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Abstract

We study a model where a capital provider learns from the price of a firm’s security

in deciding how much capital to provide for new investment. This feedback effect

from the financial market to the investment decision gives rise to trading frenzies,

where speculators all wish to trade like others, generating large pressure on prices.

Coordination among speculators is sometimes desirable for price informativeness and

investment efficiency, but speculators’ incentives push in the opposite direction, so that

they coordinate exactly when it is undesirable. We analyze the effect of various market

parameters on the likelihood of trading frenzies to arise.
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Trading frenzies in financial markets occur when many speculators rush to trade in the

same direction leading to large pressure on prices. Financial economists have long been

searching for the sources of trading frenzies, asking what causes strategic complementarities

in speculators’ behavior. This phenomenon is particularly puzzling given that the price

mechanism in financial markets naturally leads to strategic substitutes, whereby the expected

change in price caused by speculators’ trades makes others want to trade in the opposite

direction.1

A recent literature reviewed in Section 1 develops and analyzes different mechanisms

that generate strategic complementarities in financial markets and hence may give rise to

trading frenzies. An important aspect of real-world trading frenzies that is missing from

this literature is their real effect. Firms and regulators are often concerned about a bear

raid (i.e., a massive short selling of a stock) because of its implications for the ability of the

firm to raise capital and operate. In this paper, we analyze a model where financial-market

trading has an effect on the real economy, i.e., on firms’ cash flows. Hence, when a trading

frenzy arises, it will affect not only prices but also firm cash flows, providing a reason for

firms to worry and for regulators to intervene. Interestingly, in our model, the real effect

itself provides the mechanism for strategic complementarities and trading frenzies to arise.

Intuitively, suppose that speculators in the financial market short sell a stock, leading

to a decrease in its price. Since the stock price provides information about the firm’s prof-

itability, it affects decisions by various agents, such as capital providers. Seeing the decrease

in price, capital providers update downwards their expectation of the firm’s profitability.

This weakens the firm’s access to capital and thus hurts its performance.2 As a result, the

firm’s value decreases, and short sellers are able to make a profit. This creates a source

for complementarities, whereby the expected change in value caused by speculators’ trades

makes others want to trade in the same direction, and generates a trading frenzy.

We develop a model to study and analyze this phenomenon. We study an environment

where a capital provider decides how much capital to provide to a firm for the purpose of

making new real investment. The decision of the capital provider depends on his assessment

of the productivity of the proposed investment. In his decision, the capital provider uses

two sources of information: his private information and the information aggregated by the

price of the firm’s security which is traded in the financial market. The reliance of capital

1That is, if a speculator expects other speculators to sell a security, then he expects the price of the

security to decline, which gives him a reason to buy the security.
2Other agents that may be affected by the information in the price are managers, employees, customers,

etc.
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provision on financial-market prices establishes the effect that the financial market has on

the real economy. We refer to this effect as the ‘feedback effect’.3

The financial market in our model contains many small speculators trading a security,

whose payoff is correlated with the cash flow obtained from the firm’s investment. Speculators

trade on the basis of information they have about the productivity of the investment. They

have access to two signals: the first signal is independent across speculators (conditional on

the realization of the productivity), while the second one is correlated among them.4 The

correlated signals introduce common noise in information into the model, which can be due

to a rumor, for example. A trading frenzy occurs when speculators put large weight on the

correlated signal relative to the idiosyncratic signal, and so they tend to trade similarly to

each other.

To close the model, we introduce noisy price-elastic supply in the financial market. The

market is cleared at a price for which the demand from speculators equals the supply. The

endogenous price, in turn, reflects information about the productivity of the investment, as

aggregated from speculators’ trades. But, given the structure of information and trading,

the information in the price contains noise from two sources – the noisy supply and the

common noise in speculators’ information. The information in the price is then used by

the capital provider, together with his private information, when making the decision about

capital provision and investment.

Analyzing the weight speculators put on the correlated signal relative to the idiosyncratic

signal, we shed light on the determinants of trading frenzies. In a world with no strategic

interactions, this weight is naturally given by the ratio of precisions between the correlated

and the idiosyncratic signals. But, in the equilibrium of our model, there are two strategic

interactions that shift the weight away from this ratio of precisions. The first effect is

the usual outcome of a price mechanism. When speculators put weight on the correlated

information, this information gets more strongly reflected in the price, and then the incentive

of each individual speculator to put weight on the correlated information decreases. This

generates strategic substitutes and pushes the weight that speculators put on the correlated

information below the ratio of precisions.5 The second effect arises due to the feedback

effect from the price to the capital provision decision. When speculators put weight on

3In our model the financial market is a secondary market, and hence the only feedback from it to the

firm’s cash flow is informational; there is no transfer of cash from the market to the firm.
4In our model, the correlation is perfect, but this is not essential.
5Strategic substitutes due to the price mechanism appear in various forms in the literature on financial

markets. See, for example, Grossman and Stiglitz (1980).
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the correlated information, this information gets to have a stronger effect on the capital

provision to the firm and hence on the real value of its traded security. Then, the incentive

of each speculator to put weight on this information increases. This leads to strategic

complementarities that make speculators put a larger weight on the correlated signal.

This second effect is what causes a trading frenzy, leading speculators to put large weight

on their correlated information, and to trade in a coordinated fashion. When this effect

dominates, our model generates a pattern that looks like a ‘run’ on a stock by many specu-

lators, who are driven by common noise in their correlated signals (e.g. rumor), leading to a

price decline, lack of provision of new capital, and collapse of real value. This echoes some

highly publicized events such as the bear raid on Overstock.com in 2005 or the bear raids on

Bear Stearns and Lehman Brothers in 2008. We provide more information on such events

and their connection to our model in Section 1.6

Our model provides testable predictions that can guide future empirical work. The

main feature of our model is the connection between trading frenzies, which are episodes of

large buying or selling pressure, and real variables, such as credit and cash available to the

firm. This connection is double-sided. First, a trading frenzy has a spillover to the firm’s

credit, investment and cash flow due to the information inferred from the price by capital

providers. Second, the reliance of the firm’s cash flows on prices is the source of the strategic

complementarity in trading that gives rise to the trading frenzy. In Section 1, we provide

suggestive evidence that is consistent with these forces in our model. However, as we note

in Section 1, there is room for a very thorough empirical study to follow up on our paper

and demonstrate the connection between trading frenzies and real variables with a careful

identification strategy.

In addition, using comparative-statics analysis, we investigate theoretically other factors

that affect the likelihood of trading frenzies. This analysis provides additional ground for

future empirical work. First, we show that, in our model, speculators are more likely to

trade in a coordinated fashion when the supply in the financial market is more elastic with

respect to the price. This can be interpreted as a more liquid market. In such a market,

the strategic substitutes due to the price mechanism are weak, as informed demand is easily

absorbed by the elastic supply without having much of a price impact. Hence, speculators

tend to put more weight on correlated information and trade more similarly to each other.

6Our model also generates a similar pattern in the other direction: many speculators buy the stock,

leading to a price increase, provision of more new capital, and increase in real value (in the case where the

firm was financially constrained). This resembles events like the internet boom in the late 1990s or the real

estate boom that preceded the recent crisis.
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Empirically, the elasticity of supply with respect to the price can be captured by traditional

liquidity measures, such as the inverse of the sensitivity of price to order flow (see Amihud

(2002) for an empirical implementation).

Second, we find that, in our model, when there is small variance in the supply function,

i.e., when there is small variance in noise/liquidity trading in the financial market, speculators

tend to put large weights on their correlated signals and thus to act in a coordinated fashion.

This is because in these situations, the capital provider relies more on the information in the

price since the price is less noisy, and so the feedback effect from the market to the firm’s

cash flows strengthens, increasing the scope of strategic complementarities. Capturing the

variance in noise/liquidity trading empirically is challenging. One way to think about this

is to classify different types of traders based on the extent to which they are prone to

liquidity shocks. For example, mutual funds are more prone to liquidity shocks than hedge

funds (given that the latter have stronger restrictions on redemptions). Then, Stocks held

primarily by hedge funds will have lower variance of noise/liquidity trading than stocks held

primarily by mutual funds.

Third, the precision of various sources of information also plays an important role in

shaping the incentive to rely on correlated vs. uncorrelated information. Intuitively, there

will be more coordination when speculators’ correlated signals are sharper and when their

uncorrelated signals are noisier. Interestingly, there will be more coordination when the

capital provider has less precise information of his own, as then the feedback from the market

to his decision is stronger. For empirical testing, one can think of information precisions

changing across firms based on their type of business. For example, following the rationale

in Luo (2005), one can expect that in technology firms, the capital provider, who is closer

to the firm than market participants, will have an informational advantage over the market,

whereas the market will have an informational advantage for firms where the uncertainty

revolves mostly around the demand for products. Assessing the precision of common market

information vs. private speculators’ information is more challenging. One can potentially

look at the extent to which speculators exchange information about a stock over the internet

as indication for the extent to which they are exposed to common information.

Another question we ask is whether trading frenzies are good or bad for the efficiency of

the capital provision decision. We find that they are sometimes good and sometimes bad,

and that there is a conflict between the level of coordination in equilibrium and the one

that maximizes the efficiency of the capital provision decision. The efficiency of the capital

provision decision is maximized when the informativeness of the price is highest. It turns

out that when there is high variance of noise/liquidity trading in the market, higher degree
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of coordination among speculators increases price informativeness. This is because, in noisy

markets, coordination among speculators is beneficial in suppressing the noise in liquidity

trading that reduces the informativeness of the price. In such markets, trading frenzies

among speculators are actually desirable because they enable decision makers to detect

some trace of informed trading in a market subject to large volume of liquidity trading and

noise. On the other hand, when the market is less noisy, the importance of coordination

among speculators declines, and the additional noise that coordination adds via the excess

weight that speculators put on their correlated information (which translates into weight on

common noise) makes coordination undesirable. Hence, the conflict arises because high levels

of coordination are desirable in noisy markets, but in equilibrium, speculators coordinate

more in less noisy markets.

