)

¶
= ln

µ
MP
m=1

fml,t
¡
1 + rmt+1z + V ar(r

m
t+1z | Fl,t)/2

¢
+ o(z)

¶
=

PM
m=1

³
fml,tr

m
t+1 +

1
2f
m
l,t(1− fml,t)V ar(rmt+1 | Fl,t)

´
+ o(z)

=
PM
m=1

³
fml,tr

m
t+1 +

1
2f
m
l,t(1− fml,t)β2σ2az

´
+ o(z)

where we use
PM
m=1 f

m
l,t = 1 and equation 23. Thus, the log portfolio return is approximately normal

when z is small (e.g. Campbell and Viceira (2002)) and its moments are given by:

E(rl,t+1z | Fl,t) =
MP
m=1

n
fml,te

m
l,tz +

1
2f
m
l,t(1− fml,t)β2σ2az

o
+ o(z) where eml,t ≡ E(rmt+1 | Fl,t)

and V ar(rl,t+1z | Fl) =
MP
m=1

fm2l,t V ar(r
m
t+1z | Fl) + o(z) =

MP
m=1

fm2l,t β
2σ2az + o(z).

(25)

The agent’s utility can be expanded in a Taylor series in a neighborhood of z = 0, i.e. for egl,t+1 and jt
respectively around ϕ(wt) = wtR

0
t and 1. We denote the pair (ϕ(wt), 1) with a ∗ :

U(egl,t+1, jt) = U(∗) + ∂U

∂g
(∗).(egl,t+1 − ϕ(wt)) +

∂U

∂j
(∗).(jt − 1) +

1

2

∂2U

∂g2
(∗).(egl,t+1 − ϕ(wt))

2 + o(z).

Noting that egl,t+1−ϕ(wt) = ϕ(wt)(wt eRl,t+1/ϕ(wt)−1) = ϕ(wt)( eRl,t+1/R0t−1) = ϕ(wt)(exp(rl,t+1z)−1)
and that jt − 1 = −

PM
m=1C(x

m
l,t)z allows to write the above expression as:

U(egl,t+1, jt) = U(∗) + ∂U
∂g (∗).ϕ(wt)(exp(rl,t+1z)− 1)−

∂U
∂j (∗).

PM
m=1C(x

m
l,t)z

+ 1
2
∂2U
∂g2
(∗).ϕ(wt)2(exp(rl,t+1z)− 1)2 + o(z).
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Taking expectations and noting that E[(exp(rl,t+1z) − 1)2 | Fl,t] = E[(rl,t+1z + V ar(rl,t+1z | Fl)/2 +
o(z))2 | Fl,t] = V ar(rl,t+1z | Fl)/2 + o(z) yields:

E(U(egl,t+1, jt) | Fl,t) = U(∗) + ∂U
∂g (∗).ϕ(wt)[E(rl,t+1z | Fl,t) + V ar(rl,t+1z | Fl)/2]

−∂U
∂j (∗).

PM
m=1C(x

m
l,t)z +

1
2
∂2U
∂g2
(∗).ϕ(wt)2V ar(rl,t+1z | Fl) + o(z).

(26)

Substituting in the expression for E(rl,t+1z | Fl,t) and V ar(rl,t+1z | Fl) given in equations 25 and
maximizing this expression with respect to fml,t , subject to

PM
m=1 f

m
l,t = 1, leads to the first-order

conditions:

∂U

∂g
(∗)(eml,t +

1

2
β2σ2a) + β2σ2aϕ(wt)

∂2U

∂g2
(∗)fml,t + o(1) = ς l,t for m = 1, ...M (27)

in which ς l,t denotes the Lagrange multiplier on the constraint. Averaging equation 27 across stocks

and noting that fl,t ≡
PM
m=1 f

m
l,t/M = 1/M, yields:

∂U

∂g
(∗)(el,t +

1

2
β2σ2a) + β2σ2aϕ(wt)

∂2U

∂g2
(∗) 1
M
+ o(1) = ς l,t. (28)

Subtracting equation 28 from the first-order condition 27 leads to the formula for portfolio weights

presented in equation 9:

fml,t =
1

M
+

τ(ϕ(wt))

ϕ(wt)β
2σ2a
∆eml,t + o(1), (29)

where τ(ϕ(wt))/ϕ(wt) = −∂U
∂g (∗)/

∂2U
∂g2
(∗)/ϕ(wt). Substituting in the expression for ∆eml,t ≡ E(∆rmt+1 |

Fl,t) and using equations 22 and 24 leads to equation 11 for the portfolio of a rational trader. Substi-
tuting in instead ∆eml,t = ∆θ

m
t yields the portfolio of a noise trader displayed in equation 13.

