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1. INTRODUCTION

The present article continues the author’s recent work [1] on the
infinite—horizon portfolio—cum—saving (PS) model with semimartingale
investments. The model considers an investor holding divisible assets which
can be traded at market prices without transaction costs, and receiving no
income other than that derived from these assets —in short, the classical
rentier. The investor seeks to maximise welfare, defined as the time integral
of expected utility, by his choice of a consumption plan ¢ and a portfolio
plan 7. Consumption and capital are constrained to be non—negative. A
portfolio plan is defined in the main discussion as an adapted process,
continuous on the left with limits on the right (collor), specifying the
proportions of capital assigned to the available assets; in general, these
proportions are constrained to be non—negative, but if the market process is
continuous there is a variant of the model in which short sales are allowed.
We consider here the class of special cases where the market process —
more precisely, the vector semimartingale X = (xl,...,xA) representing
logarithms of asset returns or prices —is a process with independent
increments (PII) with respect to a given filtration, and the utility function
has the discounted constant relative risk aversion (CRRA) form — see below,
(2.15—17). The object is to give a precise and general formulation of the
properties of certainty equivalence (CE) and portfolio separation which are
characteristic of the PII/CRRA model and to prove them, as far as possible,

by arguments based directly on the structure of the model.



The properties in question may be summarised as follows. We say |
that a PS plan is sure if the ratio A /kt = 0t of consumption to capital and
the portfolio composition vector ™ = (1rl,...,7r1t\) with EAw’t\ =1 are
deterministic functions of t, and that the plan is invariable if in addition 0t
and 7, are constant over time. The First Certainty Equivalence Theorem
asserts that an optimal sure plan is optimal — more explicitly, a plan which is
optimal in the class of all sure plans is optimal (in the class of all feasible
plans). The Second Certainty Equivalence Theorem asserts that, if an optimal
plan exists at all, then a sure optimal plan ezists (i.e. a plan exists which is
both optimal and sure). The Complete Class Theorem for Sure Plans asserts
that, for every plan with finite welfare, there is a sure plan which yields at
least the same level of welfare. Let b denote the coefficient of CRRA and
let ¢* = ¢*(b) be the supremum of the welfare functional. The Complete
Class Theorem is proved here for b > 1, alsofor b < 1 if ¢*(f) < 0o for
some (€(0,b). A separate version of the theorem is proved for b = 1. When
true, the Complete Class Theorem implies both of the CE Theorems. The
latter are true anyway for all b, though this is fully proved here only in the
case of the Second Theorem. If X is a process with stationary independent
increments (PSII) then ‘sure’ may be replaced in the CE Theorems by
‘invariable’.

A further important property is that of Portfolio Separation,
according to which the problem of optimal portfolio selection may be
formulated without explicit reference to optimal consumption. Let x"
denote the logarithmic return (or compound interest) process generated by a
portfolio plan 7 andlet b#l;if 7 is sure, then x" is a PIL. It is shown

that, if an optimal sure plan (6*,7*) exists, then 7* maximises the function



¥(n,T) = (1-b) ten BllD)x(T) (L11)
among all sure 7 for each T; conversely, if a sure 7* maximises (1) among
all sure 7 for each T, then there is an optimal sure plan of the form
(6*,7*) provided that the distant future is sufficiently discounted. Taking
into account the CE Theorems, the problem of choosing an optimal PS plan
may therefore be reduced to the problem of choosing an optimal sure
portfolio plan, defined as one which maximises ¥(,T) for each T. Similar
results hold if b = 1, with (1) replaced by
wt(nT) = Ex"(T). (12)
These results greatly simplify the investigation of the existence (or
non—existence) and characterisation of optimal plans in the PII/CRRA
model. For reasons of space, these topics are deferred to a separate paper [3],
but a brief trailer is in order. For a sure =, the function ¥(,.), if finite,
may be represented by a certain integral — related to the Lévy—Khinchin
formula —involving 7 and the characteristics of the PII—semimartingale X.
Using this representation and the sufficient conditions for optimality in [1], a
separate proof of the First CE Theorem is given, thus providing an
alternative justification for the restriction of portfolio choice to sure .
Results on the existence and characterisation of optimal sure portfolio plans
are easily obtained if the characteristics of X are assumed to satisfy some
conditions of smoothness and non—degeneracy, as well as inequalities which
ensure in particular that V¥ is finite for all T and all sure 7. Then it is
shown that a sure 7* is optimal, in the sense that it maximises ¥(r,T)
among all sure 7 for each T, iff for each t the vector 1r’,: maximises the
derivative 9(m,,t) = (9/dt)¥(mt). In case the restriction 7> 0 (no short

sales) applies, it is found that ¢(.,t) is for each t a strictly concave



function on a unit simplex § — see (5.1) below —and that ¢(.,.) is
continuous. The existence of a maximum of ¢(.,t) on § at some unique
7%(t) and the continuity of 7#*(.) and ¥(*(.),.) then follow directly;
moreover conditions characterising 7*(t) are obtained by elementary
concave programming. This argument does not apply in the case of
continuous X with short sales permitted, but existence and characterisation
of an optimum are obtained very simply from conditions for a maximum of
¥ or of 9 provided that the covariance matrix of XT ——XS for S<Tis
alwéys positive definite. If the characteristics of X are not sufficiently
smooth, then typically the class of admissible portfolio plans must be
extended beyond the continuous, and even the collor, functions if an optimal
sure portfolio plan is to exist.

It is, of course, well known that in particular models of the
PII/CRRA type which have been studied in detail — notably discrete—time
models and models driven by Brownian motion — optimal plans have the
properties that the ratio of consumption to capital and the portfolio
composition are independent of both the external state and the current
capital stock. The contribution of the present paper is, first, to formulate
the properties of certainty equivalence a,nd portfolio separation quite
generally, as regards both their content and the class of PII-semimartingales
considered, and secondly to give proofs based on the structure of the model
rather than obtaining the results as corollaries of conditions of optimality
derived by applying some general technique of optimisation. The present
procedure involves extra work at the outset, but yields new insights and
results — notably the complete class theorem — and greatly simplifies the

treatment of existence and characterisation of optima.



The rest of this paper is arranged as follows. We begin in Section 2
by recalling some definitions and formulae from [1] and setting out some
additional preliminaries. This Section also contains some results, which seem
to be new in part, on the uniqueness of the portfolio plan generating a given
returns process and on the uniqueness of an optimal plan. Proofs of the
certainty equivalence and complete class theorems — independent of [1] apart
from some preliminary results — are given in Section 3. Section 4 derives the
optimal consumption plan for a given sure T aﬁd formulates the princibly)i:‘}c‘)f
portfolio separation. An alternative method of proving the First CE
Theorem is indicated. The special case where X is a PSII is briefly considered
in Section 5. Up to this point it is assumed that b#1, and Section 6 reviews
the modifications needed in the case of logarithmic utility. A postscript
considers how far the present méthods and results can be extended to cases

where the characteristics of X are not sufficiently smooth to permit the

existence of an optimum with a collor portfolio plan.



2. THE MODEL

The PS model considered here is a special case of that in [1], and unless
otherwise stated the definitions and assumptions stated there continue to
apply. In order to keep the present exposition more or less self—contained,
we shall recall the main features of the model; additional conditions are
distinguished by writing here.