This analysis can provide a basis for policy discussions regarding the role of financial

markets in the economy and potential ways to regulate them. Regulatory agencies, such as

the SEC, are often concerned about the damaging effect of speculative trading, and there

are often calls for intervention in speculative markets. However, it is hard to justify such

interventions in models where the financial market is a side show and does not have a feedback

effect on the real economy. As we show, trading patterns in the financial market have an

effect on the efficiency of real investment, and so this may provide a reason for intervention

in financial-market trading. We argue that imposing limits on speculation might not be wise

due to the direct negative effect this has on price informativeness and investment efficiency.

However, more sophisticated intervention involving changes in market liquidity can alter the

incentives of speculators to coordinate and improve price informativeness and investment

efficiency. We elaborate on this in Section 5.

The remainder of this paper is organized as follows. Section 1 discusses related literature

and empirical motivation for our model. In Section 2, we present the model setup and

characterize the equilibrium of the model. In Section 3, we solve the model. Section 4

analyzes the determinants of coordination among speculators in our model. In Section 5,

we discuss the implications for the efficiency of investments and the volatility of prices and

investments. Section 6 concludes. All proofs are provided in the appendix.

1 Literature Review and Empirical Motivation

The existing literature produced theoretical models with strategic complementarities in

financial markets generating excess volatility in trading and prices. Papers in this litera-

ture include Froot, Scharfstein, and Stein (1992), Hirshleifer, Subrahmanyam, and Titman
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(1994), Veldkamp (2006a and 2006b), Ganguli and Yang (2009), Amador and Weil (2011),

and Garcia and Strobl (2011). In these papers, strategic complementarities are in the deci-

sion on information acquisition, i.e., due to various mechanisms, speculators produce more

information when other speculators produce more information. Excess volatility in prices

has also been generated due to learning from the price by speculators in the financial market,

e.g., in Barlevy and Veronesi (2003), Hassan and Mertens (2011), and Breon Drish (2012).

In these models, a decrease in price can be amplified as speculators interpret it as bad news

about the asset and so increase their selling pressure.

The main feature that distinguishes our model from all the models mentioned above is the

connection between trading in the financial market and the decisions made in the real side

of the economy. This connection is double-sided. First, a trading frenzy, where speculators

rush to trade in the same direction, has a spillover to the firm’s investment and cash flow

due to the information inferred from the price by capital providers. Second, the reliance of

the firm’s cash flows on prices is the source of the strategic complementarity in trading that

gives rise to the trading frenzy. Anecdotal and large-sample empirical evidence suggest that

the connection to the real side is a very pertinent component of trading frenzies.

Anecdotally, when firms are attacked by short sellers, their main concern is about the

effect that this will have on their cash flows and operations. For example, Overstock.com,

who was subject to a large short-selling attack in 2005, sued a few large traders later on,

noting the real damage that the attack has caused to the firm’s operations. The following

quote from the lawsuit demonstrates this concern: ”Defendants’ concerted and wrongful

actions have resulted in substantial harm to Overstock. Among the harms defendants’ actions

have caused Overstock are: harm to Overstock’s reputation and good will, loss of product sales

and the profits therefrom; interference with and damage to Overstock’s relationships with its

suppliers, bankers, lenders, institutional investors, and the media; loss of market share and

business opportunity for its products; increased cost to Overstock in its acquisition of SkiWest,

Inc; loss of investment capital; loss of operating capital and impairment of Overstock’s ability

to continue to grow at historical rates.” Indeed, Overstock’s available cash and its short-term

debt were cut by about a half over the year following the short-selling attack, reflecting the

difficulty in rolling over the debt and maintaining cash positions.

The two more recent cases of Bear Stearns and Lehman Brothers are also well known for

their real effect. Both firms depended heavily on the rollover of short-term debt, and so a

decrease in stock price had the potential to harm their ability to rollover their debt and so

hurt their operations. Indeed, after mounting selling pressure in the financial market, Bear

Stearns was close to bankruptcy in March 2008, leading to a bail out by the government and
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acquisition by JPMorgan Chase. Lehman Brothers went bankrupt in September 2008 after

mounting selling pressure for its equity traded in the stock market. Indeed, the Securities

and Exchange Commission imposed a short sales ban for stocks of financial firms in 2008

noting that ”financial institutions are particularly vulnerable ... because they depend on the

confidence of their trading counterparties in the conduct of their core business.”

Basic data analysis reveals that the connection between trading frenzies and firms’ oper-

ations holds more systematically. We use the Regulation SHO database, which contains all

short sales reported to NYSE for NYSE-listed securities from January 2005 to June 2007.

The database was compiled for an SEC pilot program to amend the uptick rule, during which

period broker dealers are required to mark the trades as either long or short. The dataset

contains all intraday short sales executed on NYSE during the 30-month period. We merge

the dataset with the CRSP to obtain returns and trading volume, and with Compustat to

obtain fundamental variables. Some stocks are dropped during the merging process, and

the final dataset contains 2,271 unique securities and is fairly representative of the overall

market.

For each stock and every trading week, we calculate the total number of shares reported

as short sales, and then obtain the total trading volume for the stock from CRSP. We then

calculate the short ratio as the ratio of the weekly trading volume that is sold short. We

define stocks that are subject to a bear raid as stocks that are above the 95th percentile in

short ratio and followed by negative return response in the following week. We compare the

behavior and characteristics of ”raided stocks” to the behavior and characteristics of other

stocks.

First, we look at the dependence of the firm on short-term funding. When a firm depends

more heavily on short-term funding, it is more sensitive to price changes in the financial

market, and so the feedback effect is stronger, which according to our model should give rise

to stronger strategic complementarities and trading frenzies. We capture the dependence of

the firm on short term funding as the ratio between the firm’s current debt and its current

assets, where current debt is defined as the sum of short-term debt and long-term debt that

is due in less than one year. Consistent with our theory, we find that raided firms are much

more dependent on short-term funding than other firms. The average ratio of current debt

to current assets is 20.77% among raided firms, and only 13.54% in the overall sample. These

results are significant at less than the 1% level.

Second, we look at what happens to the firm following a short-selling attack. In particular,

we look at changes in cash, in current debt, and in operating earnings in the quarter following

a bear raid and compare them to the average experience of firms in the sample. Our theory
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suggests that, due to the feedback effect, firms who are subject to a short-selling attack will

have a hard time rolling over their debt, and so will experience a decrease in their current

debt, leading to a decrease in cash and ultimately hurting their operating earnings. The

evidence is consistent with this story. During the quarter following a bear raid, a firm’s cash

decreases on average by 53.5 million dollars, while in the overall sample firms experience an

average increase of 84.3 million dollars in cash per quarter. Similarly, in the quarter following

a bear raid, current debt decreases by 105 million dollars (compared to an average quarterly

increase of 107.6 million dollars in current debt in the overall sample), and operating earnings

decrease by $1.74 per share (compared to an average quarterly decrease of $0.01 in operating

earnings per share in the overall sample). These results are significant at less than the 1%

level.

Overall, both anecdotal and large-sample empirical evidence suggests that the feedback

loop between firms’ operations and the trading of their stocks is an important element in the

emergence of trading frenzies. This element is the focus of our model, and it distinguishes

our model from other theories of strategic complementarities in trading leading to trading

frenzies. Clearly, the evidence presented here is only suggestive. There is room for a thorough

empirical study that will consider identification issues. To the best of our knowledge, there

is no empirical study in the existing literature that looks at the connection between trading

frenzies and the real operations of the firm. We hope that our model with its many predictions

and the suggestive empirical evidence presented here will stimulate such empirical research.

Our paper contributes to a growing literature on the feedback effect from trading in

financial markets to corporate decisions based on the informational content of market prices.

The basic motivation for this literature goes back to Hayek (1945), who posited that market

prices provide an important source of information for various decision makers. A number

of papers provide empirical evidence for this link. Luo (2005) shows that an abnormal

decrease in stock price following an acquisition announcement increases the likelihood that

the acquisition will be cancelled and that this effect is stronger in cases where the acquirer has

more to learn from the market. Chen, Goldstein, and Jiang (2007) show that the sensitivity

of corporate investment to market price is stronger when the market price contains more

information (based on microstructure measures of price informativeness) that is not otherwise

available to firm managers. On the theoretical side, papers in this literature include Fishman

and Hagerty (1992), Leland (1992), Khanna, Slezak, and Bradley (1994), Boot and Thakor

(1997), Dow and Gorton (1997), Subrahmanyam and Titman (1999), Fulghieri and Lukin

(2001), Bond, Goldstein, and Prescott (2010), and Kurlat and Veldkamp (2012).

Several recent papers in this literature are more closely related to the mechanism in our
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paper. Ozdenoren and Yuan (2008) show that the feedback effect from asset prices to the

real value of a firm generates strategic complementarities. In their paper, however, the feed-

back effect is modeled exogenously and is not based on learning. As a result, their paper

does not deliver the implications that our paper delivers on the effect of liquidity and various

information variables on coordination and efficiency. Khanna and Sonti (2004) also model

feedback exogenously and show how a single trader can increase the value of his existing in-

ventory in the stock by trading to affect the value of the firm. Goldstein and Guembel (2008)

do analyze learning by a decision maker, and show that this might lead to manipulation of

the price by a single potentially informed trader. Hence, the manipulation equilibrium in

their paper is not a result of strategic complementarities among heterogeneously informed

traders.7 Hirshleifer et al. (2006) also analyze learning by a decision maker, and show that

the feedback effect enables irrational traders who trade on common noise to make a profit.