Proof of Proposition 4

To prove Proposition 4, we guess that the capital allocation is given by equations 14 to 16, solve for the

equilibrium and check that the guess is valid. Agents’ portfolios under the conjectured capital allocation

are described in lemma 3. We multiply portfolio weights by income wt and sum stock demands over all

agents for each stock. The aggregate demand for stock m emanating from rational traders equals:

R
Rat.
l
fml,twt =

R
Rat.
l
wt

(
1

M
+

τ(ϕ(wt))

ϕ(wt)β
2σ2a

"
xml,tbhml,t∆sml,t +

Ã
1bhml,tμm2t σ2θk

m
αt

− (1− β)

!
∆kmt

#)
+ o(1)

= Lwt

½
1− q
M

+
τ(ϕ(wt))

ϕ(wt)β
2σ2a

∙
Tmt β∆eαmt +µ Umt

μm2t σ2θk
m
αt

− (1− q)(1− β)

¶
∆kmt

¸¾
+ o(1),

(30)

where Tmt ≡
1

L

R
Rat.
l

xml,tbhml,t and Umt ≡ 1

L

R
Rat.
l

1bhml,t . To derive this expression, we apply the law of large
numbers to the sequence {

xml,tbhml,t∆εml,t+1} of independent (across agents) random variables with the same
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mean 0 (conditional on ∆eαmt ). It implies that Rl xml,tbhml,t∆εml,t+1 = 0 and hence that
1

L

R
Rat.
l

xml,tbhml,t∆sml,t =
1

L

R
Rat.
l

xml,tbhml,t (β∆eαmt +∆εml,t+1) = 1

L

R
Rat.
l

xml,tbhml,tβ∆eαmt = Tmt β∆eαmt .
The aggregate demand for stock m emanating from noise traders equals:Z

Noise
l

fml,twt = qLwt

µ
1

M
+

τ(ϕ(wt))

ϕ(wt)β
2σ2a
∆θmt

¶
+ o(1).

Summing up rational and noise traders’ demand for stock m, (
R
Rat.
l
fml,twt +

R
Noise
l
fml,twt)/P

m
t , and

equating it to the supply of shares (normalized to one) leads to:

Lwt

½
1

M
+

τ(ϕ(wt))

ϕ(wt)β
2σ2a

∙
q∆θmt + T

m
t β∆eαmt +µ Umt

μm2t σ2θk
m
αt

− (1− q)(1− β)

¶
∆kmt

¸¾
+ o(1) = Pmt .

Since, the left-hand side of this equation is deterministic at the order 0 in z (it equals Pmt = Km
t =

K0
t +o(1) ≡ Lwt/M+o(1)), the expression in the square bracket must be equal to zero. As a consequence,

∆kmt =
Tmt

(1− q)(1− β)− Umt
μm2t σ2θk

m
αt

(β∆eαmt + q

Tmt
∆θmt ).

Comparing this expression to the conjectured capital allocation (equation 14) implies that

μmt T
m
t ≡ q and kmαt =

Tmt

(1− q)(1− β)− Umt
μm2t σ2θk

m
αt

, (31)

which in turn implies that kmαt ≡ 1
(1−β)(1−q)(T

m
t +

Umt
μm2t σ2θ

). Equilibrium prices are linear in ∆eαmt and

∆θmt , which confirms the initial guess. Moreover, if signal precisions are identical across agents for any

stock m (xml,t = Xm
t for all l), then Tmt and Umt simplify to Tmt = (1 − q)Xm

t /(H(μ
m
t ) + X

m
t ) and

Umt = (1− q)/(H(μmt ) +Xm
t ). In this case, we obtain equations 15 and 16 displayed in Proposition 2.

Proof of Lemma 5

The elasticity of investments to productivity shocks, ∂(lnKm
t )/∂eαmt , equals β(1 − 1/M)kαt which de-

creases with μt since

∂kαt
∂μt

= − 1

1− β

21−qq μt +
μ2tσ

2
θ

β2σ2α
− 1

β2σ2α
1−q
q H(μt)

2μ4tσ
2
θ

< 0.

We turn to TFP. From its definition and equation 14, TFP equals exp{[kαβ3σ2α − β(1 − β)k2α(β
2σ2α +

μ2tσ
2
θ)/2]z

2(M − 1)/M}. Therefore:

d lnTFP

dμt
=

∂cov(βeamt z,β∆kmt z)
∂μt

− (1− β)

2β

∂V ar(β∆kmt z)

∂μt
.
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Using using equations 33 and 34, this expression simplifies to:

d lnTFP

dμt
= −M − 1

M

β

1− β

⎧⎨⎩2
1−q
q μt +

μ2tσ
2
θ

β2σ2α
− 1

1−q
q H(μt)

2μ4tσ
2
θ

−
(1−qq μt − 1)(1−qq μt +

μ2tσ
2
θ

β2σ2α
)

(1−qq )
2H(μt)

2μ5tσ
2
θ

⎫⎬⎭ z2 + o(z2)
= −M − 1

M

β

1− β

(1−qq )
2μ2t +

μ2tσ
2
θ

β2σ2α

(1−qq )
2H(μt)

2μ5tσ
2
θ

z2 + o(z2) < 0.

Therefore, TFP decreases with μt.

Proof of Lemma 6

The Herfindahl index for capital is given by:

Her(Km
t ) ≡ E(Km2

t )/[E(Km
t )]

2 = E[exp(2∆kmt z)]/(E[exp(∆k
m
t z)])

2 = exp[V ar(∆kmt z)],

which, from equation 34, decreases with noisiness μt. A similar calculation for profits implies that its

Herfindahl index, Her(eΠmt+1), decreases too with noisiness.
Proof of Lemma 7

We start by computing E( ewt+1). Proceeding as in lemma 2, the wage equals ewt+1 = (1− β) eGt+1/L =
(1− β)wβ

tM
1−βexp (βz(eamt +∆kmt )) , and its average is given by:

