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Abstract

We investigate the valuation of catastrophe insurance derivatives that
are traded at the Chicago Board of Trade. By modeling the underly-
ing index as a compound Poisson process we give a representation of
no-arbitrage price processes using Fourier analysis. This characterization
enables us to derive the inverse Fourier transform of prices in closed form
for every fixed equivalent martingale measure. It is shown that the set of
equivalent measures, the set of no-arbitrage prices, and the market prices
of frequency and jump size risk are in one-to-one connection. Follow-
ing a representative agent approach we determine the unique equivalent
martingale under which prices in the insurance market are calculated.

1 Introduction
In recent years there has been an ongoing economic and political debate on
whether financial markets should be used to insure risk that has been tradition-
ally hedged through other channels. Famous examples include the discussion
about the change to a funded pension scheme, equity-linked life insurance con-
tracts, and insurance derivatives. This need for an alternative way of insurance
resulted in a growing number of insurance products coming onto the market
and containing a financial component of some sort. In order to tailor these new
financial products optimally to the needs of the different markets, both finance
experts as well as actuaries will have to get to know the other expert’s field
better. This overlap suggests that combining the methods used in both areas,
insurance mathematics and mathematical finance should prove indispensable.
The objective of this paper is to model the risk involved in insurance markets
by the appropriate class of stochastic processes and to focus on the problem
∗Insurance and Risk Management Department, The Wharton School, 306 CPC, 3641 Lo-
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of price determination for catastrophe insurance derivatives that have been in-
troduced at the Chicago Board of Trade in December 1992. These are traded
financial securities based on an underlying index that encompasses insurance
losses due to natural catastrophes.
Most models that have been proposed in mathematical finance include a

continuity assumption on the evolution of prices, i.e. the underlying risk is
predictable. In the presence of enough securities, Black and Scholes [5] and
Merton [26] have shown how to determine prices of derivatives relying only on
the absence of arbitrage opportunities. An arbitrage opportunity is a trading
strategy that with probability one yields a positive return without any initial
investment.

However, when being exposed to insurance related risk - e.g. earthquake,
windstorm, or flood - one necessarily has to include unpredictable movements
of the underlying index reflecting the risk involved. This leads in a natural way
to the class of stochastic processes including jumps at random time points. We
therefore model the dynamics of the index that underlies catastrophe insurance
derivatives as a compound Poisson process, a stochastic process that is used in
risk theory to model aggregate losses.
In the context of catastrophic risk, the valuation of such derivatives proves

to be more problematic compared to the Black and Scholes setup [5] for two
reasons. First, valuation based on arbitrage arguments make sense only when
all underlying assets are explicitly defined. However, the current generation of
catastrophe derivatives is based on underlying loss indices that are not traded
on the market. Second, stochastic jump sizes of the underlying index ‘create’ an
incomplete market. It is thus not possible to perfectly duplicate the movement
and consequent payoffs of insurance derivatives by continuously trading in other
securities. Both problems are inherently related to the fact that price processes
of insurance derivatives cannot be uniquely determined solely on the basis of
excluding arbitrage opportunities.
Cummins and Geman [9] were the first to investigate the valuation of catastro-

phe futures and derivative on futures. These securities were the first generation
of traded contracts at the Chicago Board of Trade. The authors model the in-
crements of the underlying index as a geometric Brownian motion plus a jump
process that is assumed to be a Poisson process with fixed loss sizes. Because
of the non-randomness in jump sizes the model can be nested into the Black
and Scholes framework [5]. Since the futures’ price, the basis for catastrophe
derivatives, is traded on the market the market is complete and unique pricing
is possible solely based on assuming absence of arbitrage opportunities. While
the completeness of the market is convenient, the assumption of constant loss
sizes is questionable in the context of insurance related risk. Furthermore, fu-
tures and derivatives on futures did not generate enough interest and ceased to
be traded in 1995. They were replaced by options and spread options that are
based on an underlying loss index that is not traded itself. The market is thus
incomplete even with constant jump sizes of the underlying index.
Geman and Yor [18] examine the valuation of options that are based on the
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non-traded underlying loss index. In the paper, the underlying index is directly
modeled as a geometric Brownian motion plus a Poisson process with constant
jump sizes. The authors base their arbitrage arguments on the existence of a
vast class of layers of reinsurance with different attachment points to guarantee
completeness of the insurance derivative market. An Asian options approach is
used to obtain semi-analytical solutions for call option prices in form of their
Laplace transform. In addition to the assumption of constant jump sizes, the
existence of a liquid catastrophe reinsurance market is questionable since cov-
erage and premium rates in catastrophe reinsurance are individually negotiated
and depend on the insurance company’s past loss experience. Furthermore, the
observed loss index exhibits no change in value between catastrophic events ex-
cept from adjustments in loss amounts. These rare and small adjustments of
the loss index do not justify dynamics with infinite variation that are inherent
to a Brownian motion.

Aase [1] and [2] takes a different, more realistic modeling approach and uses
a compound Poisson process with random jump sizes to describe the dynamics
of the underlying index. The author investigates the valuation of catastrophe
futures and derivatives on futures that ceased to be traded in 1995. Since the
underlying futures’ price is traded on the market the incompleteness in his setup
does not arise out of the fact that the underlying index is not traded - as in
Geman and Yor [18] - but from the randomness in jump sizes. The author spec-
ifies the preferences of market participants by a utility function and determines
unique price processes within the framework of partial equilibrium theory un-
der uncertainty. Closed pricing formulae are derived under the assumption of
negative exponential utility function and Gamma distributed loss sizes.

In this paper, we fill the gap in the literature by investigating the valuation
of current catastrophe insurance derivatives based on a non-traded underlying
loss index that is modeled as a compound Poisson process with stochastic jump
sizes. We therefore examine the actually traded derivatives - as in Geman and
Yor [18] - while using a model that is more accurate in this actuarial context -
as in Aase [1] and [2].

The derivation of prices purely based on no-arbitrage arguments is very at-
tractive as prices arise independent of investors’ preferences. The disadvantage,
however, is the indeterminacy of price processes since the insurance derivative
market is incomplete.

In this paper, we tackle this problem in the following way. Without imposing
any preferences, except that agents prefer more to less, we apply Fourier analysis
to derive a representation of the class of possible price processes solely on the
basis of excluding arbitrage strategies. This set of no-arbitrage price processes is
parameterized by market prices of frequency and jump size risk. For every fixed
pair of market prices of risk, our approach enables us to derive the inverse Fourier
transform of price processes in closed form. We allow for a very general class
of financial contracts - including the currently traded catastrophe derivatives -
and do not impose any assumptions on the distribution of jump sizes. Building
upon this characterization, we show that the set of price processes excluding
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arbitrage opportunities and the set of market prices of frequency and jump
size risk are one-to-one connected. In a liquid insurance derivative market, it
is therefore possible to obtain the market prices of risk as implied parameters
from observed derivative prices.

In the context of a market with a representative agent, market prices of
frequency and jump size risk are determined by the preferences of the represen-
tative agent. The principle of utility maximization thus determines the unique
price process of the insurance derivative.

An additional nice feature of our approach is that the representation of no-
arbitrage price processes separates the underlying stochastic structure from the
financial contract’s specification. The stochastic structure is captured by the
characteristic function of the underlying index, the contract’s specification by
the inverse Fourier transform of payoffs. In a fixed stochastic environment, this
separation allows for faster calculation of derivative prices. The characteristic
function has to be derived once and, thereafter, the calculation of derivative
prices is reduced to the derivation of the inverse Fourier transform of the con-
tract’s payoff structure.

The remainder of this paper is organized as follows: in Section 2 we discuss
the catastrophe insurance market with emphasis on the current generation of
catastrophe insurance options. Section 3 presents the model that describes the
economic environment, the dynamics of the underlying catastrophe index and
the change between equivalent probability measures. In Section 4 we investigate
the pricing mechanism, first solely based on an arbitrage approach, then by
adding a representative agent. Section 5 concludes.