However, in their model, the decision of these traders to trade on noise is exogenous (they

act irrationally) and is not endogenized as a result of a coordination problem. Dow, Gold-

stein, and Guembel (2007) show that the feedback effect generates complementarities in the

decision to produce information, but not in the trading decision.

Our paper is most closely related to Goldstein, Ozdenoren, and Yuan (2011) and Angele-

tos, Lorenzoni, and Pavan (2010). Both of these papers derive endogenous complementarities

as a result of learning from the aggregate action of agents. To analyze trading frenzies and

their impact on real investments, we embed this mechanism in a model of financial markets

where a capital provider learns from the price to make an investment decision. Modeling the

financial market explicitly enriches the problem in various ways. For example, having a price

mechanism introduces strategic substitutes that coexist with the strategic complementarities

in the model.8 Hence, our model is substantially different from the above mentioned models.

In terms of results, our model generates new insights in the context of our study, such as the

effect of supply elasticity and noise trading on coordination in financial markets. We also

derive new results on the difference between the equilibrium level of coordination and the

efficient level of coordination.

7More recently, Khanna and Mathews (2012) extend the model by Goldstein and Guembel (2008) to

allow for the presence of a blockholder as in Khanna and Sonti (2004) and study when manipulation occurs

in spite of the presence of a blockholder who tries to maximize firm value.
8Another technical detail that we highlight in the description of the model is the use of log-normal

distributions, which is necessary in a setting of feedback from financial-market prices to investment decisions.
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2 Model

The model has one firm and a traded asset. There is a capital provider who has to decide

how much capital to provide to the firm for the purpose of making an investment. There

are three dates, t = 0, 1, 2. At date 0, speculators trade in the asset market based on their

information about the fundamentals of the firm. At date 1, after observing the asset price

and receiving private information, the capital provider of the firm decides how much capital

the firm can have and the firm undertakes investment accordingly. Finally, at date 2, the

cash flow is realized and agents get paid.

2.1 Investment

The firm in this economy has access to a production technology, which at time t = 2

generates cash flow F̃ I. Here, I is the amount of investment financed by the capital provider,

and F̃ ≥ 0 is the level of productivity. Let f̃ denote the natural log of productivity, f̃ = ln F̃ .

We assume that f̃ is unobservable and drawn from a normal distribution with mean f̄ and

variance σ2
f . We use τf to denote 1/σ2

f . As will become clear later, assuming a log-normal

distribution for the productivity shock F̃ enables us to get a tractable closed-form solution.

At time t = 1 the capital provider chooses the level of capital I. Providing capital is

costly and the capital provider must incur a private non-pecuniary cost of: C(I) = 1
2
cI2,

where c > 0. This cost can be thought of as the cost of raising the capital, which is increasing

in the amount of capital provided, or as effort incurred in monitoring the investment (which

is also increasing in the size of the investment). The capital provider’s benefit increases

in the cash flow generated by the investment. To ease the exposition, we assume that he

captures proportion β ∈ (0, 1) of the full amount and thus his payoff from the investment

is βF̃ I. The capital provider chooses I to maximize the value he captures from the cash

flow generated by the firm’s production technology minus his cost of raising capital C(I),

conditional on his information set, Fl, at t = 1:

I = arg max
I
E[βF̃ I − C(I)|Fl]. (1)

The solution to this maximization problem is:

I =
βE[F̃ |Fl]

c
. (2)

The capital provider’s information set, denoted by Fl, consists of a private signal s̃l

and the asset price P observed at date 0 (we will elaborate on the formation of P next).
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That is, Fl = {s̃l, P}. The private signal s̃l is a noisy signal about f̃ with precision τl:

s̃l = f̃ + σlε̃l, where ε̃l is distributed normally with mean zero and standard deviation one

and τl = 1/σ2
l . Later, we will conduct comparative statics with respect to the precision

of the capital provider’s private signal. It is important to emphasize that even though our

capital provider learns from the information in the price, he still may have good sources of

private information. In fact, his signal can be more precise than other signals in the economy.

Despite this, he still attempts to learn from the market, as agents in the market have other

signals that are aggregated by the price.

2.2 Speculative Trading

The traded asset is a claim on (1− β) F̃ I, the cash flow that remains after removing the

capital provider’s share. This is realized at the final date t = 2. The price of this risky

asset at t = 0 is denoted by P . In Section 3.1, we discuss the nature of the traded asset and

compare it with alternatives. Since the cost of the investment C(I) is a private non-pecuniary

cost incurred by the capital provider, our traded asset can be viewed as equity.9

Note that the value of the traded asset here increases in the firm’s investment. This is

a typical feature of equity in a financially-constrained firm, where equity holders would like

to see more capital invested in their firm, but are constrained in how much capital they can

raise, due to additional costs borne by capital providers. Hence, our model is suitable to

explain trading frenzies and their real impact in such firms. Indeed, our motivating examples,

discussed in the introduction and in Section 1, involve financially-constrained firms.10

In the market, there is a measure-one continuum of heterogeneously informed risk-neutral

speculators indexed by i ∈ [0, 1]. Each speculator is endowed with two signals about f̃ at

time 0. The first signal, s̃i = f̃+σsε̃i, is privately observed where ε̃i is independently normally

distributed across speculators with mean zero and unit variance. The precision of this signal

is denoted as τs = 1/σ2
s . The second signal is s̃c = f̃ + σcε̃c. This signal is observed by

all speculators and ε̃c is independently and normally distributed with mean zero and unit

variance and τc = 1/σ2
c .

11

9Alternatively the traded asset can be thought of as a derivative whose payoff is tied to the return from

the investment.
10It should be noted that, no matter what the nature of the asset is, our market is a secondary market

with no cash transfers to the firm. The only effect of the market on the firm will be via the information

revealed in the trading process.
11The assumption that the second signal is a common signal greatly simplifies the analysis. However, it

is not necessary. The necessary element is that the noise in the information observed by speculators has
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Each speculator can buy or sell up to a unit of the risky asset. The size of speculator i’s

position is denoted by x (i) ∈ [−1, 1]. This position limit can be justified by limited capital

and/or borrowing constraints faced by speculators.12 Due to risk neutrality, speculators

choose their positions to maximize expected profits. A speculator’s profit from shorting one

unit of the asset is given by P − (1− β) F̃ I, where (1− β) F̃ I is the asset payoff and P is

the price of the asset. Similarly, a speculator’s profit from buying one unit of the asset is

given by (1− β) F̃ I − P .

Formally, speculator i chooses x(i) to solve:

max
x(i)∈[−1,1]

x (i)E
[
(1− β) F̃ I − P |Fi

]
, (3)

where Fi denotes the information set of speculator i and consists of s̃i and s̃c. Since each

speculator has measure zero and is risk neutral, an informed speculator optimally chooses to

either short up to the position limit, or buy up to the position limit. We denote the aggregate

demand by speculators as X =
∫ 1

0
x (i) di, which is given by the fraction of speculators

who buy the asset minus the fraction of those who short the asset. Note that we assume

that speculators do not observe the price when they trade, and hence they submit market

orders, as in Kyle (1985). This setup of the financial market is a simple way to capture

the (important) idea that speculators, when they trade, do not have the market information

that the capital provider will have when making the lending/investment decision later on

(recall that the capital provider bases the investment decision on the price of the security).

One could capture this idea in a more complicated dynamic framework, where the capital

provider observes prices from multiple rounds of trade and speculators only observe current

and past prices. However, such settings will only complicate the model, leading to loss of

tractability, without adding much economic insight.

a common component that cannot be fully teased out by the capital provider. In Goldstein, Ozdenoren,

and Yuan (2011), we analyzed an alternative setup, where the second signal is specified as a heterogenous

private signal with a common noise component ε̃c and an agent-specific noise component ε̃2i. That is,

s̃ci = f̃ + σcε̃c + σε2ε̃2i, where ε̃c and ε̃2i are independently normally distributed variables with mean zero

and variance one. That paper, however, was simpler on other dimensions, as there was no price formation

for the traded asset.
12The specific size of this position limit on asset holdings is not crucial for our results. What is crucial is

that informed speculators cannot take unlimited positions; if they do, strategic interaction among informed

speculators will become immaterial.
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2.3 Market Clearing

At date 0, conditional on his information, each speculator submits a market order to

buy or sell a unit of the asset to a Walrasian auctioneer. The Walrasian auctioneer then

obtains the aggregate demand by speculators X and also a noisy supply curve from unin-

formed traders, and sets a price to clear the market. The noisy supply of the risky asset is

exogenously given by Q(ξ̃, P ), a continuous function of an exogenous demand shock ξ̃ and

the price P . The supply curve Q(ξ̃, P ) is strictly decreasing in ξ̃, and increasing in P , that

is, it is upward sloping in price. The demand shock ξ̃ ∈ R is independent of other shocks in

the economy, and ξ̃ ∼ N(0, σ2
ξ ). As always, we denote τξ = 1/σ2

ξ .

The usual interpretation of noisy supply/demand is that there are agents who trade

for exogenous reasons, such as liquidity or hedging needs. They are usually referred to as

“noise traders”. Several papers in the finance literature have explicitly endogenized the

actions of these traders in simpler settings, but doing so here will significantly complicate

the model. One possibility is that the scale of noise trading will depend on the amount

of information available in the market. In additional analysis we conducted, we show that

allowing noise trading to depend on the informational parameters of our model (the precisions

of the different signals) does not change our results.13 In future work, it will be interesting

to endogenize noise trading more fully, understanding how their presence is affected by the

potential for trading frenzies. In this paper, we only derive comparative statics in the other

direction, analyzing the effect of the amount of noise trading in the market (captured by σ2
ξ )

on the likelihood and desirability of trading frenzies.