E( ewt+1) = (1− β)wβ
tM

1−βE
h
exp (βz(eamt +∆kmt ))i

= (1− β)wβ
tM

1−βE [exp(βz(eamt +∆kmt ))]
= (1− β)wβ

tM
1−β exp

£
1
2V ar (βz(eamt +∆kmt ))¤ ,

as E(eamt ) = 0 and E(∆kmt ) = kαE((β∆eαmt + μt∆
eθmt )) = 0. We evaluate next V ar (βz(eamt +∆kmt )):

V ar [β(eamt z +∆kmt z)] = V ar {E [β(eamt z +∆kmt z) | {eαmt , θmt }]}+E {V ar [β(eamt z +∆kmt z) | {eαmt , θmt }]}
= V ar {β(eαmt z +∆kmt z)}+E {V ar [β(eamt z) | {eαmt , θmt }]}
= V ar {β(eαmt z +∆kmt z)}+ β2σ2az

= V ar(βeαmt z) + V ar(β∆kmt z) + 2cov(βeαmt z,β∆kmt z) + β2σ2az

= β2σ2αz
2 + V ar(β∆kmt z) + 2cov(βeαmt z,β∆kmt z) + β2σ2az. (32)

The covariance term is given by:

cov(βeamt z,β∆kmt z) = cov(βeαmt z,βkαβ∆eαmt z) + o(z2) = M − 1
M

β3kασ
2
αz
2 + o(z2),

and the variance terms by:

V ar(βeαmt z) = β2σ2αz
2
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and V ar(β∆kmt z) = V ar[βkαt(β∆eαmt + μt∆
eθmt )z] + o(z2)

= β2k2αt[β
2V ar(∆eαmt ) + μ2tV ar(∆

eθmt )]z2 + o(z2)
= β2k2αt

M − 1
M

(β2σ2α + μ2tσ
2
θ)z

2 + o(z2).

Substituting these expressions into equation 32 yields:

V ar [β(eamt z +∆kmt z)] = β2σ2az + β2σ2αz
2 + β2k2αt

M − 1
M

(β2σ2α + μ2tσ
2
θ)z

2 + 2
M − 1
M

β3kαtσ
2
αz
2 + o(z2).

It follows that E( ewt+1) = Λ exp(λ(wt)z2) where λ and Λ are defined in equations 20 and 6.
Next, we evaluate ∂E( ewt+1)/∂μt. It suffices to differentiate λ with respect to the noisiness μt, holding

current income wt constant, since the other terms are constant:

2
∂λ

∂μt
=

∂V ar [β(eamt z +∆kmt z)]
∂μt

=
∂cov(βeamt z,β∆kmt z)

∂μt
+

∂V ar(β∆kmt z)

∂μt
,

where ∂cov(βeamt z,β∆kmt z)
∂μt

= M−1
M β3

∂kαt
∂μt

σ2αz
2 + o(z2) = −M−1M

β
1−β

21−qq μt +
μ2tσ

2
θ

β2σ2α
− 1

1−q
q H(μt)

2μ4tσ
2
θ

z2 + o(z2) < 0,

(33)

and
∂V ar(β∆kmt z)

∂μt
= 2M−1M β2kαt

∙
∂kαt
∂μt

(β2σ2α + μ2tσ
2
θ)z

2 + kαtμtσ
2
θ

¸
+ o(z2), (34)

= −2M−1M ( β
1−β )

2
(1−qq μt − 1)(1−qq μt +

μ2tσ
2
θ

β2σ2α
)

(1−qq )
2H(μt)

2μ5tσ
2
θ

z2 + o(z2) < 0.

It follows that:

∂E( ewt+1)
∂μt

= E( ewt+1) ∂λ
∂μt

z2 = −E( ewt+1) M−1
M ( β

1−β )
2

(1−qq )
2H(μt)

2μ5tσ
2
θ

½
(
1− q
q

μt − 1)(
1− q
q

μt +
μ2tσ

2
θ

β2σ2α
)

+
1− β

β

1− q
q

μt(2
1− q
q

μt +
μ2tσ

2
θ

β2σ2α
− 1)z2 + o(z2)

¾
< 0.

Proof of Lemma 8

The degree of inequality is captured by the variance of final wealth, egl,t+1 = wt eRl,t+1 = wtR0t exp(rl,t+1z).
Since final wealth is approximately log-normal when z is small, V ar(egl,t+1) is equivalent to a Gini index,
which equals 2F (

p
V ar(rl,t+1z)/2)− 1 where F is the cumulative distribution function for a standard

normal and where V ar(rl,t+1z) = V ar[E(rl,t+1z | Fl)] +E[V ar(rl,t+1z | Fl)] = E[
MP
m=1

fml,t
2β2σ2az] + o(z)

given that V ar[E(rl,t+1z | Fl)] is of order z2 and using equation 25. Substituting equation 29 into this
expression leads to V ar(rl,t+1z) =

β2σ2a
M z + M

β2σ2a

τ(ϕ(wt))2

ϕ(wt)2
E(e2l,t − el,t2)z + o(z) where E(e2l,t − el,t2) =

V ar(∆eml,t) from equation 38 below. Moreover, V ar(∆e
m
l,t) = V ar(∆e

m
l,t) =

M−1
M

ϕ(wt)
τ(ϕ(wt))

³
Xt

h(Xt)2
+

q2σ2θ
(1−q)2

´
because in equilibrium μmt is identical across stocks (See Proposition 13). As a result:

V ar(rl,t+1z) =
β2σ2a
M

z +
M − 1
β2σ2a

τ(ϕ(wt))

ϕ(wt)

µ
Xt

h(Xt)2
+

q2σ2θ
(1− q)2

¶
z + o(z).
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Differentiating this expression with respect to noisiness μt amounts to differentiating Xt/h(Xt)
2 =

q/[(1− q)h(Xt)μt] (equation 16) where h(Xt) ≡ H(μt) +X(μt):

∂ ln(h(Xt)μt)

∂μt
=
1− q
q

μ2t − 2μt(1− q)/q − β2σ2α/σ
2
θ

H(μt)μ
2
t (μt(1− q)/q − 1)β2σ2α

.