There is given a time domain J= [0,00), a complete probability space
(2, £P) with a filtration 2 = (‘/‘t’ teJ) satisfying the ‘usual conditions’ of
right continuity and completeness, where 4= Jm ; also ¢£0 = ./50_ is
generated by the P—null sets, so that an J{O—measurable variable is a.s.
constant. The following conventions apply to processes and functions unless
we state or imply otherwise. Scalar processes take finite real values, while
vector processes are families of scalar processes with a finite number A > 1
of components, or equivalently RA—valued functions of (w,t). Unless
otherwise stated, all processes considered are here assumed , or may easily be
shown to be, adapted and either corlol or collor, hence at least optionally
measurable. If processes z and z’ are indistinguishable, we write 'z = z’
and treat them as identical. For a scalar process, say z, z > 0 means
z(w,t) > 0 for all (w,t), and z> 0 means z(w;t) > 0 for all (w,t), while
similar notation for vector processes means that the condition applies to each
component. The terms positive, negative, increasing, decreasing have their
strict meaning throughout, but T, | mean non—decreasing, non—increasing.
Semimartingales and their components will by definition be finite on J and
corlol and will almost surely not jump at t=0, so that for stochastic

integrals we have J[o 1= J (o,1] which we usually write as | g . The



concepts of semimartingale and PII are always defined relative to 2. All PII
considered here are assumed or may be shown to be semimartingales, so that
usually we say simply ‘PII' rather than ‘PII-semimartingale’ etc.
Definitions and properties of such processes are given in detail in [4] and [5]
and an excellent survey appears in [6].

As in [1], a finite number of assets (or securities) indexed by
A=1,...,A are assumed to be available at all times. For each A there is
given a semimartingale x* with x"( w,0) = 0 called the log—returns or
compound interest process for A, and the formula z)‘ = ex)‘ defines a
positive semimartingale called the returns or price process for A. The vector
X= (xl,...,xA) is called the market log—returns process. Decompositions of
x)‘ are written
= MAC 4 vAC My (2.1)

, mAd

where M)‘c are continuous and compensated jump martingales

V)‘c’ V)‘d are continuous and discontinuous processes of finite

respectively,
variation; all these processes vanish at t=0, and in general only M)‘c is
uniquely defined. We denote by (9 C)T the matrix whose elements are the
‘angle brackets’ (M)‘C,MQ'C)T, A L=1,..,A, and write (M’\C,M)‘c) as
(M)‘c) or (x)‘c). It is assumed here that X is a vector PII relative to the
filtration A = (Jgt), i.e. for each S, the increments XT—XS for T>S are
independent of £, In this case, the (m ) g — (M c)s are deterministic
non—negative definite, symmetric matrices.

A portfolio plan r or mplan is defined as a vector process with
components 7r)‘ which is adapted collor fort > 0 and satisfies
2,1 (wt) = 1 .(2.2)
for all (w,t). The vector m(0) may be defined arbitrarily; usually we take



7(0) = x(0+). We denote by II° the set of all portfolio plans and by T the

subset satisfying = > 0, or explicitly

0¢ T (wt) < 1 (2.3)

for all (w,t) and each A. Theset of all = which are admissible in a

particular problem is denoted by II, and for reasons explained in [1] we

assume that II = I if X has jumps, while both the cases II = 1° and

I =7 are considered if X is continuous. We write simply II, or omit to

specify the admissible set, when it does not matter which case is considered.
Given a portfolio plan ell, the portfolio returns process z" generated

by = is defined as the unique semimartingale satisfying the equation

Z(T) = 1+ JZ 5, m(t)e ™ (Fae(t), (24)

and the definition of 7 adopted above ensures that z"(T) and z"(T-) are
defined and positive for all TeJ, a.s. — see [1] eq.(2.4—17) for details.
Consequently the relation z" = X" defines a semimartingale x" on J
called the portfolio log—returns process, or simply the compound interest

process generated by 7. The change—of—variables formula yields

T _o\(i—), x>
J e XNt-)ge () x$+%(x)‘c),r+2

i [0 _1-ax)],  ..(25)

t<T

the sum on the right converging absolutely for all T, a.s. Using this equation

T

we may calculate X

explicitly as
x"(w,T) = x,;,r
+ 15,7 a4y ar) — i 3,3, b e ity
+ 5,0 amM
A A
+ ):tST[Ax”— 5,7 AM7], ...(2.6)

the sum over t in the last line converging absolutely for all T, a.s; here
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| = jg , all variables and angle brackets on the right of the equation should
have the subscript t, and

A _AxN(t
Axf = Ln[E)‘Wt e™x ( )] .(2.7)
The first and third lines of (6) represent local martingales, the second and
fourth processes of finite variation, so that the equation gives a

A in (1).

decomposition of x" analogous to that of x
It is assumed that the investor has an initial capital K 0> 0 and no

‘outside income’. Given 7€ Il and x", a r—feasible consumption plan in

natural units, or T—plan, is defined here as an (adapted) positive corlol

process € = T(w,t) such that a.s. the equation

T i T T _

[0 _ [ orger® - [y, Eo=k, .(8)
o k(t-) 0 o k(t-) °

has a semimartingale solution k which is positive on 9; this solution is

unique and is called the capital plan in natural units corresponding to ¢.!
On introducing new processes ¢ = c(wt), k = k(w,t) by
T T
o) = e(t)e™ B k(1) = k() > &), .(2.9)
the equation of accumulation (8) becomes simply
T
K(T) =K —J o(t)dt. .(2.10)
0o

The condition k > 0 is equivalent to the two conditions ¢ > 0 and

1 The definition here is more restrictive than that in [1], where a t—plan was
required to be a.s. locally integrable instead of corlol. However, nothing is
lost as far as the search for an optimum is concerned, since Theorem 1 of [1]
implies that under present assumptions the shadow price process

y* = ((:)""]f)e(].-'b))('K
that an optimal C—plan must in fact be a semimartingale. For simplicity we

have also specified here that € > 0, k > 0 rather than € > 0, k > 0, but this
property also must hold at an optimum.

q defined by an optimal plan is a local martingale, so
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r c(t)dt < K, as, ...(2.11)
0

which no longer involve x" or k. A consumption plan in stendardised units,
or c—plan, can therefore be defined directly as a positive corlol process

¢ = ¢(w,t) satisfying (11) a.s., and then k can be defined by (10) if
required. We denote by % the set of all c—plans. Every € which is feasible
for some 7 can be obtained by specifying a pair (c,7) and writing T = c-ex“,
and one can take #x II as the set of feasible plans for the PS model. For a
given plan, the consumption ratio plan § = @ w,t) is defined here by

Op = cpfky =T [k, ...(2.12)
hence, using ¢ = -k,

ky = K -exp{—f f(t)dt}, c,=0,K =K 0 -exp{-7 Ot)dt}. ...(2.13)
Conversely, any positive corlol process # defines a c—plan by way of (2.13).
The advantage of this method (which was not used in [1]) is that no
separate integral constraint need be specified; in fact, (11) holds as an
equality iff jg 0tdt -+ 00 with T. Clearly, a plan can also be specified as a
pair (0,7), which we often denote here by f = (6,), the corresponding
feasible set being F = © x II. A plan in the form f= (6,7) can be defined
separately for disjoint (ordinary or stochastic) time intervals, subject to the
minor inconvenience that @ is by definition right continuous, = left
continuous. Thus we sometimes work with the right continuous version

f L= (0,r +), or with the left continuous version f = (4 ,7). Then, if {°
and fl are two plans and T is a finite stopping time, a new plan OflT may
be defined whose right and left continuous versions are defined for t > 0 by
fy = fit Loty * ot Lper) »

T = f_I fom) o Tiery (2.14)
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this new plan is called t° before T, fl after t. Suitable French terminology
might be ° avant le five—o’clock’ etc. (If T =t = 0, we set

°f1°(0+) = 0)‘10(0—) = f1(0+); in future we shall omit such pedantic
qualifications). Sometimes we also consider §_ or =

+
sequel, we usually label processes corresponding to different plans with

separately. In the

suitable superscripts, sometimes without special comment. Note that, for a

given plan, the variables =, ¢, k,, €, l_cT, 0, atagiventime T may
depend on the whole observed past before T, indeed g ET , 0’1‘ may also

depend on jumps occurring at T.
Following the usual neo—classical approach, it is assumed in [1] that

the investor seeks to maximise a functional of the form

p(c)=E J: afc(wt); wt]dt, ..(2.15)

where 1 is called the utility function and @ the welfare functional.