To solve the model in closed form, we assume that Q(ξ̃, P ) takes the following functional

form:

Q(ξ, P ) = 1− 2Φ
(
ξ̃ − α lnP

)
, (4)

where Φ (·) denotes the cumulative standard normal distribution function. The parameter

α captures the elasticity of the supply curve with respect to the price. It can be interpreted

as the liquidity of the market: when α is high, the supply is very elastic with respect to the

price, and so large informed demand is easily absorbed in the price without having much

of a price impact. This notion of liquidity is similar to that in Kyle (1985), where liquidity

is considered high when the informed trader has a low price impact. The basic features

assumed in (4), i.e., that the supply is increasing in price and also has a noisy component,

are standard in the literature. It is also common in the literature to assume particular

13Details are available upon request.
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functional forms to obtain tractability. The specific functional form assumed here is close to

that in Dasgupta (2007) and Hellwig, Mukherji, and Tsyvinski (2006) .

2.4 Equilibrium

We now turn to the definition of equilibrium.

Definition 1: [Equilibrium with Market Orders ] An equilibrium consists of a price func-

tion, P (f̃ , ε̃c, ξ̃) : R3 → R, an investment policy for the capital provider I(s̃l, P ) : R2 → R,

strategies for speculators, x(s̃i, s̃c) : R2 → [−1, 1], and the corresponding aggregate demand

X(f̃ , ε̃c), such that:

• For speculator i, x(s̃i, s̃c) ∈ arg maxx(i)∈[−1,1] x(i)E
[
(1− β) F̃ I − P |s̃i, s̃c

]
;

• The capital provider’s investment is I(s̃l, P ) = βE
[
F̃ |s̃l, P

]
/c.

• The market clearing condition for the risky asset is satisfied:

Q(ξ̃, P ) = X(f̃ , ε̃c) ≡
∫
x(f̃ + σsε̃i, f̃ + σcε̃c)dΦ (ε̃i) . (5)

Definition 2: A linear monotone equilibrium is an equilibrium where x(s̃i, s̃c) = 1 if

s̃i + ks̃c ≥ g for constants k and g, and x(s̃i, s̃c) = −1 otherwise.

In words: in a monotone linear equilibrium, a speculator buys the asset if and only if a

linear combination of his signals is above a cutoff g, and sells it otherwise. In the rest of the

paper we focus on linear monotone equilibria.

3 Solving the Model

In this section, we explain the main steps that are required to solve our model. Restricting

attention to a linear monotone equilibrium, we first use the market clearing condition to

determine the asset price. We then characterize the information content of the asset price to

derive the capital provider’s belief on f̃ based on {P, s̃l} and solve for the optimal investment

problem. Finally, given the capital provider’s investment rule and the asset pricing rule, we

solve for individual speculators’ optimal trading decision.

In a linear monotone equilibrium, speculators short the asset whenever s̃i + ks̃c ≤ g or,

equivalently, σsε̃i ≤ g− (1 + k) f̃−kσcε̃c. Hence, their aggregate selling can be characterized

by: Φ
((
g − (1 + k) f̃ − kσcε̃c

)
/σs

)
. Conversely, they purchase the asset whenever s̃i +
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ks̃c ≥ g or, equivalently, σsε̃i ≥ g − (1 + k) f̃ − kσcε̃c. Hence, their aggregate purchase can

be characterized by 1− Φ
((
g − (1 + k) f̃ − kσcε̃c

)
/σs

)
. The net holding from speculators

is then:

X
(
f̃ , ε̃c

)
= 1− 2Φ

(
g − (1 + k) f̃ − kσcε̃c

σs

)
. (6)

The market clearing condition together with equation (4) indicate that

1− 2Φ

(
g − (1 + k)f̃ − kσcε̃c

σs

)
= 1− 2Φ

(
ξ̃ − α lnP

)
. (7)

Therefore the equilibrium price is given by

P = exp

(
(1 + k)f̃ + kσcε̃c − g + σsξ̃

ασs

)
= exp

(
f̃ + ks̃c − g + σsξ̃

ασs

)
, (8)

which is informationally equivalent to

z(P ) ≡ g + ασs lnP

1 + k
= f̃ +

k

1 + k
σcε̃c+

1

1 + k
σsξ̃ =

(
1

1 + k

)
f̃ +

k

1 + k
s̃c+

1

1 + k
σsξ̃. (9)

From the above equation, we can see that z(P ), which is a sufficient statistic for the

information in P , provides some information about the realization of the productivity shock

f̃ . Yet, the signal z(P ) is not fully revealing of f̃ , as it is also affected by the noise in the

common signal ε̃c and by the noisy demand ξ̃. Since the capital provider observes z(P ), he

will use it to update his belief about the productivity. Note that z (P ) is distributed normally

with a mean of f̄ . The variance of z(P ) given f̃ is σ2
p = (k/(1 + k))2σ2

c + (1/(1 + k))2σ2
sσ

2
ξ .

Hence, we denote the precision of z(P ) as a signal for f̃ as:

τp = 1/σ2
p =

(1 + k)2τcτξτs
k2τξτs + τc

. (10)

After characterizing the information content of the price, we can derive the capital

provider’s belief on f̃ . That is, conditional on observing s̃l and z (P ), the capital provider

believes that f̃ is distributed normally with mean
(
τf f̄ + τls̃l + τpz (P )

)
/ (τf + τl + τp) and

variance 1/ (τf + τl + τp). Then, using the capital provider’s investment rule in equation (1)

and taking expectations, we can express the level of investment as:

I =
β

c
E[F̃ |s̃l = sl, P ] =

β

c
E[exp

(
f̃
)
|s̃l = sl, P ] (11)

=
β

c
exp

(
τf f̄ + τlsl + τpz (P )

τf + τl + τp
+

1

2(τf + τl + τp)

)
.
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Given the capital provider’s investment policy in (11) and the price in (8), we can now

write speculator i’s expected profit from buying the asset given the information that is

available to him (shorting the asset would give the negative of this):

E
[
(1− β) F̃ I − P |s̃i, s̃c

]
=

β (1− β)

c
E

[
exp

(
τf f̄ + τlsl + τpz (P )

τf + τl + τp
+

1

2(τf + τl + τp)
+ f̃

)
|s̃i, s̃c

]
−E

[
exp

(
f̃ + ks̃c − g + σsξ̃

ασs

)
|s̃i, s̃c

]
. (12)

Note that we made use here of the fact that F̃ = exp
(
f̃
)

. This is where using the natural

log of the productivity parameter plays a key role. Using the properties of the exponential

function, we can express the value of the firm F̃ I as (β (1− β) /c) exp (·), where the expres-

sion in parentheses is linear in f̃ . This enables us to get a linear closed-form solution, which

would otherwise be impossible in a model of feedback.

Conditional on observing s̃i and s̃c, speculator i believes that f̃ is distributed normally

with mean
(
τf f̄ + τss̃i + τcs̃c

)
/ (τf + τs + τc) and variance 1/ (τf + τs + τc). Hence, substi-

tuting for z (P ) (from (9)) and taking expectations, equation (12) can be rewritten as:

E
[
(1− β) F̃ I − P |s̃i, s̃c

]
=
β (1− β)

c
exp (a0 + a1s̃i + a2s̃c)−exp (b0 + b1s̃i + b2s̃c) , (13)

where the coefficients a0, a1, a2, b0, b1, and b2 are functions of k and of the model’s parameters.

Explicit expressions for these coefficients are provided in the proof of Proposition 1 in the

appendix.

A speculator will choose to buy the asset if and only if (13) is positive. Rearranging and

taking logs leads to the following condition:

s̃i +B (k) s̃c ≥ C (k) (14)

where B (k) = (a2 − b2) / (a1 − b1) and C (k) = (b0 − a0 + ln (c/β (1− β))) / (a1 − b1).14

Function B(k) can be thought of as the best response of a speculator to other specula-

tors’ weight on the correlated signal. That is, if all speculators in the economy put a relative

weight k on the correlated signal when deciding whether to attack or not, the best response

for a speculator is to put the weight B(k) on his correlated signal. The symmetric equilib-

rium is solved when B (k) = k. Recall that a1, a2, b1, and b2 are also functions of k, and

hence the equilibrium condition B (k) = k leads to a third-order polynomial. Analyzing this

polynomial, we obtain the result in the following proposition. All proofs are in the Appendix.

14Here, we assume that a1 − b1 > 0. This is verified later in the proof of Proposition 1.
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Proposition 1: For a high enough level of supply elasticity α, there exists a monotone

linear equilibrium characterized by weight k∗ > 0 that speculators put on the common signal.

This equilibrium is unique when the precision of the prior τf is sufficiently small.

The weight k∗ that speculators put on the common signal in equilibrium captures the

degree of coordination in their trading decisions. When k∗ is high, speculators put a large

weight on the common information when deciding whether to sell or buy the asset. This

leads to large coordination among them and gives rise to a trading frenzy. In the upcoming

sections, we develop a series of results on the determinants of coordination and its implica-

tions for the efficiency of the investment decision and for the volatility of prices. We focus

on the case of large supply elasticity (large α) and imprecise prior (small τf ), for which we

know that there exists a unique equilibrium.

3.1 A Note on the Nature of the Traded Security

Before moving to the next sections, we would like to discuss the nature of the traded

security. Our model assumes that the traded security is a claim on some portion of the cash

flow from the investment F̃ I. As we note in Section 2, this can be interpreted as equity of

the traded firm, in case the firm is financially constrained or as a derivative.

The key feature of the traded security is that its cash flow depends not only on the

fundamental F̃ , but also on the investment decision I. This introduces a feedback loop

between the financial market and the real economy, whereby the price affects the investment

decision, and the investment decision is reflected in the price. This feedback loop is the crucial

element for our result on strategic complementarities and trading frenzies. To illustrate this,

note that if the traded security was a claim on the fundamental F̃ , there would be no

feedback loop and no frenzies. When speculators trade on F̃ , the value of the security is

exogenous and hence does not depend on speculators’ behavior; this eliminates the strategic

interaction that is central to our paper. It is worth noting that a security on F̃ might also

not be easy to implement, since F̃ is not an easily verifiable cash flow (unlike F̃ I, which is

the cash flow from the investment). Indeed, most real-world financial securities, e.g., debt

and equity, resemble F̃ I more than they resemble F̃ in that they provide a claim on a cash

flow that depends on fundamental and firm action.