The sign of this ratio is given by the sign of its numerator. It is positive for μt > μ+ and negative for

μt < μ+ where

μ+ ≡ q/(1− q) +
q
q/(1− q) + β2σ2α/σ

2
θ. (35)

Thus, V ar(rl,t+1z) increases with noisiness μt over (q/(1− q),μ+), and decreases over (μ+,∞).

Proof of Lemma 9

The average value of shares traded equals V ol = E

∙PM
m=1

µR
Rat.
l
|fml,twt|+

R
Noise
l
|fml,twt|

¶
/2

¸
= V olRat+

V olNoise where V olRat = E

∙PM
m=1

µR
Rat.
l
|fml,twt|

¶
/2

¸
and V olnoise=E

∙PM
m=1

µR
Noise
l
|fml,twt|/2

¶¸
.

fml,t is approximately normally distributed so V olRat = (1− q)MLwt
q

1
2πV ar(f

m
Rat l,t)/2 and V olNoise =

qMLwt

q
1
2πV ar(f

m
Noise,t)/2 (e.g. He and Wang (1995)). Portfolio shares in equilibrium for a ratio-

nal agent are obtained by substituting equation 14 into equation 11, setting xml,t = Xt and denoting

h(Xt) ≡ H(μt) +X(μt) :

fmRat l,t =
1

M
+

τ(ϕ(wt))

ϕ(wt)β
2σ2a

Xt
h(Xt)

¡
∆εml,t − μt∆θ

m
t

¢
+ o(1)

=
1

M
+

τ(ϕ(wt))

ϕ(wt)β
2σ2a

µ
Xt
h(Xt)

∆εml,t −
q

1− q∆θ
m
t

¶
+ o(1) using equation 16.

Therefore,
q
V ar(fmRat l,t) =

τ(ϕ(wt))

ϕ(wt)β
2σ2a

q
M−1
M

r
Xt

h(Xt)2
+ ( q

1−q )
2σ2θ + o(1) and:

V olRat =
τ(ϕ(wt))wt

ϕ(wt)

L
p
M(M − 1)

2
√
2πβ2σ2a

s
(1− q)2Xt
h(Xt)2

+ q2σ2θ + o(1).

For noise traders,
q
V ar(fmNoise,t) =

τ(ϕ(wt))

ϕ(wt)β
2σ2a

q
M−1
M

q
σ2θ + o(1) and:

V olRat =
τ(ϕ(wt))wt

ϕ(wt)

L
p
M(M − 1)

2
√
2πβ2σ2a

q
q2σ2θ + o(1).

Summing both components of volume leads to:

V ol =
τ(ϕ(wt))wt

ϕ(wt)

L
p
M(M − 1)

2
√
2πβ2σ2a

⎧⎨⎩
s
(1− q)2Xt
h(Xt)2

+ q2σ2θ +
q
q2σ2θ

⎫⎬⎭+ o(1).

41



The share turnover is obtained by dividing by the total capitalization of the market,
PM
m=1K

m
t =

M(Lwt/M) = Lwt. The trading intensity therefore equals:

Turn =
τ(ϕ(wt))

ϕ(wt)

p
M(M − 1)
2
√
2πβ2σ2a

⎧⎨⎩
s
(1− q)2Xt
h(Xt)2

+ q2σ2θ +
q
q2σ2θ

⎫⎬⎭+ o(1).
The derivative of this expression with respect to μt is positive over (q/(1 − q),μ+), and negative over
(μ+,∞) as in the proof of Lemma 8.

Proof of Lemma 10

Proof of Lemma 11

We turn to stock returns. They are given by ln eRmt+1 = lnR0t +rmt+1z where rmt+1z = βeamt z−(1−β)∆kmt z.
It follows that the equally weighted return on the market equals rtz ≡ 1

M

PM
m=1 r

m
t z = βamt z and

its volatility is a constant β2σ2az/M. Idiosyncratic return volatility is given by V ar(∆r
m
t+1z) because

Cov(∆rmt+1z, rtz) = 0.

V ar(∆rmt+1z) = V ar(β∆eamt z − (1− β)∆kmt z)

= V ar(β∆eamt z − (1− β)kα(μ
m
t )(β∆eαmt + μmt ∆

eθmt )z)
= V ar

n
E
h
β∆eamt z − (1− β)kα(μ

m
t )(β∆eαmt + μmt ∆

eθmt )z | {eαmt , θmt }io
+E

n
V ar

h
β∆eamt z − (1− β)kα(μ

m
t )(β∆eαmt + μmt ∆

eθmt )z | {eαmt , θmt }io
= V ar

n
β∆eαmt z − (1− β)kα(μ

m
t )(β∆eαmt + μmt ∆

eθmt )zo+E {V ar [β(∆eamt z) | {eαmt , θmt }]}
= V ar

n
β(1− (1− β)kα(μ

m
t ))∆eαmt z + (1− β)kα(μ

m
t )μ

m
t ∆

eθmt z)o+ M − 1M
β2σ2azβ

2σ2az

= V ar

½
β∆eαmt z

β2σ2αh(Xt)

¾
+ V ar

½µ
1

μmt σ
2
θh(Xt)

+
1− q
q

¶
∆eθmt z¾+ M − 1M

β2σ2azβ
2σ2az,

where where h(Xt) ≡ H(μt) +X(μt). Rearranging leads to:

V ar(∆rmt+1z) =
M − 1
M

½
h(Xt) +Xt
h(Xt)2

z2 +
(1− q)2σ2θ

q2
z2 + β2σ2az

¾
.