2 Catastrophe Insurance Derivatives
This section presents the main ideas behind the development of the catastro-
phe insurance market and describes the structure and specification of existing
derivatives related to catastrophic risk.

2.1 Alternative Risk Transfer

The experience of major natural catastrophes in the nineties - e.g. Hurricane
Andrew in 1992, Northridge California earthquake in 1994, earthquake in Kobe
in 1995 - resulted in a widespread concern among insurance and reinsurance
companies that there might not be enough allocated capital to meet their un-
derwriting goals. This fear provoked a growing demand for additional capital
sources and accelerated interest in using financial markets to spread catastrophic
risk.

The standardization and securitization of insurance related risk provides an
alternative to reinsurance contracts that traditionally have been purchased to
manage catastrophe exposure. Catastrophe reinsurance is a highly customized
business, where coverage and rates are individually negotiated. Premium rates
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vary depending on a specific company’s present and past loss exposure, the layers
covered, and current market conditions. On the contrary, financial contracts are
not negotiated and contract specifications do not vary over time. In addition
to the integrity and protection of standardized, exchange-traded instruments,
price transparency also attracts investors and capital from outside the insurance
industry.

Let us summarize the main attractions for buyers and sellers of catastrophe
insurance derivatives:

First, insurance derivatives can be used by insurers and reinsurers to buy
standardized protection against catastrophic risk. Alternatively, gaps in exist-
ing reinsurance contracts can be filled since financial protection can be provided
between a lower desired retention level and the attachment point currently of-
fered. In addition, these derivatives can offer an opportunity to synthetically
exchange one layer for another without the need to enter costly negotiations.

Second, securitization of catastrophic risk turns catastrophes into tradeable
commodities. Investors thus have the opportunity to invest indirectly in risk
that traditionally has been addressed by the insurance industry only. Since
catastrophic risk should prove highly uncorrelated to any other financial risk
that underlies stock or bond price movements trading in catastrophes provides
an additional way to diversify the investors’ portfolio.

2.2 ISO Futures and Options

The first generation of catastrophe insurance derivatives was developed by the
Chicago Board of Trade (CBoT) and trading started in December 1992. Futures
and options on futures were launched based on an index that should reflect
accumulated claims caused by catastrophes. The index consisted of the ratio
of quarterly settled claims to total premium reported by approximately 100
insurance companies to the statistical agent Insurance Service Office (ISO).
The CBoT announced the estimated total premium and the list of the reporting
companies before the beginning of the trading period. A detailed description of
the structure of these contracts can be found in Aase [1] and Meister [25]. Due
to the low trading volume in these derivatives trading was given up in 1995.

One major concern was a moral-hazard problem involved in the way the in-
dex was constructed: the fact that a reporting company could trade conditional
on its past loss information could have served as an incentive to delay reporting
in correspondence with the company’s insurance portfolio. Even if the insur-
ance company reported promptly and truthfully, the settlement of catastrophe
claims might be extensive and the incurred claims might not be included in the
final settlement value of the appropriate contract. This problem occurred with
the Northridge earthquake which was a late quarter catastrophe of the March
1994 contract. The settlement value was too low and did not entirely represent
real accumulated losses of the industry.

Since options based on these futures had more success - especially call option
spreads - they were replaced by a new generation of options called PCS options.
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2.3 PCS Catastrophe Insurance Options

PCS Catastrophe Insurance Options were introduced at the CBoT in Septem-
ber 1995. They are standardized, exchange-traded contracts that are based on
catastrophe loss indices provided daily by Property Claim Services (PCS) - a
US industry authority which estimates catastrophic property damage since 1949.
The PCS indices reflect estimated insured industry losses for catastrophes that
occur over a specific period. Only cash options on these indices are available;
no physical entity underlies the contracts. They can be traded as calls, puts, or
spreads; futures are no longer listed for trading. Most of the trading activity
occurs in call spreads, since they essentially work like aggregate excess-of-loss
reinsurance agreements or layers of reinsurance that provide limited risk profiles
to both the buyer and seller.

By definition, a catastrophe is an event that causes in excess of $5 million
of insured property damage and affects a significant number of policyholders
and insurance companies. PCS assigns a serial number to each catastrophe for
identification throughout the industry. It also compiles estimates of insured
property damage using a combination of procedures, including a general survey
of insurers, its National Insurance Risk Profile, and, where appropriate, its
own on-the-ground survey. PCS estimates take into account both the expected
dollar loss and the projected number of claims to be filed. If a catastrophe
causes more than $250 million according to preliminary estimates, PCS will
continue to survey loss information to determine whether its estimate should be
adjusted.

PCS Options offer flexibility in geographical diversification, in the amount
of aggregate losses to be included, in the choice of the loss period and to a
certain extent in the choice of the contracts’ expiration date. Let us describe
the contracts’ specifications in more detail:

PCS provides nine geographically diverse loss indices to the CBoT: a Na-
tional index; five regional indices covering Eastern, Northeastern, Southeastern,
Midwestern, andWestern exposures; and three state indices covering catastrophe-
prone Florida, Texas, and California.

The CBoT lists PCS Options both as “small cap” contracts, which limit the
amount of aggregate industry losses that can be included under the contract to
$20 billion, and as “large cap” contracts, which track losses from $20 billion to
$50 billion.

Furthermore, most PCS Options track calendar quarters to allow insurers
and reinsurers to focus financial coverage towards those times when they might
be particularly exposed to catastrophe risk. A catastrophic event must occur
during that loss period in order for resulting losses to be included in a particu-
lar index. During the loss period, PCS provides loss estimates as catastrophes
occur. The PCS indices that best cover hurricane risk - Eastern, Southeastern,
Florida, and Texas - all track quarterly loss periods, as do the National, North-
eastern, and Midwestern indices. The California and Western indices track
annual loss periods, since the catastrophe most common in that region - earth-
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quake - is not seasonal. Insurers and reinsurers that want broader protection
can buy PCS Options in one-year strips, covering an entire year of risk in one
transaction.

After the contract specific loss period, PCS Option users can choose either
a six-month or a twelve-month development period. The development period
is the time during which PCS estimates and reestimates for catastrophes that
occurred during the loss period and continue to affect the PCS indices. The
contract expires at the end of the chosen development period and settles in cash,
even though PCS loss estimates may continue to change. The exercise style of
PCS Options is European. The following table clarifies the time structure of
the insurance contracts:

Contract Loss Development Period Settlement Date
Month Period

Six Twelve Six Twelve
Month Month Month Month

March Jan-Mar Apr 1-Sep 30 Apr 1-Mar 31 Sep 30 Mar 31
June Apr-Jun Jul 1-Dec 31 Jul 1-Jun 30 Dec 31 Jun 30
September Jul-Sep Oct 1-Mar 31 Oct 1-Sep 30 Mar 31 Sep 30
December Oct-Dec Jan 1-Jun 30 Jan 1-Dec 31 Jun 30 Dec 31
Annual Jan-Dec Jan 1-Jun 30 Jan 1-Dec 31 Jun 30 Dec 31

Each PCS loss index represents the sum of then-current PCS estimates for
insured catastrophic losses in the area and loss period divided by $100 million.
The indices are quoted in points and tenths of a point and each index point
equals $200 cash value as indicated in the chart below:

PCS Loss PCS Options Industry
Index Value Cash Equivalent Loss Equivalent

0.1 $20 $10 million
1.0 $200 $100 million
50.0 $10, 000 $5 billion
200.0 $40, 000 $20 billion (small cap limit)

250.0 $50, 000 $25 billion
350.0 $70, 000 $35 billion
500.0 $100, 000 $50 billion (large cap limit)

Strike values are listed in integral multiples of five points. For small cap
contracts, strike values range from 5 to 195. For large cap contracts, strike
values range from 200 to 495.