Another possible security that features a feedback loop is one that provides a claim

on (potentially a proportion of) the net return from the investment F̃ I − C(I). Such a

security would have been natural to focus on if C(I) was a monetary cost affecting the firm

17



itself. Technically, however, we are unable to solve a model with this traded security.15 A

key economic difference between F̃ I and F̃ I − C(I) is that the former is always increasing

in the level of investment I. This is typical to equity of a financially-constrained firm,

where shareholders would benefit from having more capital invested in their firm, but are

constrained in how much capital they can raise due to additional costs that need to be borne

by capital providers. Hence, our model is suitable to describe trading of equity of such firms.

Interestingly, this feature is responsible for the fact that in our model we get symmetric

frenzies, i.e., both bear raids leading to a decrease in capital and in firm value (as in the recent

cases of Bear Stearns and Lehman Brothers) and elevated buying leading to an increase in

capital and firm value (as in the internet or real estate booms). When speculators buy

(sell) they lead the capital provider to invest more (less), which increases (reduces) the value

of the security, leading to a profit on their buying (selling). We expect that asymmetric

frenzies – i.e., only on the sell side – will exist under the alternative security F̃ I−C(I). This

is because, in that case, when speculators sell and reduce the price, they lead the capital

provider to provide less capital than optimal and reduce the value of the security, leading to

a profit on their selling. But, when they buy and increase the price, they lead the capital

provider to provide more capital than optimal and reduce the value of the security, leading

to a loss on their buying. As mentioned, however, with the existing techniques, such a model

is unsolvable.

4 The Determinants of Speculators’ Coordination

The weight that speculators put on the common signal in this model is affected by the

degree to which there are strategic complementarities or strategic substitutes among them.

To see the sources of the two types of strategic interaction, recall from (3), that a speculator’s

expected profit is x (i)E
[
(1− β) F̃ I − P |Fi

]
. When other speculators put more weight on

the common signal, this signal gets to have a stronger effect on the price P , as well as on

the real value of the security (1− β) F̃ I (since the capital provider’s investment decision is

affected by the price). The first effect pushes the speculator to put a lower weight on the

common signal, since relying on the common signal more heavily implies paying a high price

when buying and getting a low price when selling. On the other hand, the second effect

15To see this, go back to (12). The expected value of the security for a speculator (1− β)E
[
F̃ I|s̃i, s̃c

]
is

expressed there as one exponential term (given our log-normal distributions), which is crucial for our ability

to find a linear solution. If the cash flow from the traded security was proportional to F̃ I −C(I), we would

have two exponential terms, which would render the steps for finding a linear solution impossible.
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pushes the speculator to put a higher weight on the common signal, since relying on the

common signal more heavily implies buying a security with high value and selling one with

low value. Hence, the source of strategic substitutes in our model is the price mechanism,

which is usual in models of financial markets, while the source of strategic complementarities

is the feedback effect to the real value of the security.

In a world without these strategic interactions, the weight that speculators put on the

common signal relative to the private signal would be equal to the ratio of precisions between

the signals: τc/τs. But, with strategic interactions, the equilibrium weight on the common

signal k∗ reflects the sum of the effects of the strategic interactions on top of the precisions

ratio; where the strategic substitutes due to the price mechanism push k down and the

strategic complementarities due to the feedback effect push it up. In the rest of this section,

we formally isolate the various determinants of coordination to understand the impact of

each factor on the equilibrium level of coordination.

4.1 Impact of Learning by the Capital Provider

Traditionally, financial markets are modeled in the finance literature as a side show; they

reflect firms’ cash flows, but do not affect them. In our model, the financial market has an

effect on the firm’s investment and cash flow via the learning from the price by the capital

provider. Our paper shows that this feedback effect is a source of strategic complementarities

that lead to trading frenzies in the financial market. In this section, we demonstrate this

formally by comparing our main model to a model where there is no feedback effect from

prices to firms’ investments and cash flows because the capital provider does not learn from

the price. We show that strategic complementarities only emerge in our main model leading

speculators to put a larger weight on the common signal.

In the absence of feedback from the market, the capital provider’s decision on how much

capital to provide becomes (this equation is analogous to equation (11) in the main model):

I =
β

c
E[F̃ |s̃l = sl] =

β

c
exp

(
τf f̄ + τlsl
τf + τl

+
1

2(τf + τl)

)
. (15)

We again solve for the linear monotone equilibrium where speculators buy the asset if and

only if s̃i + kBM s̃c ≥ gBM (the subscript BM stands for ‘benchmark’), and purchase the

asset otherwise. Given the investment rule in (15), the expected profit for speculator i from

buying the asset, given the information available to him, becomes (this equation is analogous
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to equation (12) in the main model):

E[(1− β) F̃ I − P |s̃i, s̃c] = E

[
β (1− β)

c
exp

(
τf f̄ + τlsl
τf + τl

+
1

2(τf + τl)

)
F̃ |s̃i, s̃c

]
(16)

−E
[
exp

(
1

ασs

(
f̃ + kBM s̃c − gBM + σsξ̃

))
|s̃i, s̃c

]
.

For a speculator who buys the asset, (16) must be positive. Taking expectation and rear-

ranging, we can see that a speculator buys the asset if and only if s̃i + BBM (k) s̃c ≥ CBM

where16

BBM (k) =
τc
τs
−

√
τs
α
k

τs
τf+τs+τc

(
τf+2τl
τf+τl

−
√
τs
α

) . (17)

SolvingBBM (k) = k, as in the main model, we obtain the equilibrium weight that speculators

put on the common signal in the case of no feedback effect from price to real investment:

kBM =

((
1−

√
τs
α

)
τf +

(
2−

√
τs
α

)
τl

)
τc(√

τs
α

)
(τf + τl) (τc + τf + τs) +

((
1−

√
τs
α

)
τf +

(
2−

√
τs
α

)
τl

)
τs
. (18)

Inspecting (18), we can see that kBM is lower than τc/τs, and that it approaches τc/τs as

α gets very large. The intuition is as follows: τc/τs represents the ratio of precisions between

the common signal and the idiosyncratic signal. This is the relative weight that speculators

would put on the common signal if there were no strategic interactions. In a world without a

feedback effect, the only strategic interaction between the speculators comes from the price

mechanism, which generates strategic substitutes that reduce kBM below τc/τs. As α gets

very large, this effect weakens, since the supply is highly elastic in the price, and so the price

is not strongly affected by speculators’ trades. Hence, speculators converge to the weight of

τc/τs.

The following proposition summarizes the properties of kBM and its relation to the equi-

librium weight k∗ in the main model.

Proposition 2: If the capital provider does not learn from the price when making lending

decisions, the weight speculators put on the common signal kBM is given by (18). For a

high enough level of supply elasticity α, kBM is strictly below the equilibrium weight k∗ that

speculators put on the common signal in the main model (with a feedback effect).

We can see that when we shut down the feedback effect from the price to real investment,

the weight that speculators put on the common signal decreases. This is in line with our

16The expression for CBM and other details are in the proof of Proposition 2.
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τc/τs 

Figure 1: Best Response Functions. The x-axis denotes a given speculator’s conjecture about

the weight on the common signal by others. The y-axis denotes the weight that he puts on

the common signal as best response. The best response function in the main model, B(k),

is given by the solid line and the best response function in the benchmark model without

learning, BBM(k), is given by the dashed line. The intersection of the best response function

with the 45-degree line (i.e., the dotted line) yields the equilibrium outcome in the main

model k∗ and in the benchmark case kBM , respectively.

discussion above, according to which the feedback effect from prices to real investment is the

source of complementarity in speculators’ strategies, making them want to put more weight

on the common signal. Hence, the feedback effect is the cause of trading frenzies in our

model.

For illustration, we plot the best response function for our main model (as in equation

(14)) and for the benchmark case (as in equation (17)) in Figure (1). In the figure, the

intersections of B (k) and BBM (k) with the 45-degree line establish the equilibrium weights

k∗ and kBM , respectively. As we see in the figure, B(0) = BBM(0) = τc/τs. That is, in both

cases, if other speculators put no weight on the common signal, a speculator finds it optimal

to use the ratio of precisions between the common signal and the idiosyncratic signal as the

weight for the common signal. This is because when other speculators do not put weight on

the common signal, this signal is essentially like a private signal and hence it gets weighted
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solely based on its precision.

Once k increases above 0, strategic substitutability from the price mechanism emerges

in the benchmark model. Indeed, the best response BBM(k) is a decreasing function of k:

when others put more weight on the common signal, this signal gets more strongly reflected

in the price, making an individual speculator reduce the weight he puts on the common

signal. By contrast, in our main model, in addition to strategic substitutability from the

price mechanism, strategic complementarity also emerges due to the feedback effect. For

α large enough, the effect from strategic complementarity dominates that from strategic

substitutability, resulting in B(k) increasing above τc/τs. As the figure shows, this results in

a higher equilibrium weight on the common signal in the main model than in the benchmark

model, which is proved formally in the proof of Proposition 2.

4.2 Impact of Supply Elasticity

The parameter α captures the elasticity of supply with respect to price in our model.

When α is high, the supply of shares is very sensitive to the price, meaning that an increase

in demand by informed traders is quickly absorbed in the market, so that informed trading

does not have a large price impact. As mentioned above, α can then be interpreted as

a measure of liquidity. It can be measured empirically as the inverse of the sensitivity of

price to order flow. Amihud (2002) has developed such an empirical proxy based on the

sensitivity of daily returns to daily volume. The following proposition tells us that, in our

model, the extent to which speculators coordinate on the common signal increases in the

level of liquidity α.