Differentiating this expression with respect to noisiness μt amounts to differentiating (h(Xt)+Xt)/h(Xt)
2 =

1/h(Xt) + q/[(1− q)h(Xt)μt] (equation 16):

∂

∂μt

µ
h(Xt) +Xt
h(Xt)2

¶
=

2

H(μt)
2μ3t

µ
1

σ2θ
+
(1− q)2

q2β2σ2α

¶
> 0.

Therefore ∂V ar(∆rmt+1z)/∂μt > 0 so idiosyncratic return volatility falls when information improves.
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Total volatility is given by V ar(rmt+1z) = V ar(∆rmt+1z + rtz) = V ar(∆rmt+1z) + V ar(rtz) since

Cov(∆rmt+1z, rtz) = 0. The market volatility is constant, so total volatility behaves in the same way as

idiosyncratic volatility. Finally,

V ar(rtz) = V ar(
1

M

MX
m=1

rmt z) =
1

M2

(
MX
m=1

V ar(rmt z) +
MX
m=1

MX
m0=1

Cov(rmt+1z, r
m0
t+1z)

)

=
1

M

n
V ar(rmt z) + (M − 1)Cov(rmt+1z, rm

0
t+1z)

o
,

where we use the fact that in equilibrium μmt is identical across stocks (See Proposition 13). So

Cov(rmt+1z, r
m0
t+1z) = (MV ar(rtz)− V ar(rmt+1z))/(M − 1) decreases when information improves.

Proof of Lemma 12

We solve for an investor’s optimal precision about stock m, xml,t, given any noisiness μmt . We first

plug the formulas for the mean and variance of portfolio returns (equations 25) into the expression

for the expected utility (equation 26). We note that
PM
m=1∆e

m
l,t = 0 and

PM
m=1∆e

m2
l,t = M(e2l,t −

el,t
2) so equation 29 implies that

PM
m=1 f

m
l,te

m
l,t = eml,t +

τ(ϕ(wt))M

ϕ(wt)β2σ2a
(e2l,t − el,t2) and

PM
m=1 f

m2
l,t = 1

M +³
τ(ϕ(wt))

ϕ(wt)β
2σ2a

´2
M(e2l,t − el,t2). After rearranging, we obtain:

E(U(egl,t+1, jt) | Fl,t) = U(∗)− ∂U

∂j
(∗).

PM
m=1C(x

m
l,t)z +

∂U

∂g
(∗).ϕ(wt)Ql,tz + o(z) (36)

where Ql,t ≡ E(rl,t+1z | Fl)+
1

2
V ar(rl,t+1z | Fl)−

ϕ(wt)

2τ(ϕ(wt))
V ar(rl,t+1z | Fl) = el,t+Mδt(e2l,t−el,t

2)+dt,

dt ≡
β2σ2a
2

µ
1− ϕ(wt)

Mτ(ϕ(wt))

¶
and δt ≡

τ(ϕ(wt))

2ϕ(wt)β
2σ2a

.

The agent’s unconditional expected utility, E(U(egl,t+1, jt)), follows:
E(U(egl,t+1, jt)) = U(∗)− ∂U

∂j
(∗).

PM
m=1C(x

m
l,t)z +

∂U

∂g
(∗).ϕ(wt)E(Ql,t)z + o(z) (37)

We evaluate next E(Ql,t). The variable e
m
l,t is a function of {∆sml,t} and {kmt } , which themselves

depend on {∆eαmt }, {∆eθmt } and {∆eεml,t+1} (see equation 39 below). Like all the random variables in the

model, its unconditional mean E(eml,t) equals zero. As a result, E(el,t) = 0. Moreover:

E(e2l,t − el,t2) = E(e2l,t − 2el,t2 + el,t2) = E(
PM
m=1 e

m2
l,t /M − 2el,t

PM
m=1 e

m
l,t/M + el,t

2)

= E(
PM
m=1(e

m2
l,t − 2el,teml,t + el,t2)/M) = E(

PM
m=1(e

m
l,t − el,t)2/M) = E((eml,t − el,t)2)

= E((eml,t − el,t)2) = V ar(eml,t − el,t) + (E(eml,t − el,t))2 = V ar(eml,t − el,t) + (E(eml,t − el,t))2

so E(e2l,t − el,t2) = V ar(eml,t − el,t) = V ar(∆eml,t) because E(eml,t) = E(el,t) = 0. (38)

The next step is to compute V ar(∆eml,t). We first note that from equation 22 :

eml,t = E(r
m
t+1 | Fl,t) = E(βeαmt z | Fl,t)− (1− β)kmt = c

m
ξtξ

m
t + c

m
sts

m
l,t − (1− β)kmαt∆ξ

m
t . (39)
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It follows, since kt ≡ 0, that:

∆eml,t = ∆(c
m
ξtξ

m
t ) +∆(c

m
sts

m
l,t)− (1− β)kmαt∆ξ

m
t .