Denoting by @’ = /0t the marginal utility function, the

‘discounted CRRA’ form assumed here specifies

@ [e(wt); wt] = e(wt) Pq(t), b >0, .(2.16)
where the discount density q(t) is a (deterministic) positive corlol function

of finite variation on compacts of 7 (hence a semimartingale). Thus we may

set
(e,t) = (1—b)'1 <‘:%"bqt if b#1;
(T,,t) = (In Ty)q, if b=1. ..(2.17)

When X is a PSII we adopt the usual assumption that q(t) « e Tt

with r
constant. Using the transformation (9), the functional (15) may be rewritten

for b#1 as

ofc,m) = (1-b)"1E r ()2 D)X (wit) g p)g. . (2.18)
(0]
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For brevity we often write
7"(t) = e(17PP(t) | ..(2.19)
similarly #* when 7= 7*. It will be convenient to take (18) as the basis of
the present discussion, and for the time being to consider only cases with
b # 1. When written in the form (18), the domain of the welfare functional is
taken to be #II, and its supremum on this set is denoted ¢* or ¢*(b). If
¢* is finite (and only then) an element (c*,7*) for which ¢(c*,7*) = ¢* is
called optimal, and the problem of optimal saving and portfolio choice is to
select such an element if one exists. Similarly, we say that c* is
m*—optimal if ¢(c,7*) attains a finite maximum on ¥ at c*. Given two
plans with finite welfare, we say that the one is better than/at least as good
as the other if the value of welfare for the one is greater than/at least as
great as the welfare for the other. The terminology extends in an obvious
way to optima and welfare rankings relative to subsets of #xII, ¢, and II.
If b <1, so that ¢ is positive, finiteness of ¢* requires that there should be
no plan with ¢{c,7) = 0o ; butif b > 1, so that ¢ is negative, it is
permissible to have ¢ = —oo for some plans but not for all.

When a plan is specified in the form {= (0,7), we write
o(f) = ¢(0,7) instead of ¢(c,m) and speak of an optimal plan f* = (6*,7*)
etc. The functional (18) can then be rewritten with c replaced by its formula
from (13), and then it is usually convenient to set K o = 1. Further, given a
plan f and stopping times 0 < T < 7 < 00, we define a random variable

¢[T 7_)(cu,f), called (rescaled) welfare during [T,7), by

B0 = =01y 1y (/) /)y fa )i
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— (1-b)™ J[T,T) 0, exp{—(1-b)[ L0 ds}- nT/nMN(q Ja)dt.  ..(2.20)

If 7=0,wewrte §(f) or ¢(w,T;f) and call this (rescaled) welfare
after T. If = OflT is defined as in (14), then

4) = b)) + () 18 ay gy (). ~(221)
For any { and T we also write
S(wTif) = &.(f) = E'¢,(), E' =E(/A,), .(2.22)

and the convention K, =1 ensures that @ (f) = E¢(f) = @(f). It is easily
seen that a plan f* is optimal (in a given set F) iff, for each TeJ,
&.(f*) 2 ®,(f) as. foreach f.

Special importance attaches to sure plans. We say that m, c, (c,7)
are sureif m, c,, (c,,m,) are equal (almost surely) to non—random functions
on J, and we denote by Hs, HOS, I'I+S, %5 etc. the corresponding subsets
of T, 11°, 1'I+, & etc. Note that @ is sure iff A is sure. Again, we say
that 7 is invariable if it is sure and there is a vector 7 such that T, = T for
all t; that c (or equivalently 6) is invariable if it is sure and there is a
constant ¥ > 0 such that §, =¥ forall t; and that the plan (c,7) or
(0,7) is invariable if both components are invariable. The corresponding sets
are written Hi, I'IOi, H+i, #' etc. An element (c*,7*) of #5x11° is called
an optimal sure plan if the functional ¢ attains a (finite) maximum on
#5<11° at that point. This concept is to be distinguished from a sure
optimum, which is an element of € S.11° at which @ attains a finite
maximum on #II. In the same way, we speak of an optimal tnvariable plan
and an snvariable optimum. Expressions such as optimal sure 7—plan, sure
optimal 7—plan, optimal sure c—plan are used analogously in cases where a

separate concept of optimality for 7 or c is defined.
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UNIQUENESS CONDITIONS.

To conclude this Section, we consider briefly some uniqueness and convexity
properties of plans. First, we seek conditions under which distinct =
generate distinct x”; it is well known that this is not the case generally even

in one—period models. Let 1r°, 'ﬂ'l be elements of II generating xo, xl.

1

Let Moc’ Mlc be the continuous martingale parts of xo, x —i.e. the

terms given by the first line on the right of (6) — and let Axg, Ax% be the
jump terms given by (7). We write ér = - °, & = x! - <,
M™ = M1¢ - M®C etc. Suppose &x =0, i.e. 6xt =0 on J a.s. This

implies §M™ = 0, see [4] 2.23, hence, a.s. for each pair S < T from J,
T
mC mc Ac L Ac 4 lc
0 = (M™), —(M™), = Jszxgzéﬂ‘s’% aAe oy . (2.23)
Since 6 is collor, the following condition is sufficient to ensure that ér = 0:
For each pair S < T,
(m o — (M c)s is a positive definite symmetric matriz. ...(2.24)
Alternatively, uniqueness may be inferred from assumptions about the jumps
of X. Consider the ‘square brackets’ process [fx] defined by
_ c 2

[éx]T = (M )'1‘ + EtST(ﬁAxt) . ...(2.25)
The hypothesis éx =0 implies [d6x] =0, and since the first term on the
right vanishes, so does the second; using (7) and ¥ A&vri‘ =0, this implies