Proposition 3: The equilibrium level of coordination k∗ is increasing in the supply elas-

ticity α, and for α large enough k∗ is greater than the precisions ratio τc/τs.

In illiquid markets, order flows have a large effect on the price. Then, when speculators

put more weight on the common signal, this signal has a substantial effect on the price, and

so other speculators want to put less weight on the common signal. This effect decreases as

α goes up and liquidity improves. Hence, in liquid markets there is a greater tendency for

coordination and trading frenzies. As the proposition shows, when α is large enough, the

weight on the common signal increases beyond the ratio of precisions τc/τs.

The positive effect of α on k exists also in the benchmark model described in the previous

subsection, where trading in the financial market has no effect on the firm’s cash flows.

The feedback effect from trading to the firm’s cash flow strengthens this effect, since once
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speculators start putting more weight on the common signal, the feedback effect to cash flow

induces others to increase the weight on the common signal even more. A feature of our

model which is crucial for this is that the feedback effect of speculators’ trading on the real

investment does not weaken when liquidity increases. Even though a high level of liquidity

implies that prices will change less with order flows, the capital provider is aware of this and

so becomes more tuned to small changes in the price, such that the sensitivity of investment

to trading activity remains unaffected.

4.3 Impact of Noise Trading

Noise trading is captured in our model by the variable ξ̃ ∼ N(0, σ2
ξ ). A high level of

σ2
ξ implies that the market is exposed to large levels of noise trading. In the literature on

financial markets, this introduces noise to the price, and in the presence of a feedback effect,

it makes it harder to base investment decisions on the price. In our model, we examine

the effect of noise trading on speculators’ coordination. As we will see later, this will have

further implications for the informativeness of the price.

Proposition 4: For a high enough level of supply elasticity α, the equilibrium weight k∗

that speculators put on the common signal is decreasing in the variance of noise trading σ2
ξ .

The intuition here goes as follows: With high variance in the noise demand, there is high

variance in the market price for reasons that are not related to speculators’ trades. As a

result, the reliance of the capital provider on the information in the price decreases. This

weakens the feedback effect and hence the strategic complementarities among speculators,

leading to a lower level of k∗. Empirically, one can expect different types of traders to be

prone to liquidity shocks to a different extent. For example, it is known that mutual funds

are subject to large variation in redemptions, whereas hedge funds put tighter restrictions

on redemptions and so are less exposed to them. Hence, the effect in our model would lead

stocks held by mutual funds to be less exposed to trading frenzies by informed speculators

than stocks held by hedge funds.

It is worth noting that changes in the position limits of speculators will have similar

effects to changes in the variance of noise trading. For example, if speculators could choose

positions in the range [−2, 2] (instead of [−1, 1], assumed in the paper), they would have

more impact on the capital provider’s decision for a given level of σ2
ξ and thus would put a

larger weight on the common signal in equilibrium. Hence, the effect of loosening speculators’

trading constraints is similar to that of reducing the variance of noise trading.
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4.4 Impact of the Information Structure

We now establish comparative statics results on the effect of the informativeness of various

signals on the equilibrium level of coordination. The results are summarized in the next

proposition.

Proposition 5: For a high enough level of supply elasticity α, the equilibrium level of

coordination k∗ decreases in the precision of speculators’ private signals τs, increases in the

precision of their common signal τc, and decreases in the precision of the capital provider’s

signal τl.

These results are intuitive. Speculators put more weight on the common signal relative

to the private signal when the common signal is more precise (τc is higher) and the pri-

vate signal is less precise (τs is lower). Hence, trading frenzies are more likely when the

common information becomes more precise relative to speculators’ idiosyncratic sources of

information. Less obvious is the result that the tendency for coordination among speculators

decreases when the capital provider has more precise information (τl is higher). The reason

is that when the capital provider has more precise information, he relies less on the price,

and so the feedback effect from markets to real decisions weakens, and there is less scope for

strategic complementarities.

Empirically, we may expect that the market will not have very precise information about

the technology used by the firm and will have better information about the demand for the

firm’s products. This implies that, in relative terms, capital providers, who are closer to

the firm than speculators, will have more precise information about firms with technological

uncertainties and less precise information about firms with demand uncertainties, and so

the latter will be more likely to be subject to a trading frenzy. It is more difficult to get

a proxy for the precision of common market information relative to private speculators’

information. The recent phenomenon where speculators exchange information in forums

over the internet may help provide such empirical proxies. A large volume of activity in such

forums may suggest that speculators have more common than private information and so

trading frenzies will become more likely to occur.
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5 Coordination, Investment Efficiency, and Non-Fundamental

Volatility

In this section, we explore the effect that coordination has on the efficiency of investment

decisions. Vives (1993) and other authors show how the reliance of agents on public informa-

tion imposes negative externalities on other agents, as it reduces the efficiency of learning. In

our paper, the weight that speculators put on common information increases due to strategic

complementarities that emerge as a result of the informational feedback from the market to

real investment. We explore the implications that this generates for the efficiency of real

investment.

To analyze investment efficiency, we look at the ex ante expected net benefit of investment

(i.e. expected net benefit before any of the signals are realized given the prior belief that f̃

is normally distributed with mean f̄ and precision τf ). We keep the information structure

the same as before, and in particular, in the interim stage we allow the capital provider to

obtain information only from his private signal and the price. So our efficiency criterion is

given by:

E0

[
max
I
E

[
F̃ I − 1

2
cI2 |s̃l = sl, P

]]
, (19)

where a speculator purchases the asset if s̃i + ks̃c ≥ g and shorts it otherwise (for constant k

and g) and P is the market clearing price. We denote the optimal level of coordination kOP

to be the one that maximizes investment efficiency as in (19).17

The following proposition characterizes kOP , and how it is linked to the accuracy of the

information inferred from the market price, τp:

Proposition 6: The level of coordination that maximizes investment efficiency is kOP =

τc/ (τsτξ), which also maximizes the precision of the price τp.

The capital provider cares about the events in the security market only to the extent that

they affect the quality of the information he has when making the investment decision. Hence,

the level of coordination that maximizes investment efficiency is the one that maximizes the

accuracy of the information in the market price. This is a result of the fact that the financial

market in our model affects the investment decision only via the information provided by the

market to the capital provider. This is a broad insight that extends beyond the model and

17Note that we focus only on the efficiency of real investment, and so ignore other implications that trading

may have on welfare via the transfer of resources across traders in the financial market. Accounting for these

other effects would require a model with endogenous noise trading.
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should hold in other settings. When the financial market is a secondary market, its effect on

the real decisions comes only from the information it provides, and so real efficiency will be

determined by the precision of the information that the market provides about the variable

that decision makers care to learn (in our model, this is f̃).

Examining the expression for the price signal in (9), we can see that there is a tradeoff

in setting the level of coordination. The tradeoff arises because there are two sources of

noise in the price, one coming from the noise trading ξ̃ and the other one from the noise in

the common signal ε̃c. (The first source of noise becomes more prominent when speculators’

private information is noisy – τs is low – because then noise trading becomes relatively more

important.) A high level of coordination reduces the effect of the first source of noise –

as coordinated speculative trading helps overcoming the large volume of noise trading –

and increases the effect of the second source of noise – as coordinated speculative trading

increases the weight on the common signal. Therefore, the optimal level of coordination will

be high when the potential damage from noise trading is high (τξ and τs are low) or when the

potential damage from noise in the common signal is low (τc is high). Then, kOP = τc/ (τsτξ).

It is interesting to compare the optimal level of coordination characterized here with the

level of coordination that is obtained in equilibrium. From Proposition 4 we know that in

equilibrium speculators coordinate more when the variance in the noise trading is low (τξ is

high). A high τξ implies that speculators’ trades have more effect on the capital provider’s

decision, increasing the scope of strategic complementarities. Yet, this is exactly when

coordination is not desirable for the efficiency of the investment. Hence, there is a sharp

contrast between the profit incentives of speculators and between price informativeness and

investment efficiency. Speculators coordinate more exactly when it is inefficient to do so. The

following proposition summarizes the comparison between the optimal level of coordination

and the equilibrium level of coordination.

Proposition 7: For a high enough level of supply elasticity α, there exists τ̄ξ such that

the level of coordination that maximizes investment efficiency is greater than the equilibrium

level of coordination (kOP > k∗) when the precision of the noise trading distribution τξ is

below τ̄ξ. Similarly, kOP < k∗ for τξ > τ̄ξ.

The proposition says that speculators coordinate too much in markets with less noise

trading and coordinate too little in markets with more noise trading. Interestingly, this

implies that trading frenzies are only sometimes undesirable. When there is high variation

in noise trading, price informativeness would improve if speculators coordinated their trades

more to provide a signal that overcomes the effect of noise trading. Yet, it is exactly in this
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case that they find coordination less profitable in equilibrium.

The last proposition of the paper considers the positive implications of inefficient coor-

dination levels. Deviations from the optimal level of coordination kOP are manifested in our

model by higher levels of non-fundamental volatility. We define this as volatility that does

not come from the variability in fundamental.

Proposition 8: (a) Non-fundamental volatility of asset price is minimized at k = kOP

(where its value is 1/(τc + τsτξ)).

(b) Similarly, non-fundamental volatility of investment is minimized at k = kOP (where

its value is 1/(τl + τc + τsτξ)).

This proposition indicates that the strategic interactions among speculators in the finan-

cial markets often lead to non-fundamental volatility in prices as well as real activities. The

source of this non-fundamental volatility could come from either too low coordination (that

is, when the market is characterized by a high amount of noise trading) or too high coordi-

nation (that is, when the market has low noise trading and the noise in the correlated signals

among speculators is high). Note that non-fundamental volatility is difficult to measure since

it is defined as the volatility that does not come from fundamentals, while the volatility of

fundamentals is unobservable (the volatility of cash flow is observable, but includes volatility

due to noise). Hence, this notion is interesting mostly for theoretical reasons.