Substituting ξmt ≡ βamt + μmt θ
m
t , s

m
l,t = βeαmt + eεml,t and replacing cmξt and cmst with their definitions

(equations 22) leads to:

∆eml,t = Aml,tβeαmt + (M − 1)xml,tbhml,teεml,t + Bml,tμmt θmt +
MX
n=1
n6=m

Ã
Cn,ml,t βeαnt − xnl,tbhnl,teεnl,t +Dn,ml,t μnt θ

n
t

!
, (40)

where we recall that bhml,t ≡ H(μmt ) + xml,t and define:
Aml,t ≡ (M − 1)

Ã
1− 1

β2σ2α
bhml,t − (1− β)kmαt

!

Bml,t ≡ (M − 1)
Ã

1

μm2t σ2θ
bhml,t − (1− β)kmαt

!
= Aml,t − (M − 1)

xml,tbhml,t
Cn,ml,t ≡ −1 +

1

β2σ2α
bhnl,t + (1− β)kmαt

Dn,ml,t ≡ −
1

μn2t σ2θ
bhnl,t + (1− β)kmαt = C

n,m
l,t +

xml,tbhml,t .
Taking the variance of equation 40 yields:

M2V ar(∆eml,t) = (β2σ2a + μm2t σ2θ)Am2l,t − 2(M − 1)μm2t σ2θ
xml,tbhml,tAml,t + (M − 1)2μm2t σ2θ

xm2l,tbhm2l,t + (M − 1)2
xml,tbhm2l,t

+
MX
n=1
n6=m

Ã
(β2σ2a + μn2t σ2θ)C

n,m2
l,t +

xnl,tbhn2l,t + 2μn2t σ2θ
xml,tbhml,tCn,ml,t + μn2t σ2θ

xm2l,tbhm2l,t
!
.

Completing the sum with the terms with the m superscript and rearranging yields:

M2V ar(∆eml,t) = (β2σ2a + μm2t σ2θ)(Am2l,t − C
m,m2
l,t )− 2μm2t σ2θ

xml,tbhml,t ((M − 1)Aml,t + Cm,ml,t )

+M(M − 2)μm2t σ2θ
xm2l,tbhm2l,t +M(M − 2)

xml,tbhm2l,t
+

MX
n=1

Ã
(β2σ2a + μn2t σ2θ)C

n,m2
l,t +

xnl,tbhn2l,t + 2μn2t σ2θ
xml,tbhml,tCn,ml,t + μn2t σ2θ

xm2l,tbhm2l,t
!
.

Noting that Cm,mt = −Amt /(M − 1), replacing theA and C coefficients with their expressions and
rearranging leads to:

M2V ar(∆eml,t) = −M(M − 2)
Ã
1bhml,t +Km,mt

!
+

MX
n=1

Ã
− 1bhnl,t +Kn,mt

!
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where Kn,mt ≡ (β2σ2a + μn2t σ2θ) (1− (1− β)kmαt)
2 + μn2t σ2θ (2(1− β)kmαt − 1) .

Note that Kn,mt does not depend on the precisions chosen by agent l. Taking the average across all

stocks yields:

M2V ar(∆eml,t) = −(M − 2)
MX
m=1

Ã
1bhml,t +Km,mt

!
+
1

M

MX
m=1

MX
n=1

Ã
− 1bhnl,t +Kn,mt

!

= −(M − 1)
MX
m=1

1bhml,t − (M − 2)
MX
m=1

Km,mt +
1

M

MX
m=1

MX
n=1

Kn,mt

since 1
M

PM
m=1

PM
n=1

1bhnl,t = 1
MM

PM
n=1

1bhnl,t =
PM
n=1

1bhnl,t =
PM
m=1

1bhml,t . It follows that

E(Ql,t) = 0 +
δt
M

Ã
−(M − 1)

MX
m=1

1bhml,t − (M − 2)
MX
m=1

Km,mt +
1

M

MX
m=1

MX
n=1

Kn,mt

!
+ dt

= −δt(M − 1)
M

MX
m=1

1bhml,t +Qt
where Qt ≡

δt
M

Ã
−(M − 2)

MX
m=1

Km,mt +
1

M

MX
m=1

MX
n=1

Kn,mt

!
+ dt.

Note that Qt does not depend on the precisions chosen by agent l. We substitute this expression into
equation 37 which characterizes agent l’s unconditional expected utility, and replace bhml,t ≡ H(μmt )+xml,t:
E(U(egl,t+1, jt)) = U(∗)−∂U

∂j
(∗).

PM
m=1C(x

m
l,t)z+

∂U

∂g
(∗).ϕ(wt)

Ã
−δt(M − 1)

M

MX
m=1

1

H(μmt ) + x
m
l,t

+Qt

!
z+o(z)

We maximize this expression with respect to xml,t taking as given the stocks’ noisiness {μmt }. The

first-order condition for this problem is, for every stock m and agent l :

∂U

∂j
(∗)C 0

¡
xml,t
¢
=

∂U

∂g
(∗).ϕ(wt)

δt(M − 1)
M

1³
H(μmt ) + x

m
l,t

´2 . (41)

Substituting δt ≡ τ(ϕ(wt))

2ϕ(wt)β
2σ2a

and rearranging leads to equation 17 in lemma 5. Equation 41 admits a

unique solution because its left hand side is monotonically increasing in xml,t starting from zero (C
0(0) = 0

by assumption), while its right hand side is monotonically decreasing towards zero. Moreover, the

equation implies that signal precisions are identical across agents for any stock m (xml,t = X
m
t for all l).