Ap AXN(t 2
0= ztST[zA&rt{e (t) _ 1}] . Ted, as. .(2.26)
Letting p denote the integer—valued random measure associated with the

jumps of X, see [4] 3.22 or [5] II.1.16, this may be written as
Y
0 = J J [EAévri‘{ef - 1}] 2(dedt), Ted, as., (2.27)
[o,7] /¢
where the inner integral is taken over the ‘jump vectors’ ¢ = (fl,...fA) in

gh \ {0}. Since the double integral vanishes, so does its compensator, and
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taking into account that dr is predictable we may replace p in (27) by its
compensator F, see [4] 3.15, [5] II.1.8; note that F is deterministic since
X is a PII. Now F can be factorised in the form F(d¢,dt) = f(d£,t)dG(t),
where f(-,t) = f,(-) is for each t a non—negative (‘Lévy’) measure on gh

satisfying £,({0}) = 0 and JM{1+||§||2}ft(dg) < o0, while G isa

non—decreasing, right continuous function on J with G(0) = 0. We leave
aside any components of X corresponding to fixed discontinuities or to a
singular part of G, and assume that
G 1s absolutely continuous on I with

g(t) =dG(t)/dt >0 aa.teT ...(2.28)
and [RA\{O}] >0 aa ted ..(2.29)
This assumption ensures that the probability of a (moving) discontinuity of
X occurring during any interval (S,T] is positive. Now u(d£,dt) can be
replaced in (27) by f(d¢,t)g(t)dt, and then (27) leads to
0 = E)‘évri‘(egx —1) for f,—almost all fe!lA, a.a. teJ. ...(2.30)
The equation above says that the vector 67rt must be orthogonal in RA to
the (variable) vector e€ —1; in addition, since 2)‘61:‘ =0, 61rt must be
orthogonal to 1. Under the further assumption that
the support of ft is A—dimensional, a.a. te J, ...(2.31)
it is seen that we must have 67rt =0 as. fora.a.t, indeed éx=0 on I
a.s. since Or is required to be collor. The substance of (31) is roughly that
the distribution of AX, conditional on AX, # 0 (when it exists) is not
concentrated on any set of RA generating a proper linear subspace.
Actually, it is enough if the support of ft generates a (A—1)—dimensional
linear subspace not containing 1 — a useful remark, since it yields a jump

condition for portfolio uniqueness in case there is a riskless asset. Uniqueness
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conditions can also be given for cases where X has fixed discontinuities.

Note next that x" is a concave function of 7 in the following sense.
With 7r°, al and xo, x! as above, let 7@ be defined a.s. for t€ J by
?’rg = aw% + (1-a)1°, 0<a<l; ...(2.32)
obviously #* isin II and generates some x® Referring to (6—7), it is seen
that for given S < T from J the function assigning to each o the random
variable x,i,y - xg is concave in a. More precisely, the variables in the first
and third lines on the right of (6) are linear in ¢, as are the first two terms
in the second line; the term‘ —a;j: ) ,\Etira)‘irat d(M)‘c,Mtc) is a.s. defined
and finite, and it is concave in & because (9 ) r— (M © g 1
non—negative definite; and the last line of (6) is also a.s. defined and finite
and is concave by (7) because the log function is convave. It follows that
x2—x2 2 ofxp—x) + (1m)(x0-x), O<a<l, ..(2.33)
a.s. for S < T. (The use of a both as a number and as an index should
cause no confusion).

The inequality (33) is strict with positive probability if x° # x! on
(S,T] and either (24) or both (28) and (31) are satisfied. Let us briefly verify
the following form of this assertion, which will be needed below: if x° F 3 xl,
there is a T€.7 and a set A€.¢ p With PA >0 such that
xg > ax%

It is only necessary to prove the inequality for t=T, since (33) does the rest.

+ (1-a)x° for 2T, weA, 0< a< 1. ..(2.34
t

Now, if x°¢# xl, there is some Te I and C = {w: &x(w,T) # 0} with PC > 0.
It follows from (6) and the ‘local character’ of the stochastic integral,

[7] VIIL.23, that there is a predictable set H = {(w,t): t<T & &n(w,t)#0}
whose sections H , re non—empty for P—almost all weC, hence have

positive Lebesgue measure since dm is collor. Under (24), the term
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—+/y EAEL%O‘)‘%M’ d(MAc,Mﬂ'c) is strictly concave for weC, and taking
™

into account the concavity of the remaining terms in (6) this implies (34)
with A = C a.s. Alternatively, under (28) and (31), we may take

A= {u} <1
Ax% # Ax(t) for some t < T, and it follows from (7) and the strict concavity

(88x,)? > 0}. To see this, note that if weA, then

of the log function that Ax‘tx > an% + (l—a)Ax(t); taking into account that
all terms in (6) are concave this implies x,? > ax,i + (l—a)x,(l’, a.s. for weA,
and of course A ¢ C. It remains to check that PA > 0; indeed, arguing as
in (25-31) above, PA =0 would imply 67rt =0 for t < T, contrary to
assumption.

We next consider uniqueness properties of optimal plans. First an
optimal ¢* is unique. Indeed, let (E°,7r°) and ((‘:1,7rl) be optimal, so that
P(c°) = ¢(El) = ¢*. Let t%= ot + (1-a)c®, 0 < @ < 1. It may be
shown, see [1] (4.3—5), that thereis a 7% ¢ Il such that ¢® is 7%feasible,
ie. ¥ generates an x% such that c*=c% ¥ ; it suffices to set
1 = [arl &l + (1-a)n0 KO/ (ok] + (1-)K). ..(2.35)

t

#® as defined in (32) is not suitable). It then follows from the

(Note that 7
. . -1_1-b
strict concavity of (1-b) ¢ that

(1-6) ey by Ho(e) P + (1-0) )] ..(2.36)

with strict inequality if (':l(w,t) # t®(wyt), hence from (15) and (17) that

e 2 ap(et) + (1-a)p(e®) 0 = (237)
1

with strict inequality unless ¢ = ¢°; since p(c®) < ¢* by optimality, the
assertion follows. »

For the processes c*, 7*, x* associated with an optimal plan, the
results concerning uniqueness are less clear—cut. If (c°,7%) and (c1,1r*) are

optimal (with the same 7*), then ¢° = cl; this follows immediately from the
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convexity of the set # and inequalities like (36) and (37), with T replaced
by ¢ and @(¢) by ¢(c,7*) as defined in (18). In the same way, a c—plan
which is 7—optimal for an arbitrary fixed  is unique. Now let (c°,7°,x°) and
(c1,1r1 ,xl) be two optimal plans. By the preceding argument, we may write
P> = Lo = c¥, ...(2.38)

1

where the identity defines c*. Obviously ¢® = ¢l iff x°=x!. Now define

™ asin (32), let #® generate x® and define processes c% t% by
s’ 1 0 Mo a xot
¢, = ac; +(l-a)cy, TS o= c/e (t) ; ...(2.39)

then c% #, so ¢® is 7*feasible. Omitting the variables (w,t) for

brevity, we calculate

"I SN [acl +(1_a)c0]eax1+(1—a)x°
= ¥aellm)0=xY) | (q_gealx %) 5 o, ...(2.40)

the first inequality follows from (33) above, the equalitites from (38—39), and
the last inequality from the convexity of the exponential function. Since ¢*

is optimal, the inequalities must in fact be equalities for t€ .S a.s., and

(c% 7% x®) is optimal for each o. Now assume either (24) or both

(28) and (31). Then if x° # x! thereisa TeJ and an event Ac /6, Wwith
PA > 0 satisfying the strict inequality (34); but then the first inequality in

(40) is also strict, contrary to the result obtained previously, implying that

in fact x°= xl. It then further follows that 7° = 7r1.
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This discussion may be summed up by

PrOPOSITION 1: Uniqueness of Optimal Plans.

I (c*,7*) is optimal, then

(i) for any optimal plan (c%°), we have ¢° = ¢¥;

(ii) for any optimal plan (c°,7r*), we have ¢ = c*;

(iii) for any optimal plan (c*,7°), we have x° = x*.

(iv) if (24) holds, then for any optimal plan (c°,7°) we have c
x° = x*, 1° = 7¥; similarly if (28) and (31) hold.