Finally, the analysis in this section can provide a basis for policy discussions regarding the

role of financial markets in the economy and potential ways to regulate them. Regulatory

agencies, such as the SEC, are often concerned about the damaging effect of speculative

trading, and there are often calls for intervention in speculative markets. However, it is hard

to justify such interventions in models where the financial market is a side show and does

not have a feedback effect on the real economy. As we show in this section, trading patterns

in the financial market have an effect on the efficiency of real investment, and so this may

provide a reason for intervention in financial-market trading.

It is tempting to suggest that changing the level of noise trading (by changing τξ) or,

equivalently, changing the level of informed trading (by changing the position limits of specu-

lators) is a tool that the government can use to influence the strength of trading frenzies and

hence also the level of real investment efficiency. After all, Proposition 4 shows that trading

frenzies will be stronger (i.e., k∗ will be larger) when τξ is higher (or when speculators can

trade more aggressively). Combining this result with Proposition 7, one might think that

decreasing τξ (or decreasing the size of speculators’ positions) can improve efficiency when

τξ > τ̄ξ, and similarly that increasing τξ (or increasing the size of speculators’ positions) can
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improve efficiency when when τξ < τ̄ξ. However, note that τξ and the size of speculators’

positions also have a direct effect on investment efficiency, which goes beyond their effect via

k∗. The direct effect always calls for increasing τξ and the size of speculators’ positions, as

this means that there will be more information in prices. In numerical analysis, it appears

that the direct effect always dominates the indirect effect via k∗. Hence, while regulators are

sometimes tempted to limit speculative positions, our model suggests that this may not be

wise, as the reduction of informed trading that comes as a direct result of this is damaging

to price informativeness and investment efficiency, and this is stronger than the potential

benefit from weakening the trading frenzy.

One parameter that can provide a useful policy tool in our framework is the liquidity

level α. This is because α has no direct effect on the informativeness of the price and the

efficiency of investment. It only affects them via its effect on the trading frenzy k∗. Hence,

combining the results from Proposition 3 and Proposition 7, our model suggests that it is

beneficial for the government to try to increase α (and so increase k∗) when τξ is below τ̄ξ.

Similarly, it is beneficial for the government to try to decrease α (and so decrease k∗) when

τξ is above τ̄ξ. As we mentioned in Section 4, α represents the sensitivity of order flows

to prices, and so increasing α would amount to buying more when the price decreases and

selling more when the price increases, and so changing α can be accomplished by having

the government trade in the market in response to prices or allowing more brokers / market

makers to operate in the market and provide such liquidity.

6 Conclusion

We study strategic interactions among speculators in financial markets and their real

effects. Two opposite strategic interactions exist. On the one hand, speculators wish to act

differently from each other as a certain action by other speculators changes the price in a

way that reduces the profit for other speculators from this action. On the other hand, due

to the feedback effect from the price to the real investment, a certain action by speculators

changes the real value of the firm in a way that increases the incentive of other speculators

to take this action. This creates a basis for trading frenzies, where speculators rush to trade

in the same direction, putting pressure on the price and on the firm’s value. We characterize

which effect dominates when and analyze the resulting level of coordination in speculators’

actions.

The interaction among speculators affects the informational content of the price. Since

prices affect real investment in our model, we can ask what level of coordination is most
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efficient for real investment. In general, speculators’ incentives to coordinate go in opposite

direction to the optimal level of coordination. Speculators want to coordinate more when

there is a low amount of noise trading, but this is when coordination is less desirable from

an efficiency point of view. Hence, our model shows that there is always either too much

or too little coordination, and this reduces the efficiency of investment and creates excess

volatility in the price.

Interestingly, our paper is also related to an old debate on whether speculators stabilize

prices. The traditional view is that by buying low and selling dear, rational speculators

stabilize prices. Hart and Kreps (1986) argue that when speculators can hold inventories and

there is uncertainty about preferences, speculative activity may cause excess price movement.

Our paper contributes to this literature by pointing out that when speculative activity has an

effect on real investments, speculators might coordinate on correlated sources of information.

This affects the excess volatility in prices and the efficiency of real investments.
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Appendix

Proof of Proposition 1: Based on (12) and the updating done by the speculator based

on his information, the coefficients in (13) are given as follows:

a0 =
τf f̄ + 1
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+
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Note that

a1 − b1 =
τs

τf + τs + τc

((
τf + 2τl + τp

(
1 + 1
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τf + τl + τp

− 1

ασs
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A sufficient condition for a1−b1 > 0 is that α >
√
τs. Recall thatB (k) = (a2 − b2) / (a1 − b1) .

Substituting, we obtain:

B (k) =

τp
k
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Simplifying B (k)− k = 0 we get:

0 =

 1

τs

(k + 1) (τc + τf + τs) (τf + τl + τp)

τp + (k + 1) τl +
(

1−
√
τs
α

)
(1 + k) (τf + τl + τp)


(

τp
τf + τl + τp

k

1 + k
+

(
τf + 2τl +

(
1 + 1

1+k

)
τp

τf + τl + τp

)(
−τsk + τc
τf + τs + τc

)
−
√
τs
α

((
−τsk + τc
τf + τs + τc

)
+ k

))
.

33



The term in square brackets is strictly positive for α >
√
τs. So the equilibrium condition

can be simplified to:

0 =
τp

τf + τl + τp

k
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)
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Recall that τp = ((1 + k)2τcτξτs) / (k2τξτs + τc). We denote r ≡ τξτs. Substituting for τp and

simplifying, the right-hand side becomes:18

H(k) = −k3 ((τc + τf + τs) (τc + τf + τl) + τlτs)− τck2 (τc + τf − τl + 2τs) (20)
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For an equilibrium, we need H (k) = 0.

First, we focus on existence of an equilibrium with k > 0. H(k) has a positive root if and

only if

α >
√
τs

τf + τl + r

τf + 2τl + 2r
.

To see this, note that the coefficient for k3 is always negative, implying that the value of

H (k) becomes negative as k becomes large. So, there exists a strictly positive root for the

polynomial if its value at k = 0 is strictly positive. This condition is given by the above

inequality. If the inequality is violated, the value of the polynomial is negative at k = 0. Its

derivative at k = 0 is given by
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the derivative is negative. This means that H (k) is decreasing at k = 0

for
√
τs
α
≥ τf+2τl+2r

τf+τl+r
. Moreover, the second derivative is negative when

√
τs
α
≥ τf+2τl+2r

τf+τl+r
, and

thus the expression will keep decreasing. Therefore the polynomial cannot have a positive

root.

18The simplification is achieved by dividing by r and multiplying through with (τc + τf + τs)(
τcτf + τcτl + τcr + τck

2r + τfk
2r + k2τlr + 2τckr

)
.
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For uniqueness, we need to check the sign of the discriminant of H (k) for α large and τf

small. Letting α go to infinity and τf go to zero we obtain the discriminant as − τ3c
r3

times(
64τ 4c τl + 128τ 3c τ

2
l + 160τ 3c τlτs + 64τ 2c τ

3
l + 416τ 2c τ

2
l τs + 144τ 2c τlτ

2
s

+284τcτ
2
l τ

2
s + 56τcτlτ

3
s + 8τlτ

4
s

)
r3 (21)

+

(
64τ 5c τl + 192τ 4c τ

2
l + 160τ 4c τlτs + 192τ 3c τ

3
l + 608τ 3c τ

2
l τs + 144τ 3c τlτ

2
s + 64τ 2c τ

4
l

+448τ 2c τ
3
l τs + 440τ 2c τ

2
l τ

2
s + 56τ 2c τlτ

3
s + 416τcτ

3
l τ

2
s + 80τcτ

2
l τ

3
s + 8τcτlτ

4
s + 48τ 2l τ

4
s

)
r2

+
(
128τcτ

4
l τ

2
s − 32τ 2c τ

3
l τ

2
s − 16τ 2c τ

2
l τ

3
s − 52τ 3c τ

2
l τ

2
s − 64τcτ

3
l τ

3
s + 32τcτ

2
l τ

4
s + 96τ 3l τ

4
s

)
r

+
(
64τ 4l τ

4
s + 32τcτ

3
l τ

4
s

)
.

The coefficient of r2 in (21) is strictly positive so the quadratic part of (21) is minimized at:

r = − 128τcτ
4
l τ

2
s − 32τ 2c τ

3
l τ

2
s − 16τ 2c τ

2
l τ

3
s − 52τ 3c τ

2
l τ

2
s − 64τcτ

3
l τ

3
s + 32τcτ

2
l τ

4
s + 96τ 3l τ

4
s

2

(
64τ 5c τl + 192τ 4c τ

2
l + 160τ 4c τlτs + 192τ 3c τ

3
l + 608τ 3c τ

2
l τs + 144τ 3c τlτ

2
s + 64τ 2c τ

4
l

+448τ 2c τ
3
l τs + 440τ 2c τ

2
l τ

2
s + 56τ 2c τlτ

3
s + 416τcτ

3
l τ

2
s + 80τcτ

2
l τ

3
s + 8τcτlτ

4
s + 48τ 2l τ

4
s

) .