Proof of Proposition 13

Equation 41 implies that signal precisions are identical across agents for any stock m, i.e. xml,t = X
m
t ≡

X(μmt ) for all l. As a result, equations 31 which characterize stock prices for arbitrary precisions simplify

to equations 15 and 16. Replacing xml,t withX(μ
m
t ) on both sides of equation 41 and noting that equation
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16 implies that H(μmt ) +X
m
t = H(μmt )/(1− q/(1− q)/μmt ) leads to equation 18. This equation admits

a unique solution μmt for any level of income wt, because its left hand side is monotonically decreasing

in μmt towards zero, while its right hand side is monotonically increasing from zero. Moreover, μmt and

therefore Xm
t are identical across stocks.

Proof of Lemma 14

Differentiating equation 18 with respect to wt yields:½µ
C 00(X(μt))

C 0(X(μt))
+

1

H(μt) +X(μt)

¶
dX

dμt
+

1

H(μt) +X(μt)

dH

dμt

¾
dμt
dwt

=
d

dwt

µ
ln

τ(ϕ(wt))

ρ(ϕ(wt))

¶
.

The sign of dμtdwt
is the opposite of that of d

dwt

³
ln τ(ϕ(wt))

ρ(ϕ(wt))

´
because

dX

dμt
< 0 (equation 16) and

dH

dμt
< 0

(equation 12). Moreover, ϕ is increasing (equation 10). So dμt
dwt

< 0 (> 0) if τ/ρ is increasing (decreasing).

Proof of Lemma 15

We start by computing dXt/dq, which captures the ex ante disincentive effect on the precision of private

information. We write equation 18 as ρ(ϕ(wt))C
0 (Xt) ((1−q)/q)2μ2tXt2 = τ(ϕ(wt))(M−1)/(2Mβ2σ2a)+

o(1) using equation 16. We take logs, differentiate this equation with respect to q, holding wt constant,

and obtain:
C 00(Xt)

2C 0(Xt)

dXt
dq

+
1

q(1− q) +
1

μt

dμt
dq

+
1

Xt

dXt
dq

= 0. (42)

We decompose dμt/dq into ex post and ex ante components,
dμt
dq = ∂μt

∂q Xt fixed
+ ∂μt

∂Xt q fixed
∗ dXtdq . We

differentiate equation 16 to evaluate ∂μt
∂q Xt fixed

and ∂μt
∂Xt q fixed

and substitute the results into the previous

expression for dμt/dq:
dμt
dq

=
μt

Ht +Xt +
2

μ2tσ
2
θ

½
−Ht +Xt
q(1− q) + ∗

dXt
dq

Ht
Xt

¾
.

Substituting back into equation 42 and rearranging leads to

dXt
dq

=
2Xt

q(1− q)μ2tσ2θN
> 0

where N ≡ Xt + 2
μ2tσ

2
θ
+

²C0(Xt)
2

³
Ht +Xt +

2
μ2tσ

2
θ

´
> 0 and ²C0(X) ≡ XC00(X)

C0(X) > 0.

The ex ante disincentive effect on the total precision is given by:

d(Ht +Xt)

dq
= − 2

μ3tσ
2
θ

dμt
dq

+
dXt
dq

= −²C0(Xt))(Ht +Xt)
q(1− q)μ2tσ2θN

< 0.

Hence, less information is produced (Xt falls) but the total precision, Ht+Xt, rises nevertheless (because

more information is shared through stock prices) when the fraction of noise traders q decreases.
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Proof of Lemma 16

We evaluate equation 18 when the fraction of noise traders is close to zero. When q ≈ 0, equation 16 can
be approximated as X(μt) ≈

H(μt)
μt

q
1−q ≈

H(μt)
μt

q so C 0(Xt) ≈ C 00(0)H(μt)μt
q and 1/(H(μt) +X(μt))

2 ≈
1

H(μt)
2 (1− 1

μt

2q
1−q ) ≈

1
H(μt)

2 (1− 2q
μt
). Substituting these expressions into equation 18 yields:

μt
H(μt)

≈ 2
µ
C00(0)

Mβ2σ2a
M − 1

ρ(ϕ(wt))

τ(ϕ(wt))
+ 1

¶
q + o(1). (43)

We guess that μt is close to zero so H(μt) ≈ 1
μ2tσ

2
θ
. Substituting back into equation 43 and rearranging

leads to:

μt ≈
½
2σ2θ

µ
C 00(0)

Mβ2σ2a
M − 1

ρ(ϕ(wt))

τ(ϕ(wt))
+ 1

¶¾1/3
q1/3 + o(1),

which confirms that μt is close to zero. This formula implies that H(μt) grows to infinity when q

approaches zero: agents’ information becomes perfect thanks to its revelation through stock prices even

though the precision of their private signals goes to zero. As a result, the capital allocation and the

income process converge to those of the first best.

Proof of Proposition 17

The first part of the proposition (equations 19 and 20) was established in the proof of lemma 7. These

equations imply that the steady-state level of income along the average path solves w∗ = Λ exp(λ(w∗)z2).