In the next section we introduce the stochastic fundamentals, the model for
the dynamics of the underlying loss index, and an investigation of changing
equivalent probability measures.
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3 The Economic Environment
Uncertainty in the insurance market is modeled by a complete probability space
(Ω,F , P ) on which all following random variables will be defined. Ω is the set
of all states of the world ω and F is the σ-algebra of possible events on Ω.
The economy has finite horizon T <∞ where T represents the maturity of the
insurance derivative.

Let the stochastic process X = (Xt)0≤t≤T represent the PCS loss index, i.e.
we assume that Xt reflects aggregated insured industry losses resulting from
catastrophes up to and including time t. Let us suppose that all investors in
this market observe the past evolution of the loss index including the current
value. Therefore, the flow of information is given by the augmented filtration
(Ft)0≤t≤T of σ-algebras generated by the process X with FT = F . Let us
assume that the usual hypotheses hold, that is the filtration is right-continuous
and F0 contains all the P -null sets of F .
The market consists of one risky European insurance derivative with payoff

depending on the value XT of the loss index at maturity T . We also assume
the existence of a risk-free asset with price process B = (Bt)0≤t≤T , i.e.

dBt = rtBtdt, (1)

where r is the deterministic short rate of interest. Without loss of generality,
we express the price process of the insurance derivative in discounted terms, i.e.
we set r ≡ 0.

3.1 Modeling the PCS Loss Index

The classical approach of modeling the dynamics of financial stock prices as-
sumes that news in the market causes an infinitesimal change in corresponding
prices. Black and Scholes [5], for example, modeled the stock price as a geo-
metric Brownian motion, i.e. as a continuous stochastic process. In actuarial
risk models, however, claims cause sudden movements in the affected processes.
Particularly in the context of catastrophes, losses cannot be considered as being
infinitesimal. Hence we assume that catastrophic events cause unpredictable
jumps in the specific PCS index at random time points. Therefore, we model
the underlying index X of a PCS contract by a stochastic process of the form

Xt =
X

{k|Tk≤t}
Yk =

NtX
k=1

Yk, (2)

where Tk is the random time point of occurrence of the kth catastrophe that
causes a jump of size Yk in the underlying index and Nt is a random variable
counting catastrophic events up to time t. We shall assume that X = (Xt)0≤t≤T
is a compound Poisson process, i.e. the counting process N = (Nt)0≤t≤T is a

8



Poisson process with intensity λ, and Y1, Y2, ... are nonnegative, independent
and identically distributed random variables, all independent of the counting
process N . Let G be the distribution function of Yk with support [0,∞). The
parameters (λ, dG (y)) are called the characteristics of the process X.

Under our assumption, the index X of a PCS contract thus is a time-
homogeneous process with independent increments. Actuarial studies (see Levi
and Partrat [23]) have shown that these assumptions are reasonable in the con-
text of losses arising from windstorm, hail and flood. Earthquakes are described
as events arising from a superposition of events caused by several independent
sources. The PCS index therefore approximates a compound Poisson process.
The assumption on time-homogeneity is questionable for the case of hurricanes
which occur seasonally. However, the indices of regions, that are exposed to
hurricane risk, all track quarterly loss periods to account for seasonal effects.

Remark 1 Filtrations that are generated by compound Poisson processes and
completed by P -null sets of F satisfy the usual hypotheses, i.e. they are right-
continuous (see Protter [29] p. 22).

3.2 Change of Equivalent Measures

In this section we examine the change between equivalent probability measures
and the change in the characteristics that it induces on compound Poisson
processes. We restrict the set of equivalent probability measures to the sub-
set of probability measures under which the structure of the underlying process
X is preserved, i.e. under which the index remains a compound Poisson process.
This subset has been characterized by Delbaen and Haezendonck [12] as follows:

Let P denote the physical probability measure in the insurance market un-
der which the compound Poisson process X has characteristics (λ, dG (y)). A
probability measure Q is equivalent to P , and X is a compound Poisson process
under Q if and only if there exists a nonnegative constant κ and a nonnegative,
measurable function v : R+ → R satisfyingZ ∞

0

v (y) dG (y) = 1,

such that the associated density process ξt = EP [ξT | Ft] of the Radon-Nikodym
derivative ξT = dQ

dP is given by

ξt =

µ
Nt

Π
k=1

κv (Yk)

¶
· exp

µZ t

0

Z ∞
0

(1− κv (y))λdG (y) ds

¶
= exp

Ã
NtX
k=1

ln (κv (Yk)) + λ (1− κ) t

!
, (3)

for any 0 ≤ t ≤ T . EP [·] denotes the expectation operator under the probability
measure P .
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Under the new measure Q the process X has characteristics
³
λQ, dGQ (y)

´
= (λκ, v (y) dG (y)).
Let us denote the measure Q corresponding to the constant κ and the func-

tion v (·) by Pκ,v and the corresponding distribution function GQ by Gv. Hence,
for all A ∈ B+

Gv (A) =

Z
A

v (y) dG (y) , (4)

and

EP
κ,v

[N1] = λκ, (5)

where B+ represents the Borel σ-algebra on R+ and EPκ,v [·] denotes the expec-
tation operator under the measure Pκ,v.

Remark 2 In an economic sense, κ can be interpreted as a premium of fre-
quency risk and v (·) as a premium of claim size risk.

Remark 3 Meister [25] generalized the result of Delbaen and Haezendonck [12]
to mixed Poisson and doubly stochastic Poisson processes.

In the following Lemma we show that the correspondence between the set
of parameters κ, v (·) and the set of equivalent measures Pκ,v is one-to-one.

Lemma 4 Define K × V ≡ ©(κ, v (·)) ∈ R+ × L1 (R+,G) |EP [v (Y1)] = 1
ª
.

Then the mapping

(κ, v (·)) ∈ K × V → Pκ,v

is injective.

Proof. Let (κ, v (·)) and (κ0, v0 (·)) belong to K × V with Pκ,v = Pκ0,v0 .

Then EP
κ,v

[N1] = EP
κ0,v0

[N1] and thus κ = κ0. Furthermore, for all A ∈ B+Z
A

v (y) dG (y) =

Z
A

v0 (y) dG (y) ,

and so v ≡ v0 G-a.s.

4 Pricing of Insurance Derivatives
The aim of this section is to investigate the price determination of insurance
derivatives that are based on PCS indices under the assumption of the previous
section that the underlying index is a compound Poisson process. First, we
review the equivalence between the existence of equivalent martingale measures
and the absence of arbitrage opportunities in the market. Then by solely im-
posing absence of arbitrage possibilities we derive the inverse Fourier transform
of price processes in closed form. Thereafter, we will be more restrictive and as-
sume the existence of a representative investor in the market whose preferences
determine uniquely the price of derivatives.
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4.1 The Fundamental Theorem of Asset Pricing

The equivalence between the existence of equivalent martingale measures and
the absence of arbitrage opportunities in the market plays a central role in
mathematical finance. An equivalent martingale measure is a probability mea-
sure that is equivalent to the “reference” measure P and under which discounted
price processes are martingales. It is important to be aware of the specifications
of the model in which this equivalence is used since arbitrage has to be differently
defined to guarantee the existence of equivalent martingale measures.

Harrison and Kreps [19], and Harrison and Pliska [20] were the first to es-
tablish an equivalence result in a model based on a finite state space Ω. In a
discrete infinite or continuous world, the absence of arbitrage is not a sufficient
condition for the existence of an equivalent martingale measure. Other defini-
tions of arbitrage opportunity or restricting conditions on the dynamics of price
processes have been derived to guarantee the existence of martingale measures.
Fritelli and Lakner [16] give a definition of arbitrage, called “free lunch”, under
which the equivalence result is derived with high level of generality. The only
mathematical condition that is imposed on asset prices is that they are adapted
to the filtration (Ft)0≤t≤T which is a natural requirement.
As asset price processes are not a priori assumed to be semimartingales sto-

chastic integrals that reflect achievable gains from continuous trading strategies
are not well-defined. To circumvent this problem, the set of trading strategies
is restricted to permit trading at either deterministic times or stopping times.
The “no free lunch” condition then postulates that the set of achievable gains
contains no positive random variables. In a continuous time setting closure of
the set of gains has to be considered which essentially depends on the topology
on this set. Under a topology that makes use of certain dualities, Fritelli and
Lakner [16] prove that there is “no free lunch” with trading strategies at de-
terministic times if and only if there exists an equivalent martingale measure.
Furthermore, if every underlying process is right-continuous, then this result
holds additionally for trading strategies at stopping times.