(0]

= c¥,
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3. CERTAINTY EQUIVALENCE

This Section gives direct proofs of the certainty equivalence properties. The
proofs make use of some additional assumptions which are set out after the
statement of the Theorems. We continue to assume b # 1.

THEOREM 1: First Certainty Equivalence Theorem.

An optimal sure plan is optimal.

THEOREM 2: Second Certainty Equivalence Theorem.

If an optimal plan exists, a sure optimal plan exists.

THEOREM 3: Completeness of the Class of Sure Plans. Given any plan I
with (p(fo) finite, there exists a sure plan > with go(f° ) finite such that
() < of°).

Theorems 1 and 2 are immediate consequences of Theorem 3, which is
proved below. Indeed, Theorem 3 implies that sup ¢(f) taken over all sure
plans is at least as great as sup y(f) taken over all plans with ¢(f) finite;
write this temporarily as « > 4. If an optimal plan f* exists, then (f*) = g
is finite by definition and of course a < §, hence a = f, and if go(f° ) > o(f*)
then a? <p(f° )} > o(f*) =6 = a implies that i is optimal, proving
Theorem 2. On the other hand, if an optimal sure plan f* exists, then « is
finite by definition and (f*) = a2 8> (f*), and Theorem 1 follows.

In case b < 1, the proof of Theorem 3 given here requires a uniform
finite supremum (u.f.s.) condition to the effect that ¢*(f) < oo for some
Be(0,b) — see (vii) below for details. It is shown below that Theorem 2 is
true without this condition. Theorem 1 can also be proved without the
condition — see Section 4 below and [3] — but is obtained here only as a

corollary of Theorem 3.
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Some additional conditions are also imposed on (2,2() in this Section. It
is assumed that  is the space of all adapted corlol functions w = (;(w)
from J to some vector space, for example some RN, each function satisfying
¢ 0(w) = 0. Then, for each T, one can define for each w the functions

Tw={¢):T) o = {¢ ()¢ w): 12T},
and we assume that 6, = o{((t); t<T}, augmented so that 2 is right
continuous. Informally, Ty represents the past of all variables which the
investor observes, w' the future; the structure of the vector space is
immaterial, except that its dimension should be at least A. Each w can be
identified with the pair (Tw,wT), Q0 with the corresponding product set
TQ « QT, TQ can be equipped with the filtration ("‘t; t<T ) and with the
restriction 'P of P to J‘T. However, we need not distinguish explicitly
between sets of "0 and corresponding sets of (2, between Tp and P et
In particular, given an element w°e 2, the ‘singleton’ {Tw°} ¢ 'Q may be
identified with the subset of 2 comprising all elements of the form
(Two,wT) with o’ ranging through Q7. Note that {Tw°} €4, because
the functions are adapted, so that in fact £, is generated by these sets.
Also, if w° and w are elements of , then (Tw°,wT) is another element;
in other words, the future of one history can be grafted onto the past of
another to make a new history. The assumptions stated in Section 2 continue
to apply, in particular X is a vector PII relative to the filtration A = (Jtt)
It would no doubt simplify the formulation slightly to take for Q the space
of corlol functions from J to !lA issuing from the origin and for X the
canonical process. However, while the assumption that logarithms of asset
prices define a PII relative to all information available about the past is a

reasonable formulation of an efficient markets hypothesis, the assumption
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that the investor has no information other than that derived from the
observation of past asset prices is not only invariably false but might seem
unduly to pre—empt the conclusions of the argument.

PROOF OF THEOREM 3.

The idea of the proof is to replace the given plan fo , which at any given time
T may depend on the whole observed past, successively by plans i
converging to a limit f° independent of the past and satisfying

o) < o(f®) 1 @(f°). We write the given plan as {* = (6°,7°) with

corresponding processes c°, x0 = x7ro, distinguishing other plans and their
associated processes by appropriate superscripts.

(1) The replacement procedure is as follows. Given an arbitrary plan f, we
consider the right continuous version f 4 choose a fixed time Te J and an
element ° in €, and consider replacing the ‘future’ f_'f_ = (ft 4 t>T) of
f + by the process f_T_T with variables

P wt+) = f(To®, W' 4), t2T; .(3.1)
the whole new plan is called Tf° T, or ‘f before T, f° T after TV — (cf. 2.14).
Note that the replacement variable at T is constant, more precisely that
(w0, T+) = f(u°,T+) for all w ..(3.2)
— or equivalently for all Ty (not just a.s.). The independence of the
increments of X implies that the distribution of the variable

$(w,T; 7Y = ¢("W®, W', T; ) ..(3.3)
— representing rescaled welfare after T, cf. (2.20) — is independent of Ay
For the conditional expectation at T we therefore have

¢(w,T; Tf°T) = <I>(Tw°, Wt T; f) = constant, ...(3.4a)
except perhaps for w in a P—null set NTe A 7 this may also be written as

o('w,T; 'f°") = #("W,T; f) = const = E& (*f°T),  TwgN, ..(3.4D)
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So far, w® has been an arbitrary fixed element. Now, there must be
a subset BT in A T with PBT > 0 such that, for W’ e BT,
o("u®T; ) 2 E&("w,T; f) = Ed,(f). (3.5
Choosing any W’ € BT and replacing { by Tf° T as above, it follows from
(4b) and (5) that the new plan is at least as good as the original after T,
hence is at least as good overall (i.e. after 0). Further, since the distribution
of (3) is independent of £ p» We may in fact replace W’ € B, byan
arbitrary w® in 0 (except perhaps for w® in a P—null set of 6 T, which we
may again call NT) without altering the value of (4). So far, then, we have
E2,(f) < B2,(*f"") = &(w,T;"1") = &, ..(3.6)
where & = &(T,f) is some constant, for all w and °, except perhaps for
w and »° in a P—null set N, of A e
(ii) We now apply the replacement procedure iteratively to the given plan °.
For n=1,2,..., let
5‘j‘ =™ j=0,,.n2"
so that for each n the 6Ij1 define a dyadic subdivision of [0,n] and
successive subdivisions are refining. At the first step, set n=1, j= 2,
T = 6: =1, and carry out the replacement to { = fo described under (i),
choosing w® outside a P—null set N:. This yields a new plan f: which is at
least as good as f; briefly, the new plan coincides with f for t > 1, the
variables f:(t+) are constant with respect to the past before 1, in particular
f;(1+) is constant. Nowset n=1,j=1,T = 61 = 4, and at the second
step carry out replacements to f; to obtain a new plan fi, noting that since
w® may be chosen outside a P—null set N: we may choose the same w® at
both stages. Also, since the variables f;(t+) for t> 1 are already constant

with respect to the past before 1 we may (making changes on a null set if
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need be) assume that the transition from f: to fi alters only the variables
f;(t+) with $ <t < 1. Next,at n=1,j=0,T = 6; = 0, there are no
changes of substance to be made, since there is no ‘pre-history’ and "go is
generated by the null sets; at most, we make changes on a null set to ensure
first that the same w° is used throughout and second that f(w,0+) is
constant for all w, not just a.s. This done, we rename f Cl, as fl and proceed
to the next sequence of replacements, startingat n=2,j=4,T = 62 =2
and with fl as the process to be altered. Letting j vary backwards until
j=0 vis reached, we define a new plan 2, then on repeated iterations new
plans ", noting that the same element w® may be chosen throughout as
the basis for replacements. Two further remarks are in order. First, the
passage from flj(t+) to f?_l(t+) may be assumed to alter only variables
with 6’;_1 <tg JIJ.I ; thus the passage from fn_l to f* amounts to making

separate alterations, always using the same w°, on [n,00) and on each of

the intervals (5?_1, 63.1]. Second, if T appears as a point of subdivision at
stage N, then it appears again for each n > ¥, and for each w € Q@ we have
w0, T+) = (W, T+) = f (°,T+) = (o, T+). (3.7)
(iii) It follows that, as n - oo, we have, for all w,

wt+) — f(wo,t+) ...(3.8)

for all t which appear as 51} for some (jn). Of course the ‘variables’

f( w°,t+) are in fact constant for each t and define the right continuous
version of a sure plan §> = (6° ,7r°) satisfying