To determine w∗ at the order z2, we replace w∗ in λ(w∗) with its order-zero component, which is identical

to the order-zero component of wFB, i.e. (1−β)1/(1−β)M (see equations 6 and 8). This leads to equation

21.

The last part of the proposition obtains by combining lemma 7 with lemma 8. Lemma 8 states that
dμt
dwt

< 0 (noisiness falls with income) if τ/ρ is an increasing function, while lemma 7 shows that
∂λ

∂μt
< 0

(income grows on average when noisiness is lower). Together, they imply that
dλ

dwt
> 0. If instead If

τ/ρ is a decreasing function, then
dλ

dwt
< 0.

If limg→u τ(g)/ρ(g) =∞, then equation 18 implies that limwt→u μt = q/(1− q), which corresponds
to the perfect-information case. In that case, the capital allocation and the income process converge to

those of the first best (limwt→u λ(wt) = λFB). Alternatively, if limg→u τ(g)/ρ(g) = 0, then limwt→u μt =

∞ (no-information case) and limwt→u λ(wt) =
M−1
2M

³
β
1−β

q
1−q

´2
σ2θ.

Proof of Proposition 18

Proposition 17 follows directly from combining Lemmas 5 to 10 with Lemma 13.
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Proof of Proposition 19

The proof of the proposition follows directly from the discussion following Proposition 17.

Proof of Lemma 20

Under CES preferences, τ(g)/ρ(g) = ωgσ($gσ + 1−$)/(1− σ)/(1−$)2. Substituting this expression

into the condition in Proposition 17 leads to wσ
t >

1−$
2$

Ãs
1 +

8$(1− σ)Mσ2a(σ
2
α)
2

(1−$)(M − 1)β2
C 0(0)− 1

!
≡ wσ

and to lemma 18.
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Figure 2: Signal precisions and the noisiness of the price system. The picture depicts the precision of

the stock price H (dotted curve), the precision of an investor’s private signal X (dashed curve) and

her total precision H + X (solid curve) as a function of the stock price noisiness μ. Utility is CES

(U(g, j) ≡ ($gσ + (1−$)jσ)1/σ). The parameters are β = 2/3, C(x) = x2, q = 0.1, σ2a = 0.01,

σ2θ = σ2α = 1, ω = 0.5, M = 50 and z = 0.5.
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Figure 3: The benefit and cost of information in equilibrium. The picture depicts the marginal benefit

of private information (solid curve) and its marginal cost (dashed curve) in equation 18 as a function of

the equilibrium noisiness μ. Utility is CES (U(g, j) ≡ ($gσ + (1−$)jσ)1/σ) with σ = 0.5. The other

parameters are β = 2/3, C(x) = x2, q = 0.1, σ2a = 0.01, σ
2
θ = σ2α = 1, ω = 0.5, M = 50 and z = 0.5.
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Figure 4: The impact of income on the equilibrium. The picture depicts the equilibrium noisiness μt (top

left panel), the precision of private information Xt (top right panel), the total precision Ht+Xt (bottom

left panel) and λt which captures the effect of learning on income (bottom right panel) as a function

of current income wt. Utility is CES (U(g, j) ≡ ($gσ + (1−$)jσ)1/σ). The solid curves correspond to
σ = 0.5 and the dotted curves to σ = −0.5. The other parameters are β = 2/3, C(x) = x2, q = 0.1,

σ2a = 0.01, σ
2
θ = σ2α = 1, ω = 0.5, M = 50 and z = 0.5.
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Figure 5: The impact of the fraction of noise traders on the equilibrium. The picture depicts the

equilibrium noisiness μt (top left panel), the precision of private information Xt (top right panel), the

total precision Ht + Xt (middle left panel), the elasticity of investments to productivity shocks kαt

(middle right panel), λt which captures the effect of learning on income (bottom left panel) and the

steady state level of income w∗ (bottom right panel) as a function of the fraction of noise traders q.

Utility is CES (U(g, j) ≡ ($gσ + (1−$)jσ)1/σ) with σ = 0.5. The other parameters are β = 2/3,

C(x) = x2, q = 0.1, σ2a = 0.01, σ
2
θ = σ2α = 1, ω = 0.5, M = 50 and z = 0.5.
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Figure 6: The dynamics of income in an economy along its average path. The curves represent the

average income in period t+1, E(wt+1), as a function of income in period t, wt. Utility is CES (U(g, j) ≡
($gσ + (1−$)jσ)1/σ). The solid curve corresponds to σ = 0.5 and the dotted curve to σ = −0.5. The
dashed curve corresponds to the first-best economy. The economies’ steady-states are located at the

intersections of these curves with the 45◦ line, represented as a solid line. The other parameters are

β = 2/3, C(x) = x2, q = 0.1, σ2a = 0.01, σ
2
θ = σ2α = 1, ω = 0.5, M = 50 and z = 0.5.
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Figure 7: The growth rate of income. The picture depicts the growth rate of income, Γ(wt) ≡
E( ewt+1)/wt, during the transition to the steady-state. Utility is CES (U(g, j) ≡ ($gσ + (1−$)jσ)1/σ).
The solid curve corresponds to σ = 0.5 and the dotted curve to σ = −0.5. The dashed curve corre-
sponds to the first-best economy. The other parameters are β = 2/3, C(x) = x2, q = 0.1, σ2a = 0.01,

σ2θ = σ2α = 1, ω = 0.5, M = 50 and z = 0.5.
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