Substituting this back to the quadratic above we find that the minimized value is:

1

2

τ 3l τ
4
s(

8τ 5c + 24τ 4c τl + 20τ 4c τs + 24τ 3c τ
2
l + 76τ 3c τlτs + 18τ 3c τ

2
s + 8τ 2c τ

3
l + 56τ 2c τ

2
l τs

+55τ 2c τlτ
2
s + 7τ 2c τ

3
s + 52τcτ

2
l τ

2
s + 10τcτlτ

3
s + τcτ

4
s + 6τlτ

4
s

)

×


343τ 6c + 2352τ 5c τl + 1176τ 5c τs + 5376τ 4c τ

2
l + 6944τ 4c τlτs + 1344τ 4c τ

2
s + 4096τ 3c τ

3
l

+13312τ 3c τ
2
l τs + 6448τ 3c τlτ

2
s + 512τ 3c τ

3
s + 8192τ 2c τ

3
l τs + 9984τ 2c τ

2
l τ

2
s + 1984τ 2c τlτ

3
s

+5120τcτ
3
l τ

2
s + 2048τcτ

2
l τ

3
s + 128τcτlτ

4
s + 192τ 2l τ

4
s


which is strictly positive. Since the quadratic term is strictly positive at its minimum, it is

positive for all r. Since r3 term is positive for r > 0 as well, (21) is strictly positive for all

r > 0. That is, the discriminant is strictly negative for large enough α and small enough τf ,

and hence H (k) = 0 has a unique root. QED.

Proof of Propositions 2: First, we derive kBM . Based on (16) and taking expectations,

we see that a speculator buys the asset when:

ln

(
β (1− β)

c

)
+
τf f̄ + 1

2

τf + τl
+

(
τf + 2τl
τf + τl

)(
τf f̄ + τss̃i + τcs̃c
τf + τs + τc

)
(22)

+

(
τf + 2τl
τf + τl

)2
1

2(τf + τs + τc)
+

1

2

(
τl

τf + τl

)2

σ2
l

≥ 1

ασs

(
τf f̄ + τss̃i + τcs̃c + 1

2
1
ασs

τf + τs + τc
+ kBM s̃c − gBM

)
+

1

2α2
σ2
ξ .
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Rearranging (22), a speculator buys the asset when s̃i +BBM (kBM) s̃c ≥ CBM where

BBM (kBM) =
τc
τs
−

√
τs
α
kBM

τs
τf+τs+τc

(
τf+2τl
τf+τl

−
√
τs
α

)
and

CBM =
1(

τf+2τl
τf+τl

− 1
ασs

)(
τs

τf+τs+τc

)
(

ln (c/β (1− β)) +
1

ασs

(
τf f̄ + 1

2
1
ασs

τf + τs + τc
− gBM

)
−
τf f̄ + 1

2

τf + τl
−
(
τf + 2τl
τf + τl

)(
τf f̄

τf + τs + τc

)

−
(
τf + 2τl
τf + τl

)2
1

2(τf + τs + τc)
+

1

2α2
σ2
ξ −

1

2

(
τl

τf + τl

)2

σ2
l

)
.

Setting BBM (kBM) = kBM leads to the expression for kBM in (18).

Now, we show that in the main model (with feedback effect) k∗ > τc/τs for α large

enough. To see this note that H (τc/τs) > 0 for α large enough. Since H (k) has a unique

root and crosses the axis from above, the conclusion follows. Next, note that kBM < τc/τs

and thus kBM < k∗ for α large enough. QED.

Proof of Proposition 3: We showed in the proof of Proposition 2 that k∗ > τc/τs for

α large enough. By inspecting (20), we can see that H (k) shifts up as α increases, so its

unique root k∗ increases in α. QED.

Proof of Proposition 4:

Consider the following terms involving 1/r in H (k) in (20):

− 1

r

(
τck(τcτf + τcτl + τfτl + τfτs + 2τlτs + τ 2f )− τ 2c τl

)
+

(
1−
√
τs
α

)
τc
r

((τf + τl)(τc + τf )k + τc(τf + τl)) .

For α large enough, these terms are negative iff k exceeds τc/τs. So for k > τc/τs, H (k)

shifts up as r goes up. By Proposition 3, for α large enough, k∗ which implicitly depends

on r exceeds τc/τs for all r. Since H (k) crosses the axis once from above at k∗, we see that

k∗ must be increasing in r. Since σξ and r are inversely related, an increase in σξ leads to a

decrease in k∗. QED.

Proof of Proposition 5
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Let

D(k) = −3 ((τf + τc + τl)(τf + τc + τs) + τlτs) k
2 − 2τc(τf + τc − τl + 2τs)k

+ τc(τc − τs)−
1

r

(
τc(τfτc + τfτl + τfτs + τcτl + 2τlτs + τ 2f )

)
+

(
1−
√
τs
α

)(
3(τf + τc)(τf + τc + τl)k

2 + 2τc(3τf + 3τc + τl)k + τc(τf + 3τc)
)

+
τc
r

(
1−
√
τs
α

)
(τf + τc)(τf + τl)

Note that ∂H/∂k = D(k). When the equilibrium is unique D(k∗) < 0 since H(k) crosses

zero from above.

To see that for α large ∂k∗

∂τs
< 0,note for α large, ∂k∗

∂τs
is arbitrarily close to

1
τ2s τξ

(
τ 2c τf + 2τ 2c τl + τcτ

2
s τξk

∗ + 2τcτ
2
s τξ (k∗)2 + (τcτ

2
s τξ + τfτ

2
s τξ + 2τlτ

2
s τξ) (k∗)3

)
D(k∗)

< 0.

To see that for α large ∂k∗

∂τc
> 0,note for α large, ∂k∗

∂τc
is arbitrarily close to(

τs (k∗)3 − 2(2τc + τf + τl − τs) (k∗)2 − (8τc + τf − τs)k∗ − 4τc

−1
r

(−τs(τf + 2τl)k
∗ + 2τcτf + 4τcτl)

)
D (k∗)

.

Also,

τc
(
−τs (k∗)3 + 2 (2τc + τf + τl − τs) (k∗)2 + (8τc + τf − τs) k∗ + 4τc

+
1

r
(−τs (τf + 2τl) k

∗ + 2τcτf + 4τcτl)

)
> −τs (τc + τf + 2τl) (k∗)3

+ 2τc (τf + τl − τs + τc) (k∗)2 + τc (τf − τs + 4τc) k
∗ + 2τ 2c

+
τc
r

(τcτf + 2τcτl − τs (τf + 2τl) k
∗)

and the right hand side of the above inequality is arbitrarily close to H(k∗) which is equal

to zero.

Finally, to see that for α large ∂k∗

∂τl
< 0,not for α large, ∂k∗

∂τl
is arbitrarily close to

2
r
(k∗τs − τc)(r (k∗)2 + τc)

D (k∗)
< 0

since k∗ > τc/τs. QED

Proof of Proposition 6:
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We substitute I from equation (2) into equation (19) and compute the expectations:

β

c
E

[
exp

(
f̃
)

exp

(
τf f̄ + τlsl + τpz (P )

τf + τl + τp
+

1

2(τf + τl + τp)

)]
−1

2

β2

c
E

[
exp

(
2

(
τf f̄ + τlsl + τpz (P )

τf + τl + τp
+

1

2(τf + τl + τp)

))]

=
β

c
E

exp

2f̃ +
τf

(
f̄ − f̃

)
+ τlσlε̃l + τp

(
z (P )− f̃

)
τf + τl + τp

+
1

2(τf + τl + τp)


−1

2

β2

c
E

exp

2

f̃ +
τf

(
f̄ − f̃

)
+ τlσlε̃l + τp

(
z (P )− f̃

)
τf + τl + τp

+
1

2(τf + τl + τp)


=

β

c

(
1− 1

2
β

)
exp

(
2f̄ +

1

τf

τf + 2τl + 2τp
τf + τl + τp

)
.

Therefore the maximization problem can be viewed as maximizing the following expression

in k :

exp

(
τf + 2τl + 2τp
τf + τl + τp

)
,

and this is equivalent to maximizing τp which is maximized at τc/ (τsτξ). QED.

Proof of Proposition 7:

For α large enough H(k) evaluated at kOP = τc/r is approximately:

τ 2c
r3

(τc + r)
(
2τcr − τcτs + 2τfr − τfτs + 2τlr − 2τlτs − rτs + 2r2

)
which is negative for r small. Moreover it may be decreasing in r for r small but eventually

increases and becomes positive. This means that there is a cutoff r̄ for r such that for r < r̄

we have k∗ < kOP and for r > r̄ we have k∗ > kOP . QED.

Proof of Proposition 8: (a) The market clearing price is

P = exp

(
(1 + k) f̃ + kσcε̃c − g + σsξ̃

ασs

)
,

and its non-fundamental volatility can be written as the volatility of the following:

z(P )− f̃ =
g + ασs ln(P )

1 + k
− f̃ =

k

1 + k
σcε̃c +

σs
1 + k

ξ̃.

It is straightforward to show that when k = kOP = τc/ (τsτξ), its non-fundamental

volatility is the lowest and is

Non-Fundamental Volatility (Asset Price) =
1

τc + τsτξ
.
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(b) We know that:

I =
β

c
exp

τf f̄ + τlsl + τp

(
f̃ + k

1+k
σcε̃c + σs

1+k
ξ̃
)

τf + τl + τp
+

1

2(τf + τl + τp)

 .

Taking logs on both sides, we obtain:

ln I = ln

(
β

c

)
+

τf f̄ + τlsl + τp

(
f̃ + k

1+k
σcε̃c + σs

1+k
ξ̃
)

τf + τl + τp
+

1

2(τf + τl + τp)

 .

We can define the non-fundamental volatility of the real investment as the volatility of the

following:

(τf + τl + τp)
(
ln I − ln

(
β
c

))
− 1

2
− τf f̄

τl + τp
− f̃ =

τlσlεl + τp

(
k

1+k
σcε̃c + σs

1+k
ξ̃
)

τl + τp

It is straightforward to show that when k = kOP = τc/ (τsτξ), τp = τc + τsτξ,and the

non-fundamental volatility of the real investment is the lowest which is

Non-Fundamental Volatility (Real Investment) =
1

τl + τc + τsτξ
.

QED.
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