Plwt) = P(W°t) on I as. ..(3.9)
Now (8) says that we have for each w a sequence of corlol functions
converging on a dense set to a corlol limit — the same for each w— from

which it follows that the functions converge to this limit on J a.s., together
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with their left limits. Since @(f") < <p(fn+1) for each n =0,1,..., the
Theorem will be proved if we show that

lim (f") < @{f°) ~-(3.10)
with of°) finite.

(iv) Let P = an, x° = x7r°, and consider the convergence properties of Xt
as n - 00, w? - 1r: on J a.s.; (here we revert to the left continuous version
of 7). Bearin mind that 7° is sure but x* is not. Suppose first that

I= II+, so that 0< 1'r)\n < 1. In this case one can apply the dominated
convergence theorem (d.c.t.) for stochastic integrals — see [4] 2.72—4,

[5] 1.4.31—44 — to the formula (2.6) with 7 =" to show that x} -+x7

in
probability, uniformly on compacts, i.e. for each T < oo,
n__o . .
SUDy ¢ |xt - xtl — 0 in probability as n - oo,
and selecting subsequences if necessary we may assume that
xFax?
t 1

first for t < T and then, on letting T = 1,2,..., on the whole of J.

a.s., ..(3.11)

Similarly nltl - n<t> a.s.

To justify the application of the d.c.t. in more detail, consider the
four lines on the right of (2.6) one by one, setting 7 = 7°. The first and
third lines are straightforward, taking as ‘dominated integrands’ the bounded
predictable functions 1r)‘ and applying [4] 2.73. The second line contains

A and 7r)‘7rl' with

only Stieltjes integrals of the bounded integrands =
respect to deterministic integrators of finite variation, and the passage to the
limit follows from [4] 2.72, i.e. essentially from the ordinary d.c.t. The last

line may be rewritten as

An_AxM(t An, A Al A < A
EtST[!Ln(ZAWt e ()) —X,\ 7 Axt] + Y‘th[zA”t AVt] ...(3.12)

and we take as ‘integrands’ the summands in square brackets. The passage
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A
t

converges absolutely on J for each A, a.s. The first term is non—negative
A eAx)\

to the limit in the second term follows from [4] 2.72 because %, .. AV

.
e}hr)‘Ax (convexity inequality). Also, using

<1 and 27r’\ = 1, it is bounded above, uniformly with

because Y7

> IV

fnz<z-1, 0<
respect to 77, by the non—negative sum oo 2y [eAxx(t) —1- Axi\],
which converges absolutely on J a.s. a,ccordi_ng to (2.5), and the passage to
the limit again follows from [4] 2.72.

If I =1° X continuous, only the first two lines in (2.6) need be
considered. The 7 are no longer uniformly bounded by constants.
However, each value of 7"(w,t) is also a value of 7°(w’,t) for some w’, and
since 7° is left continuous it is locally bounded, so that there exist
(predictable, bounded) stopping times Xy, 100 and constants a1 oo as
m T oo such that |7r)‘(w,t)| Ca forall A and w when t< x ;
consequently the same is true if 7r)‘ is replaced by 7r)‘n, for arbitrary n. It
now follows that, for each m, (x{c1 - x<t>)I{t < Xp,} tends to zeroin
probability, uniformly on compacts, as n - co, and letting m = 1,2,... we
again conclude that (11) holds on J a.s.

(v) Consider next the convergence of the ¢ as n- o0, 6" - 6°. Hereit is
convenient to consider left continuous versions, since these are locally
bounded. Changing the values of the Xy and o if necessary, we may
assume that, for each m, &° (w,t—) € a, for t<x  as., and since all
values of 6"(w,t—) are values of °(w’,t-) for some w’ we may assume
that %(w,t—) < ay forall t<x andalln, as. Butthen the (ordinary)
d.c.t. gives

JE P ws)ds — JF Plws)ds for 1< x as,

and inside the integral signs we may replace §,_ by @_. Referring to (2.13
s— 8 §



28

it is seen that

Mwtz) — (wte)  as., ...(3.13)
first for t < Xm and then, letting m - oo, on J; moreover it follows from
(2.13) that ¢ _<a for t<x .

(vi) To simplify the notation, write the integrand in (2.18) as

(1-b)U,q, = ¢ (I Px* gy = el g, > 0 .(3.14)
with suitable superscripts when the plans are fo , f° or simply f. The
argument under (iv) and (v) shows that Uf: - U: on Jas.,andif b>1
we may conclude from Fatou’s Lemma that

lim inf  (1-b)E > Ugq,dt > (1-b)E [ Ut dt, ..(3.15)
which is (10). The inequality ¢(f°) > —o0 follows from (10), taking into
account that ¢(f°) > —co and that o(f") | with n. This completes the
proof for b > 1.

(vii). If b< 1, Ut > 0, an additional condition is apparently needed in
order to prove (10). The simplest is a condition similar to one used in

[2] S.3, where its properties are discussed in more detail. Assume that

J5 a(t)dt = 1, ...(3.16)
so that du(wt) = dP(w,t)q(t)dt defines a probability measure on

(2x 7,0), where 0O denotes the optional sets, and consider the space

£ = Sl(ﬂx J,0,u) of real—valued, p—integrable optional processes. Assume
further that there is some fe(0,b) such that ¢*(f) < o0, or explicitly

sup E J: E%—ﬂqtdt = sup JQ y[(l—b)UfJ(l_ﬂ)/(l_b)du < 00, .-(3.17)

X

the supremum being taken over all T—plans, or equivalently over (Uf:fES).
We call (16)—(17) a uniform finite supremum (u.fs.) condition; it implies

the ordinary finite supremum condition ¢*(b) < co by a standard property
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of moments. From (17) it follows that the functions (Uf;fES) are uniformly
p—integrable, hence form a weakly sequentially compact set in 21. In
particular, the sequence (U™) may be assumed, selecting a subsequence if
necessary, to converge weakly to some function U*ESI, implying

Juldp - JU*dp < co. But we already know that Ultl - U: on J a.s., SO
that U* = U°, implying (10).|

REMARK 1. Various conditions which are sufficient for (17) to hold can be
given, for example as follows. Using € = cex“, then Hoélder’s inequality, then
(2.11) with K, =1 we obtain

E J: E%_ﬂqtdt =E J: {ctex“(t)}l_ﬂqtdt

<[5 [" o] [o [ PO Pu]f o

o

<[e J: eI 1A ], (3.18)

so that it is enough if the supremum of the last expression taken over all

m€ll is finite for some Fe(0,b), and a fortiori if

Jm [supw Ee(l_ﬁ)x-n(t)/ﬂ] qt1/[3 dt < oo. ...(3.19)

)
In particular, if X is a PSII and q(t) « e ™ with r > 0, the supremum in

(19) need only be calculated at t = 1, and provided that it is finite for some
B < b then Theorem 3 is true if r is large enough. Bounds on expectations
like that appearing in (19) will be considered in [3].