Henceforth, we assume “no free lunch” in the market as outlined above, so
that the existence of an equivalent martingale measure is guaranteed.

4.2 Representation of No-Arbitrage Prices

In this subsection we deduce a representation of prices solely on the basis of
excluding arbitrage opportunities as defined above. We will present two possible
methods of deriving prices:

• the first relies on risk neutral valuation and is simply a calculation of the
expected payoff under the appropriate probability measure;

• the second method makes use of the infinitesimal generator of the under-
lying process X to derive prices as solutions of the appropriate integro-
differential equation that represents the corresponding pricing equation.
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In the catastrophe insurance market, the underlying index X is not traded.
Thus it is not possible to construct a hedging portfolio based onX and hence the
price of a derivative cannot be uniquely determined by the assumption of “no
free lunch” in the market. However, assuming “no free lunch” guarantees the
existence of an equivalent probability measure Q ∼ P under which discounted
price processes of insurance derivatives are martingales. In addition, our model
exhibits a second source of incompleteness arising from stochastic jump sizes of
the underlying PCS index.

Let us suppose that we choose and fix an arbitrary equivalent martingale
measure Q such that the index process X = (Xt)0≤t≤T remains a compound
Poisson process after the change to the probability measure Q with character-

istics
³
λQ, dGQ (y)

´
. The set of equivalent probability measures that preserve

the structure of X has been characterized by Delbaen and Haezendonck [12]
and presented in Section 3.2, p. 9 of this paper.

4.2.1 First Method (Risk neutral valuation)

Assuming “no free lunch” in the market, a consistent price process of an insur-
ance derivatives that pays out φ (XT ) at maturity can be expressed as

πQt = EQ

"
exp

Ã
−
Z T

t

rsds

!
φ (XT ) |Ft

#
. (6)

πQt is of the form fQ (Xt, t) since we have assumed that r is determinis-
tic (r ≡ 0 without loss of generality), (Ft)0≤t≤T is generated by X, and X
is a Markov process under Q. The stochastic process

¡
fQ (Xt, t)

¢
0≤t≤T re-

flects the consistent price process under the probability measure Q with payoff
fQ (XT , T ) = φ (XT ) at maturity T .

Let us assume that φ : R→ R is a measurable function such that φ (·)− k ∈
L2 (R) =

n
g : R→ C measurable | R∞−∞ |g (x)|2 dx <∞

o
for some k ∈ R. This

assumption is satisfied by all catastrophe insurance derivatives that are traded
at the CBoT. Notice that the payoff of all call options is capped at either $20
billion or $50 billion. We will now make use of Fourier analysis to calculate the
expected payoff in (6).

The Fourier transformation is a one-to-one mapping of L2 (R) onto itself. In
other words, for every g ∈ L2 (R) there corresponds one and only one f ∈ L2 (R)
such that the Fourier transform of f is the function g, that is

f (u) =
1

2π

Z ∞
−∞

e−iuxg (x) dx (7)

is the inverse Fourier transform of g.
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Applying the Fourier transform, and thereafter the inverse Fourier transform,
to the function φ (·)− k ∈ L2 (R) we deduce

φ (x)− k =
1

2π

Z ∞
−∞

Z ∞
−∞

eiuxe−iuz (φ (z)− k) dzdu. (8)

With respect to (6) we get

πQt = fQ (Xt, t) = EQ [φ (XT ) |Ft ]
= EQ [φ (XT )− k |Ft ] + k

=
1

2π
EQ

·Z ∞
−∞

Z ∞
−∞

eiuXT e−iuz (φ (z)− k) dzdu |Ft
¸

+ k

=
1

2π

Z ∞
−∞

Z ∞
−∞

EQ
£
eiuXT |Ft

¤
e−iuz (φ (z)− k) dzdu+ k

=

Z ∞
−∞

EQ
£
eiuXT |Ft

¤
ϕ̌ (u) du+ k,

where we applied Fubini’s theorem and ϕ̌ (·) denotes the inverse Fourier trans-
form of φ (·)− k, i.e.

ϕ̌ (u) =
1

2π

Z ∞
−∞

e−iuz (φ (z)− k) dz. (9)

Since a compound Poisson process is a Markov process with stationary and
independent increments, we have

EQ
£
eiuXT |Ft

¤
= eiuXtEQ

h
eiu(XT−Xt) |Xt

i
= eiuXtEQ

£
eiuXT−t |Xt

¤
= eiuXtEQ

£
eiuXT−t

¤
.

EQ
£
eiuXT−t

¤
is the characteristic function of the random variable XT−t

under the probability measure Q and given by

χQT−t (u) = exp

µ
λQ
µZ ∞

0

eiuydGQ (y)− 1

¶
(T − t)

¶
(10)

(see for example Karlin and Taylor [21] p.428).

Hence, the price at time t of the catastrophe insurance derivative is given by

fQ (Xt, t) =

Z ∞
−∞

eiuXtχQT−t (u) ϕ̌ (u) du+ k (11)

=

Z ∞
−∞

eiuXt exp
³
λQ
¡
EQ

£
eiuY1

¤− 1
¢

(T − t)
´
ϕ̌ (u) du+ k.
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The inverse Fourier transform can be explicitly calculated for the catastrophe
derivatives that are traded at the CBoT, i.e. for spreads, call and put options.

This representation of no-arbitrage price processes enables us to derive the
inverse Fourier transform of the price process in closed form. For a given value
of the loss index Xt = x, we have

1

2π

Z ∞
−∞

e−iux
¡
fQ (x, t)− k¢ dx = χQT−t (u) · ϕ̌ (u) . (12)

Our result can be summarized as follows:

Proposition 5 Let X be a compound Poisson process with characteristics³
λQ, dGQ (y)

´
under the probability measure Q, let φ : R → R be a function

such that φ (·) − k ∈ L2 (R) for some k ∈ R, and let ¡fQ (Xt, t)
¢
0≤t≤T be a

stochastic process defined through

fQ (Xt, t) = EQ [φ (XT ) |Ft ] .
Then the function fQ : R+ × [0, T ]→ R defining the process

¡
fQ (Xt, t)

¢
0≤t≤T

can be represented by

fQ (x, t) =

Z ∞
−∞

eiuxχQT−t (u) ϕ̌ (u) du+ k,

where ϕ̌ (·) is the inverse Fourier transform of φ (·) − k and χQXT−t (·) is the
characteristic function of XT−t under the probability measure Q, i.e.

χQT−t (u) = exp

µ
λQ
µZ ∞

0

eiuydGQ (y)− 1

¶
(T − t)

¶
.

Therefore, the inverse Fourier transform of fQ (·, t)− k is given by

1

2π

Z ∞
−∞

e−iux
¡
fQ (x, t)− k¢ dx = χQT−t (u) · ϕ̌ (u) .