PROOF OF THEOREM 2 (without u.f.s. condition).

Suppose that the plan % considered in the proof of Theorem 3 is actually

x0

°=c°e

optimal. Then ¢ is the unique optimal consumption plan in
natural units. Since the replacement procedure shows that ¢(f°) < p(f") for

each n, it follows that in fact <,a(f° )= <p(fn) for each n, hence by uniqueness
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t®=c™ But ¢”-c® on Jas. by (11) and (13), and since ¢° is defined

by the sure plan f° the result follows. ||

REMARK 2. The proof of Theorem 2 can be simplified if conditions are in force
which imply that a pair (6’0 , 1r°), or equivalently (co, 7r°), defining an
optimal plan is unique — see Proposition 1 above. Let > =f = (6,m) be
the unique optimal plan, choose T and carry out the replacement of f_'f_ by
fiT as in step (i) above. Since welfare is not diminished, it follows from
uniqueness that the revised plan coincides with the original for all t > T a.s.
In particular, for t = T we have

HwT) = 0w’T), mwT+) = o(°T+), as. ...(3.20)
so that in fact 6(-,T) and =(-,T+) were a.s. non—random all along. Since
we may carry out the ‘replacement’ for all T in a dense set of J with the
same w°, it follows from the fact that #(w°t) and 7(w’t+) are corlol

that & w,-) and m(w,-) are a.s. equal to non—random functions on 7. The

details of the subdivision and convergence arguments are thus not required.
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4. PORTFOLIO SEPARATION

In this Section we consider further the relationship between consumption and
portfolio choice in an optimal sure plan. The results of the preceding Section
serve to justify the restriction to sure plans but play no further direct part.
The special definition of @ as a function space is not used again. We still
assume b # 1. X is always a PII. Unless specified, the precise definitions of
I and II° do not matter.
Two crucial simplifications occur when sure plans are considered.

First, if 7 is sure, the compound interest process x" defined by (2.6-7)is a

PII, as is the process 7" = o(1-b)x=

; this follows readily from the fact that
X isa PII. (If X isaPSIIand = is invariable, then x" and 7" are

PSII). Secondly, if ¢ is sure, the functional (2.18) can be written as

ofc,m) = (1=b) L j: e\ (En1)- a(t)at. (41)

Note that, for sure , the expectation appearing here is a value of the
Laplace Transform of a PII.

Let 7 beinitially a given (not necessarily sure) element of II and
consider the necessary conditions for an element ¢” to be 7—optimal in
#°. Obviously ¢(c",7) must be finite, and (to avoid waste of resources) we
must have
focpdt = K. ..(4.2)
Bearing in mind that c¢” is corlol, the form of the maximand (1) implies

T

that we must have ¢, > 0 for allt, and then the Euler condition for a

t
maximum of (1) subject to the constraint (2) is
(c:’cr)_b En;r q, = constant = (cz)r)_b > 0. ...(4.3)
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Note that Enzr = EellD)x" (t)

is always positive because X is finite
(Fatow’s Lemma). Also, since ¢” and q are corlol, the same must be true

of En;r by (3). Defining

N" = Nmq) = [3 [Erg qtll/ Pat, (4.4)
we get from (2), (3) and then (1) that

/K, =1/N",  cf =cg [Eny qtll/ b, ..(4.5)
o(c™,m) = KX (™)) (1-b). (4.6)
Obviously these calculations make sense only if

N" < oo. (4.7)

Suppose conversely that 7 is sure and is such that N" < 0. Then
the positive function En:;r is finite for almost all t, and since this function is
corlol (because x" is corlol) it is finite for all t. Further, the process 7" is
a PII, from which it follows easily that (nz/Enf; t€ J) is a martingale, so
En" must be a semimartingale. If c" is defined by (5), it follows that c¢”
is a positive semimartingale satisfying the equality (2) and soisin €.
Moreover (6) is satisfied so that ¢(c”,7) is finite, and then a standard
sufficiency argument based on the concavity of ¢ with respect to ¢ (7 fixed)
shows that ¢ is 7—optimal in ¢°. An example of such an argument is the
proof of Theorem 1 of [2]. We shall not set out the details, but rather note
that this theorem yields a stronger assertion, namely that ¢’ is T—optimal
in #. Indeed, the theorem implies (allowing for differing definitions) that
the assertion follows if it is shown that ¢(c”,7) is well defined as an integral
and finite, that (2) holds, and that the shadow price process y defined by
¢™ is a martingale. The first two conditions are satisfied by construction,
and with a functional (2.18) we have

b .
y, =(cf)"mgq;, or, using (3)
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T _ (1-0)x"(t)

oh,

v, =V 1 /Bng, ¥, = (g --(4.8)
As previously noted, 777r/E177r is a martingale, which proves the assertion.
Proposition 1(ii) shows that c¢” isin fact the unique Toptimal element

of #. To sum up so far, we have

PROPOSITION 2: 7—optimal c—plans.

For arbitrary = € II, a =optimal element c™ of #° exists iff the integral
N" = N(7,q) defined by (4) is finite; then c¢” is defined explicitly by (5)
and the corresponding value of the welfare functional is given by (6). If = is

sure, then c” is the unique m—optimal element of %.

The preceding argument shows that the problem of constructing an
optimal sure plan (c*,7*) can be considered in two stages, the first being to
choose a 7* to maximise 9"/(1-b) on II° if possible, the second to
choose c* in #° to maximise @(c,m*). For the first stage to be well
defined it is necessary, if b < 1 that M" < 0o forall 7€ II° if b> 1
that M™ < 0o for some 7€ II°. In this formulation, the first—stage problem
makes no explicit reference to consumption, but the existence of a solution
still depends on the discount density q. Going a step further we note that,
if ™ maximises MN"/(1-b) on I,
then 7* maximises (l—b)_lEanr on II° foreach TeJ,
or equivalently 7* maximises
(l—b)_lE(17,_7[,r / ng) = (l—b)—lEr)frr/En;r for each pair S< T from J.
This follows from (4), taking into account that all the 5" for 7€ II° are
PII and that a sure portfolio plan can be chosen separately on each interval
(5,T). Conversely, if v maximises (1—b)_1En,;:r on II° for each T, one

can always find some q which decreases fast enough far out so that
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N(7*,q) < o0, and for any such q it is clear that 7* maximises
N(7,q)/(1-b) on T° and that an optimal sure plan of the form (c*,7+)
exists, c* being defined by (5) with 7= 7*. On the strength of these
remarks we can define an optimal sure =, without further reference to
consumption or discount, as one which maximises (1——b)"1E17:r on T1°
for each T simultaneously. In the sequel [3], it will be slightly more
convenient to consider the function
¥(n,T) = (1-b) T tn En™(T), Ted, mell®, .(4.9)
and to define the problem of optimal sure portfolio choice as the problem of
choosing (if possible) a 7* € II° such that ¥(.,T) attains a (finite)
maximum on II° at 7= 7* foreach TeJ. A solution is called an optimal
sure portfolio plan, or simply an optimal sure 7. With this terminology, the
discussion can be summed up in the simple but fundamental
THEOREM 4: Principle of Portfolio Separation. Let 7*€II°. For a given PII X
and fixed b # 1, the following properties are equivalent:
(i) 7* maximises ¥(mT) on II° for each TeJ;
(ii) 7* maximises ¥(m,T)—¥(,S) on II° for each pair S < T from J.
(iii) For every discount density q such that (r*,q) < 00, 7* maximises
N(m,q)/(1-b) on I,
(iv) For every discount density q such that 9%(7*,q) < o0, an optimal
plan (c*,7*) exists, c* being defined as in (4.5) with 7 = =¥,
N" = N(7*,q).
To review progress so far, we have replaced the original PS problem of
choosing an optimal pair (T,r), first by the problem of choosing an optimal
pair (c,m), then by the problem of choosing an optimal sure pair (c,7) or