Remark 6 It is interesting to observe that the ratio

1
2π

R∞
−∞ e

−iux ¡EQ [φ (XT ) |Xt = x ]− k¢ dx
EQ [eiuXT−t ]

= ϕ̌ (u) (13)

does not depend on the probability measure that we choose. Hence, for any two
equivalent probability measures Q1 and Q2 we haveR∞

−∞ e
−iux ¡EQ1 [φ (XT ) |Xt = x ]− k¢ dxR∞

−∞ e
−iux (EQ2 [φ (XT ) |Xt = x ]− k) dx

=
EQ1

£
eiuXT−t

¤
EQ2 [eiuXT−t ]

. (14)
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One question we would like to answer is whether different equivalent proba-
bility measures will lead to different prices for a given payoff φ (XT ) at maturity.
To be consistent with the notation used in Section 3.2, p. 9, let us characterize
the equivalent probability measure Q by the parameters (κ, v (·)) that reflect the
change in the local characteristics of the compound Poisson process X. Recall
that the local characteristics of the process X under the probability measure
Q = Pκ,v ∼ P are given by λQ = λκ and dGQ (y) = v (y) dG (y). Let us
denote the price process that corresponds to the probability measure Pκ,v by
(fκ,v (Xt, t))0≤t≤T , i.e. f

κ,v is given by

fκ,v (x, t) =

Z ∞
−∞

e

³
λκ
³R∞

0
eiuyv(y)dG(y)−1

´
(T−t)+iu(x−z)

´
ϕ̌ (u) du+ k. (15)

Lemma 7 Assume that the payoff function φ is non-constant. Then the map-
ping

(κ, v (·)) ∈ K × V → fκ,v ∈ C0,1 (R× [0, T ])

is injective where fκ,v is given by the formula (15) and
K × V ≡ ©(κ, v (·)) ∈ R+ × L1 (R+, G) |EP [v (Y1)] = 1

ª
.

Proof. Assume that fκ,v (x, t) = fκ
0,v0 (x, t) for all x ≥ 0 and 0 ≤ t ≤ T

for some (κ, v (·)) , (κ0, v0 (·)) ∈ K × V . From the formula for fκ,v and fκ
0,v0 we

deduce that for all x and t

0 =
1

2π

Z ∞
−∞

Z ∞
−∞

eiu(x−z) (φ (z)− k)

×
³
eλκE

P [eiuY1 ·v(Y1)−1](T−t) − eλκ0EP [eiuY1 ·v0(Y1)−1](T−t)
´
dzdu.

We observe that the double integral is the Fourier transform of

1

2π

³
eλκE

P [eiuY1 ·v(Y1)−1](T−t) − eλκ0EP [eiuY1 ·v0(Y1)−1](T−t)
´

×
Z ∞
−∞

e−iuz (φ (z)− k) dz.

The Fourier transform is a one-to-one mapping of L2 (R) onto itself. Since
it is assumed that φ is non-constant, for all u and t we have

λκEP
£
eiuY1 · v (Y1)− 1

¤
(T − t) = λκ0EP

£
eiuY1 · v0 (Y1)− 1

¤
(T − t) .

For u→∞ we deduce κ = κ0 and hence

EP
£
eiuY1 · v (Y1)

¤
= EP

£
eiuY1 · v0 (Y1)

¤
,

15



for all u. Again, since the Fourier transform is a one-to-one mapping we can
conclude that

v ≡ v0.

This result is important as it shows that the market price of frequency risk
κ and jump size risk v (·) can be uniquely obtained as implied parameters from
observed derivative prices. However, the result does not carry over to actuarial
valuation in a similar “no-arbitrage” context as introduced by Delbaen and
Haezendonck [12]. In fact there are many equivalent probability measures that
lead to the same insurance premium.

Before investigating spreads, call and put options in more depth, we present
an alternative method of deriving the pricing formula (11) that can be reconciled
with the first method presented.

4.2.2 Second Method (Pricing equation)

This method exploits the fact that discounted price processes in the insurance
market are martingales under an equivalent martingale measure. To characterize
martingales based on the underlying PCS loss index X we make use of the
concept of an infinitesimal generator associated with a Markov process. In fact,
it is possible to define the infinitesimal generator by the following martingale
property (see e.g. Davis [11] for further details):

The infinitesimal generator A associated with a Markov process
X = (Xt)0≤t≤T is an operator on the set of functions f : R+ × [0, T ]→ R in its
domain, for which the process M = (Mt)0≤t≤T with

Mt = f (Xt, t)− f (X0, 0)−
Z t

0

A (f) (Xs, s) ds (16)

is a martingale under Q. Let D (A) denote the domain of the infinitesimal
generator.

The underlying PCS index X is a Markov process as it is a stochastic process
with stationary increments that are independent of the past. The infinitesimal
generator of X with local characteristics

³
λQ, dGQ (y)

´
can be represented as

A ¡fQ¢ (x, t) =
∂

∂t
fQ (x, t) +λQ ·

Z ∞
0

¡
fQ (x+ y, t)− fQ (x, t)

¢
dGQ (y) , (17)

for all fQ ∈ D (A) (see Davis [11]).

Dassios and Embrechts [10] proved that if f is a measurable function, and

EQ

X
Ti≤t

|f (XTi , Ti)− f (XTi−, Ti)|
 <∞, (18)
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for all 0 ≤ t ≤ T then f belongs to the domain of the infinitesimal generator.
Since the discounted price process of an insurance derivative is a martingale

under the measure Q, we are interested in characterizing the set of martingales
that can be constructed as a function of the underlying index X for a particular
contract. In the following Proposition we present a necessary and sufficient con-
dition, in form of an integro-differential equation, for a process

¡
fQ (Xt, t)

¢
0≤t≤T

to be a martingale under Q. This equation can also be derived by using the
change of variable formula as described by Barfod and Lando [4].

Proposition 8 Let X be a compound Poisson process with local characteristics³
λQ, dGQ (y)

´
under the measure Q and let fQ : R+ × [0, T ] → R belong to

the domain of the infinitesimal generator A of X. Then
¡
fQ (Xt, t)

¢
0≤t≤T is a

martingale under Q if and only if fQ satisfies the integro-differential equation

∂

∂t
fQ (x, t) = λQ · fQ (x, t)− λQ ·

Z ∞
0

fQ (x+ y, t) dGQ (y) , (19)

for all given values Xt = x ≥ 0 and 0 ≤ t ≤ T .
Proof. Suppose fQ satisfies the integro-differential equation (19), i.e.

A ¡fQ¢ ≡ 0 by (17). Therefore, we know from (16) that
¡
fQ (Xt, t)

¢
0≤t≤T is a

martingale under Q.
Now suppose that

¡
fQ (Xt, t)

¢
0≤t≤T is a martingale under Q with mean

fQ (X0, 0). Applying the martingale property to the martingale M in (16) we
can deduce that the processµZ t

0

A ¡fQ¢ (Xs, s) ds

¶
0≤t≤T

is a zero-mean martingale under Q. FurthermoreZ ·

0

A ¡fQ¢ (Xs, s) ds

=

Z ·

0

µ
∂

∂s
fQ (Xs, s) + λQ

Z ∞
0

¡
fQ (Xs + y, s)− fQ (Xs, s)

¢
dGQ (y)

¶
ds

is a continuous process of finite variation. Therefore, it has to be constant (see
Revuz and Yor [30] p.120) and equal to zero, i.e.Z t

0

µ
∂

∂s
fQ (Xs, s) + λQ

Z ∞
0

¡
fQ (Xs + y, s)− fQ (Xs, s)

¢
dGQ (y)

¶
ds = 0.

For a given value Xs = x, differentiation with respect to t leads to the
integro-differential equation (19).
In order to prove the uniqueness of the solution of this integro-differential

equation for a given boundary condition it is useful to transform the integro-
differential equation (19) into an integral equation using variation of constants.

17



Corollary 9 fQ satisfies the integro-differential equation (19) if and only if

fQ (x, t) = e−λ
Q(T−t)fQ (x, T )

+λQ ·
Z T

t

Z ∞
0

e−λ
Q(s−t)fQ (x+ y, s) dGQ (y) ds, (20)

for 0 ≤ t ≤ T and x ≥ 0.

Proof. Define hQ : R+ × [0, T ]→ R through

fQ (x, t) = eλ
Qt · hQ (x, t) .

Substitution into the integro-differential equation (19) leads to

∂

∂t
hQ (x, t) = −λQ ·

Z ∞
0

hQ (x+ y, t) dGQ (y) .

By integrating we obtain

hQ (x, t) = λQ ·
Z T

t

Z ∞
0

hQ (x+ y, s) dGQ (y) ds+ hQ (x, T ) .

Resubstitution leads to the integral equation (20) for fQ.
In the following Proposition we provide a solution of the integro-differential

equation (19) and prove uniqueness for an arbitrary but fixed boundary condi-
tion. In the context of the insurance market, we thus derive the unique price of
an insurance derivative for a fixed martingale measure and payoff structure at
maturity. The solution coincides with the pricing formula (11) derived through
risk neutral valuation.

Proposition 10 Let GQ : R → [0, 1] be a distribution function with support
[0,∞), λQ ∈ R+, and φ : R→ R be a function such that φ (·)− k ∈ L2 (R) for
some k ∈ R. Then the integro-differential equation

∂

∂t
fQ (x, t) = λQ · fQ (x, t)− λQ ·

Z ∞
0

fQ (x+ y, t) dGQ (y) (21)

with the boundary condition fQ (x, T ) = φ (x) has the unique solution

fQ (x, t) =

Z ∞
−∞

exp

µ
λQ
µ∞R
0

eiuydGQ (y)− 1

¶
(T − t) + iux

¶
ϕ̌ (u) du+ k,

(22)

in the space of all measurable functions fQ : R+ × [0, T ] → R that are differ-
entiable with respect to the second variable. ϕ̌ (·) denotes the inverse Fourier
transform of φ (·)− k, i.e.

ϕ̌ (u) =
1

2π

Z ∞
−∞

e−iuz (φ (z)− k) dz.
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Proof. First, we prove uniqueness by using the Gronwall inequality that
states the following:

Let v be a nonnegative function such that

v (t) ≤ C +A ·
Z t

0

v (s) ds, for all 0 ≤ t ≤ T , (23)

for some constants C and A. Then

v (t) ≤ C · exp (A · t) for all 0 ≤ t ≤ T . (24)

Suppose now that fQ1 , f
Q
2 : R+ × [0, T ] → C are solutions of (21) with the

same boundary condition φ, i.e. fQ1 (x, T ) = fQ2 (x, T ) = φ (x). Define the

function hQ : R+ × [0, T ] → R by hQ (x, t) =
¯̄̄
fQ1 (x, t)− fQ2 (x, t)

¯̄̄
. Then

hQ ≥ 0 and by the integral representation (20) of solutions given in Corollary
9, p. 18 we deduce that

hQ (x, t)

=

¯̄̄̄
¯λQ ·

Z T

t

Z ∞
0

e−λ
Q(s−t)

³
fQ1 (x+ y, s)− fQ2 (x+ y, s)

´
dGQ (y) ds

¯̄̄̄
¯

≤ λQ ·
Z T

t

Z ∞
0

e−λ
Q(s−t)hQ (x+ y, s) dGQ (y) ds.

Let us revert time by defining the function h̄Q : R+ × [0, T ] → R by
h̄Q (x, t) = hQ (x, T − t). Hence h̄Q ≥ 0 and

h̄Q (x, t) ≤ λQ ·
Z T

T−t

Z ∞
0

e−λ
Q(s−T+t)h̄Q (x+ y, T − s) dGQ (y) ds

= λQ ·
Z t

0

Z ∞
0

e−λ
Q(t−s)h̄Q (x+ y, s) dGQ (y) ds.

Since GQ is a distribution function we derive for 0 ≤ t ≤ T and x ≥ 0

h̄Q (x, t) ≤ sup
x≥0

λQ ·
Z t

0

h̄Q (x, s) ds

≤ λQ ·
Z t

0

sup
x≥0
h̄Q (x, s) ds.

As this inequality holds for all x ≥ 0 it is satisfied for the supremum, i.e.

sup
x≥0
h̄Q (x, t) ≤ λQ ·

Z t

0

sup
x≥0
h̄Q (x, s) ds, for all 0 ≤ t ≤ T .
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If we define the function v by v (t) = sup
x≥0
h̄Q (x, t) we have thus shown that

v (t) ≤ λQ ·
Z t

0

v (s) ds, for all 0 ≤ t ≤ T ,

and therefore condition (23) for applying the Gronwall inequality is satisfied for
C = 0 and A = λQ. From (24) we deduce that

v (t) = sup
x≥0
h̄Q (x, t) ≤ 0, for all 0 ≤ t ≤ T .

Since h̄Q is a nonnegative function it follows that h̄Q ≡ 0 and thus hQ ≡ 0.
Given the definition of hQ, uniqueness of the solution is proved.

Existence is proven by the explicit solution given in (22).

Given that the price can be expressed as an expected value of the real-valued
random variable φ (XT ) (see first method) it follows that the solution (22) is a
real-valued function which we may confirm as follows:

We observe that the first integral term in the solution

g (x, t) =

Z ∞
−∞

exp

µ
λQ
µZ ∞

0

eiuydGQ (y)− 1

¶
(T − t) + iux

¶
ϕ̌ (u) du

is the Fourier transform of the function

ǧ (u, t) = exp

µ
λQ
µZ ∞

0

eiuydGQ (y)− 1

¶
(T − t)

¶
· ϕ̌ (u) .

Remember that ϕ̌ (u) = 1
2π

R∞
−∞ e

−iuz (φ (z)− k) dz is the inverse Fourier trans-
form of φ (·)− k.
In the situation in which the boundary function φ is real-valued, we know

that ϕ̌ (−u) = ϕ̌ (u). Therefore

ǧ (−u, t) = exp

µ
λQ
µZ ∞

0

eiuydGQ (y)− 1

¶
(T − t)

¶
· ϕ̌ (u)

= ǧ (u, t).

The Fourier transform of a function with this property is real-valued. Hence
we conclude that the solution (22) defines a real-valued function.
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4.2.3 Risk Premium

The risk premium in insurance economics is defined as the difference between
the market price of an insurance contract and the expected payoff under the
contract. In our analysis the financial market determines the risk premium that
is thus defined as

fQ (Xt, t)−EP [φ (XT ) |Ft ] = EQ [φ (XT ) |Ft ]−EP [φ (XT ) |Ft ] , (25)

for a fixed equivalent martingale measure Q.

From our pricing formula (11) we conclude that the risk premium can be
represented in the form

Z ∞
−∞

eiuXt

³
χQT−t (u)− χPT−t (u)

´
ϕ̌ (u) du, (26)

where χQT−t (u) = exp
³
λQ
¡R∞
0
eiuydGQ (y)− 1

¢
(T − t)

´
is the characteristic

function of XT−t under the probability measure Q, and ϕ̌ (·) is the inverse
Fourier transform of φ (·)−k. The inverse Fourier transform of the risk premium
is thus given by ³

χQT−t (u)− χPT−t (u)
´
· ϕ̌ (u) . (27)

In the next subsections, we explicitly calculate the Fourier inverse of φ (·)−k
in the situation of call options, put options, and spreads. Thus under a fixed
equivalent martingale measure, we will give a closed-form expression of the
inverse Fourier transform of PCS option prices.

4.2.4 Call Spreads

A call spread on the index is a capped call option and can be created by buying
a call option with strike price K1, and selling at the same time a call option with
the same maturity but with strike price K2 > K1. Hence the payoff function
φCS (x) depends on the index value x at maturity in the following way

φCS (x) =

 0
x−K1

K2 −K1

if 0 ≤ x ≤ K1
if K1 < x ≤ K2

if x > K2.
(28)

As XT ≥ 0 it is sufficient that (φCS (·)− k) · 1[0,∞) (·) ∈ L2 (R) for some
k ∈ R where 1A (·) denotes the indicator function on a Borel set A. The
integrability condition is satisfied for k = K2 − K1 and the inverse Fourier
transform is given by
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ϕ̌CS (u) =
1

2π

Z ∞
0

e−iux (φCS (x)− (K2 −K1)) dx

=
1

2π

1

u2
¡
e−iuK2 − e−iuK1 + iu (K2 −K1)

¢
.

Hence, under the equivalent martingale measure Q the price at time t of a
call spread with underlying PCS index value Xt = x and strike prices K1 < K2

is

fQCS (x, t) =

Z ∞
−∞

eiuxχQT−t (u) ϕ̌CS (u) du+K2 −K1

=
1

2π

Z ∞
−∞

1

u2
χQT−t (u) eiux

¡
e−iuK2 − e−iuK1 + iu (K2 −K1)

¢
du

+K2 −K1.

Equivalently, applying the inverse Fourier transformZ ∞
−∞

e−iux
³
fQCS (x, t)− (K2 −K1)

´
dx

= χQT−t (u) · 1

u2
¡
e−iuK2 − e−iuK1 + iu (K2 −K1)

¢
.

Remember that χQT−t (u) = exp
³
λQ
¡R∞
0
eiuydGQ (y)− 1

¢
(T − t)

´
is the

characteristic function of the process XT−t under the measure Q.

4.2.5 Put Spreads

A put spread is a capped put option and thus the payoff φPS is given by

φPS (x) =

 K2 −K1

K2 − x
0

if 0 ≤ x ≤ K1

if K1 < x ≤ K2

if x > K2.
(29)

We observe that φPS (·) · 1[0,∞) (·) ∈ L2 (R) and φPS (x) =
− (φCS (x)− (K2 −K1)). Therefore

ϕ̌PS (u) = −ϕ̌CS (u)

= − 1

2π

1

u2
¡
e−iuK2 − e−iuK1 + iu (K2 −K1)

¢
,

and

fQPS (x, t) =
1

2π

Z ∞
−∞

1

u2
χQT−t (u) eiux

¡
e−iuK1 − e−iuK2 − iu (K2 −K1)

¢
du

= −fQCS (x, t) +K2 −K1.

We have thus shown that our pricing formula fulfills the put-call parity under
every equivalent martingale measure Q.
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4.2.6 Call Options

Since every PCS index is capped at either $20 billion or $50 billion, a call option
with strike price K is in fact a call spread with “lower strike price” K1 = K
and “upper strike price” K2 =$20 billion or $50 billion. Hence we can use the
pricing formula for call spreads.

4.2.7 Put Options

A put option on a PCS index with strike price K can also be understood as a
put spread with “lower strike price” K1 = 0 and “upper strike price” K2 = K.
Due to this observation we can again apply the pricing formula for put spreads,
i.e.

fQP (x, t) =
1

2π

Z ∞
−∞

1

u2
χQT−t (u) eiux

¡
1− e−iuK − iuK¢ du,

or Z ∞
−∞

e−iuxfQP (x, t) dx = χQT−t (u) · 1

u2
¡
1− e−iuK + iuK

¢
4.2.8 Characteristic Function of Parameterized Distributions

Let us review some parameterized distributions with support [0,∞) and their
characteristic function. We assume that the parameters are already determined
under the equivalent martingale measure Q.

• The Gamma distribution Γ (c, γ) is defined by its density function

dΓ (c, γ) (y)

dy
=
cγe−cyyγ−1

Γ (γ)
,

with mean γ/c and variance γ/c2 where Γ (·) is the Gamma function, and
0 < c, γ <∞. The characteristic function is given by

Z ∞
0

eiuydΓ (c, γ) (y) =

µ
c

c− iu
¶γ
.

The characteristic function of XT−t under Q is thus,

χQT−t (u) = exp

µ
λQ
µµ

c

c− iu
¶γ
− 1

¶
(T − t)

¶
. (30)

• The inverse Gaussian distribution IG (µ,σ) has density function

dIG (µ,σ) (y)

dy
=

r
σ

2πy3
· exp

Ã
−σ (y − µ)2

2µ2y

!
,
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with mean is µ and variance µ3/σ for µ ∈ R and σ > 0. The characteristic
function is given by

Z ∞
0

eiuydIG (µ,σ) (y) = exp

µ
σ/µ−

q
(σ/µ)

2 − 2σiu

¶
.

Therefore,

χQT−t (u) = exp

µ
λQ
µ

exp

µ
σ/µ−

q
(σ/µ)

2 − 2σiu

¶
− 1

¶
(T − t)

¶
.

(31)

• The distribution Pareto mixtures of exponentials PME (δ) belongs to the
class of distributions with heavy tails. Their density function is given by

dPME (δ)

dy
=

Z ∞
(δ−1)/δ

δ−δ+1 (δ − 1)
δ
z−(δ+1)z−1e−y/zdz,

with mean 1 and variance 1 + 2/δ (δ − 2) for δ > 1. The characteristic
function is given by

Z ∞
0

eiuyPME (δ) (y) =

R δ
δ−1
0

zδ

z−iudz
δδ−1
(δ−1)δ

.

Therefore,

χQT−t (u) = exp

λQ

R δ
δ−1
0

zδ

z−iudz
δδ−1
(δ−1)δ

− 1

 (T − t)
 . (32)

In this paragraph, we investigated the valuation of catastrophe insurance
derivatives for an arbitrary but fixed equivalent martingale measure. However,
in the setup of our insurance market there exist an infinite number of equiv-
alent martingale measures, and hence an infinite collection of prices that are
consistent with the no-arbitrage assumption on the bond market. Therefore, we
need to be more specific on the preferences of market participants. We follow
an approach suggested by Aase [1] and [2] who uses the framework of partial
equilibrium theory under uncertainty. The next section includes a brief outline
of the economic theory as it is presented in Duffie [14], Chapter 10.
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4.3 Representative Agent’s Valuation

Let us characterize the insurance companies i = 1, 2, ..., I that are affected by
catastrophes under a specific PCS contract by net reserves Si =

¡
Sit
¢
t≥0 and

utility functions U i : L+ → R defined on the consumption space L+. We assume
that L+ is the set of nonnegative, adapted processes C with EP

hR T
0
C2t dt

i
<∞

and smooth-additivity of utility functions, i.e.

U i
¡
Ci
¢

= EP

"Z T

0

ui
¡
Cit , t

¢
dt

#
, (33)

for Ci ∈ L+. Furthermore, smooth-additivity requires that for all i ∈ {1, 2, ..., I}
ui : R+ × [0, T ] → R is smooth on (0,∞) × [0, T ] and, for each 0 ≤ t ≤ T ,
ui (·, t) : R+ → R is increasing, strictly concave, with an unbounded derivative
uic (·, t) = ∂

∂cu
i (·, t) on (0,∞).

An Arrow-Debreu equilibrium is a collection
¡
Π, C1, C2, ..., CI

¢
such that

Ci solves insurance company i’s maximization problem

sup
C∈L+

U i (C) subject to Π (C) ≤ Π ¡Si¢ , (34)

where
¡
C1, C2, ..., CI

¢
is a feasible allocation, i.e.

IP
i=1
Ci ≤

IP
i=1
Si ≡ S, where

S is the aggregated net reserves, and Π : L → R is a linear price function that
describes the price at time 0 for a consumption process in L. Furthermore, if
Π is strictly increasing, then there is a unique, strictly positive process π ∈ L+
such that

Π (C) = EP

"Z T

0

πtCtdt

#
for C ∈ L. (35)

Since U i is strictly increasing any Arrow-Debreu equilibrium price function
Π is strictly increasing. The representation (35) is known as the Riesz represen-
tation of Π (·) (see Duffie [14] p. 221).
For incomplete markets, there is yet no set of conditions that is sufficient

for the existence of an Arrow-Debreu equilibrium. However, with negative ex-
ponential utility functions a Pareto efficient outcome can be achieved and is
characterized by a linear risk-sharing rule. This implies that every investor
holds a certain fraction of the aggregate risk.

Let us therefore assume that preferences of investors can be described by
negative exponential utility functions, i.e.

uic (c, t) = e−α
ic−ρit, (36)

for some αi > 0, ρi > 0. αi represents the intertemporal coefficient of absolute
risk aversion and ρi the time impatience rate of agent i.
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Under these assumptions, there exists a representative agent in the market
with utility function

U (C) = EP

"Z T

0

u (Ct, t) dt

#
, (37)

where u is of the form

uc (c, t) = e−αc−ρt, (38)

with intertemporal coefficient of absolute risk aversion α > 0 and time impa-
tience rate ρ > 0 in the market. Furthermore, the Riesz representation π of
Π (·) is given by

πt = uc (St, t) , (39)

with aggregated net reserves St =
IP
i=1
Si.

Coming back to the martingale approach, π is not only the Riesz represen-
tation of Π but also the gradient of U (see Duffie [14] p. 300) and defines a
state-price deflator. Furthermore, this state-price deflator determines an equiv-
alent martingale measure Q through the Radon-Nikodym density process

ξt = exp

µZ t

0

rudu

¶
· πt
π0

(40)

= exp

µZ t

0

rudu

¶
· uc (St, t)

uc (S0, 0)
.

In addition, we know from the last section (see (3)) that ξ can be represented
by

ξt = exp

Ã
NtX
k=1

ln (κv (Yk)) +

Z t

0

Z ∞
0

(1− κv (y))λdG (y) ds

!
, (41)

for some nonnegative constant κ and nonnegative function v.

Remark 11 This equivalent martingale measure Q = Pκ,v can be interpreted
as the one under which the representative agent calculates prices in the insur-
ance market. Hence, the corresponding local characteristics κ and v (·) reflect
the representative agent’s market price of frequency risk and claim size risk
respectively.

We follow the classical Cramér-Lundberg model and assume that aggregate
net reserves in the insurance industry is represented by a stochastic process
S = (St)0≤t≤T of the form
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St = s0 + pt−Xt

= s0 + pt−
NtX
k=1

Yk, (42)

where s0 represents aggregate initial capital in the market by time 0, Xt is
the PCS index at time t for a specific contract, and p is total premium of the
industry for a unit time interval within the loss period of the contract. Hence,
the process S represents the surplus of those companies that are affected by
catastrophe losses reflected in the particular PCS index X. For example, the
net reserves of an insurance company in Florida would not be included if we
consider the California index.

By equating the two representations (40) and (41) of ξ and putting r ≡ 0,
we deduce

− (αp+ ρ) t+

NtX
k=1

αYk = λ (1− κ) t+

NtX
k=1

ln (κv (Yk)) , (43)

for 0 ≤ t ≤ T . Therefore
κv (y) = eαy,

for y ≥ 0. Since
R∞
0
v (y) dG (y) = 1

κ = EP
£
eαY1

¤
v (y) =

eαy

EP [eαY1 ]
.

Additionally, equation (43) imposes the following restriction on the parame-
ters of the model:

αp+ ρ = λ
¡
EP

£
eαY1

¤− 1
¢
. (44)

This leads to the following corollary:

Corollary 12 Consider a market containing a risk averse representative agent
as outlined above. Then the coefficient of absolute risk aversion α is uniquely
determined by the equilibrium relation (44) for a given premium rate p and time
impatience rate ρ in the market.

Proof. We only consider risk aversion, i.e. we assume α > 0. The same
argument holds for a risk loving agent. We have to prove the existence of a
unique α∗ > 0 satisfying (44).

Define the function h : R+ → R by

h (α) = λ
¡
EP

£
eαY1

¤− 1
¢− αp− ρ, (45)

for given p, ρ > 0. We deduce h (0) = −ρ < 0 and
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d2

dα2
h (α) = λEP

£
Y 21 e

αY1
¤
> 0,

i.e. h is a convex function.

If the distribution function G is sufficiently regular then

h (α)→ +∞ for α→∞,
and there exists a unique α∗ > 0 such that h (α∗) = 0.

Alternatively, for a given degree of absolute risk aversion α the premium
rate p is of the form

p =
1

α

¡
λ
¡
EP

£
eαY1

¤− 1
¢− ρ

¢
. (46)

The first factor 1/α reflects the representative agent’s risk tolerance whereas the
second can be interpreted as the difference between the frequency risk premium
λ
¡
EP

£
eαY1

¤− 1
¢
and the time impatience rate ρ. The agent’s risk tolerance and

frequency risk premium are positively related to the premium rate p contrary
to the time impatience rate.

Remark 13 Under risk aversion, i.e. α > 0 we observe that κv (y) > 1 for
all y > 0. As v (·) is a density, it follows that κ > 1. We conclude that in a
risk-averse insurance market the risk-adjusted frequency λκ is larger than the
physical frequency λ.

The coefficient of absolute risk aversion α determines uniquely the market
prices of frequency risk κ and of jump size risk v (·) and thus the equivalent
martingale measure Pκ,v = Pα, the local characteristics of the underlying PCS
loss index under Pα, and the price process of catastrophe insurance derivatives
as follows:

• prices are calculated under the equivalent measure Pα ∼ P that is defined
through its density process

ξt = exp

Ã
NtX
k=1

αYk +

Z t

0

Z ∞
0

(1− eαy)λdG (y) ds

!

= exp

µ
αXt +

Z t

0

Z ∞
0

(1− eαy)λdG (y) ds

¶
,

• X is a compound Poisson process under Pα with local characteristics

EP
α

[N1] = λ ·EP £eαY1¤
dGα (y) =

eαy

EP [eαY1 ]
dG (y) ,
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• the unique price process (fα (Xt, t))0≤t≤T of an insurance derivative with
payoff function φ is given by

fα (Xt, t) =

Z ∞
−∞

eiuXtχP
α

XT−t (u) ϕ̌ (u) du+ k,

where

χP
α

T−t (u) = exp

µ
λ

Z ∞
0

eαy
¡
eiuy − 1

¢
dG (y) (T − t)

¶
,

and ϕ̌ (·) is the inverse Fourier transform of φ (·)− k.

The parameters of the model are restricted by the equilibrium relation

αp+ ρ = λ
¡
EP

£
eαY1

¤− 1
¢
.

Let us finish this section with the following remark.

Remark 14 For given parameters α, p, and ρ the characteristic function is of
the form

χP
α

T−t (u) = exp

Ã
EP

£
eαY1

¡
eiuY1 − 1

¢¤
EP [eαY1 − 1]

· (αp+ ρ) · (T − t)
!
.

We have thus established a link between the premium rate p and the price process
(fα (Xt, t))0≤t≤T through the characteristic function.

5 Conclusion
In this paper we examined the valuation of catastrophe insurance derivatives in
a model in which the underlying, non-traded loss index is a compound Poisson
process, a stochastic process used to describe aggregate losses in risk theory.
Initially, we only imposed the absence of arbitrage strategies and showed how
to structure the market’s incompleteness by exploiting the fact that prices un-
der specific probability measures are martingales. This structure was built on
parameters that capture the market prices of frequency and loss size risk.

We introduced a new technique based on Fourier analysis that allowed us to
deduce a representation of the set of no-arbitrage price processes. This repre-
sentation enabled us to derive the inverse Fourier transform of derivative prices
in closed form and to separate the underlying stochastic environment from the
derivative’s payoff structure. Furthermore, it was shown that the set of no-
arbitrage prices and the set of market prices of frequency and loss size risk is
one-to-one connected.
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In the preference based equilibrium model the utility function of a repre-
sentative agent determines uniquely the market prices of frequency and jump
size risk. Building upon our representation of derivative prices and their link to
market prices of risk, we determined the agent’s attitude towards catastrophic
risk and thus the unique price for the representative agent.
The analysis and results developed in this paper suggest to calibrate the

model to market data, i.e. to obtain the market prices of risk as implied pa-
rameters from observed derivative prices. Since we derived the inverse Fourier
transform of derivative prices in closed form, it is moreover suggested that there
is much to be gained by using Fast Fourier Transform as an efficient algorithm
for the calculation of prices.
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