(6,7). If this problem has a solution (c* ,7*), then c* is r*—optimal and
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7* is optimal sure, i.e. T maximises ¥(7,T) among all sure 7 for

each T. Conversely, if 7* is an optimal sure portfolio plan, then for every
discount density q which makes (#*,q) converge there is a sure c* such
that (c*,7*) is optimal, and an explicit formula for c* can be given. As
will be shown in [3], an explicit formula can also be given for ¥(,T) when
7 is sure, and with its aid an alternative proof of the First C.E. Theorem
which is independent of Section 3 above can be given. Of course, only this
Theorem is needed to allow results on the existence and characterisation of
an optimal PS plan to be obtained by solving the corresponding problem for
an optimal sure portfolio plan. The role of the Second C.E. Theorem is to
guarantee that no cases of existence are omitted if only sure plans are
considered, and in particular to simplify the construction of examples of
non—existence.

In conclusion, we indicate the points which remain to be established
in order to complete the alternative proof of Theorem 1. It has to be shown
that a plan (c*,7*), where 7* is optimal sure and c* is defined as in (4.5),
is optimal in &x II. According to Theorem 1 of [1], it is sufficient for
optimality if ¢* is 7*—optimal in ¥ (which has already been shown) and if

\—
for each asset A the process y)‘ = y*.e¥ x*

is a supermartingale in case
n= H+, a martingale in case II = I1°; here y* is given by (8), with

7= 1% ¢ =c* x" =x* Using (8) and (5) we have

P = e D) 1B (4.10)
where y* = (¢¥)™° = [K_/9(r*,q)] ", and of course the y* are PIL.
Hence

Ey) = y;.Eexx(t)—bX*(t)/Ee(1—b)X*(t), ..(4.11)

and the appropriate supermartingale (or martingale) property follows easily
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if it is shown that the ratio of expectations on the right of (11) is finite and
non—increasing (or constant), or equivalently that the difference

tn B N0 _ gy pe(l-b)x*(t) ...(4.12)
is finite and non—increasing (or constant). These facts will be verified in [3]

for the various cases which arise.
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5. STATIONARY INCREMENTS

In this Section we review briefly some complements to the results of Sections
3—4 which are obtainable when X is a PSII and q(t) = ¢ ¥ with some real
r. Weassume b#1 andset K 0= 1. For brevity, we consider only the case
Il = I, and assume that ¥(x,T)is finite on J for all 7 € II°. In addition,
each proposition stated here is subject to the conditions of the theorem which

it complements.

If 7 is an snvariable portfolio plan, then 7 has the form ™, = T,
t€ 7, where T is an element of the simplex
o= {rett 720 and 5,7 =1}, (5.1)
and conversely each such 7 defines an element of Hi. For 7€ H+i, define
Wmy) = ¥(m1); ~ ' ...(5.2)
then obviously
¥(r,T) = Txb(7r1) Te 9, ...(5.3)
and x" is a PSIL. It follows from an explicit formula for ¥ to be derived

in [3] that %(.) is a finite concave function on ¢, and further that for any
sure 7 we have

¥(rT) = [T y(r)dt, Tes. .(5.4)
Then we have the following complement to Theorem 3.

ProposITION 3. If 1° € Hs, then for each T€ 7 there exists a 7° € II* such that

¥(7°,T) < ¥(x°,T). ..(5.5)
Proor. Fix T and set

vo T O pd

1. = (1/T)f, m, dt, W: = 7r; for all t. ...(5.6)

Since % is concave on ¢ we have

(1/T)fg Wmy) dt < YD), ~(8.7)
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and taking into account (3), with 7 = 17, T = ‘fr;, this implies (5).]|

It is tempting to go further and claim that, for each sure 7r°, there
exists an invariable 7° such that ¥(x°t) < ¥(7%,t) for all t, but this
apparently is not true without some further assumption. Again, the ‘obvious’
extension of Theorem 3, namely that, for each sure 2= (90 ,7r°) with ga(fo )
finite there is an invariable f° such that <p(f°) <off® ) < m, is not true
without reservation — though it is true, rather trivially, when an optimum
exists. We omit further details and go on to results which complement the
Certainty Equivalence Theorems.
PRoPOSITION 4. An optimal invariable plan is optimal.
ProOF. In view of Theorem 1, it is enough to show that, if (c*,7*) is
optimal among invariable plans, then it is optimal among sure plans. Again,
it is enough to show that, if (c*,7*) is optimal among all invariable plans
(c,7) such that ¢ is m—optimalin iﬁi, then it is optimal among sure plans.
Now, if ¢ is invariable, then ¢, = coe_ot for some Co > 0 and 6> 0, and
m—optimality in i?i implies fc-dt = 1, hence Co = 6. On the other hand, if
7 is invariable, so that = for each t and x" is a PSII, then
(Enla) /P = (Eqfe /D def oot
and since E1771r = ¥(m1) = T¢(m;) our assumptions ensure that these
expressions are finite for all t. Next, if ¢ is 7—optimal in ifi, then by
definition ¢(c,m) is finite, and substituting in (4.1) we have
oem) = (1-b) 7L (@ (e yID)eP gy = g1 p)[bn "+ (1-b)g
with bn”"4(1-b)# > 0. A final necessary condition for r—optimality in #!
is that the above expression has a (finite) maximum at some 6> 0. Writing
c=c", 6= 0" for the maximising values, we have

9=1", p(c"m) = 1/(1-b)"P.
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Reference to the discussion following (4.1), or direct calculation, shows that
the conditions which have been derived as necessary for ¢ = c¢" to be
7—optimal in #' are also sufficient (given that = is invariable) for c” to
be 7—optimal in ¥°. In particular, we have g(c”,1) = N"/(1-b), where N”
is defined as in (4.4). It therefore only remains to show that, if (c*,7*) is
optimal among invariable plans, then 7* maximises MN”"/(1-b) among sure
7. Now 7* maximises 9N"/(1-b) among invariable 7 by definition, so *
maximises ¥(m,1) on II. But then the vector ¥ maximises 9(7) on o,
and it follows — see (4) — that 7* maximises ¥(7,T) foreach T on I°/|
ProposITION 5. If an optimal plan exists, an invariable optimal plan exists.
Proor. In view of Theorem 2 it is enough to show that, if a sure optimal plan
exists, an invariable optimal plan exists. Now, if (c*,7*) is sure optimal, it
is optimal sure, so (4.1-7) apply, and #* maximises 9"/(1-b) on i

But then 7* maximises ¥(7,T) among all sure 7 for each T, which in
view of Proposition 3 implies that 7r’1';‘ is constant on [0,T] for each T,
hence constant on J. Thus #* is invariable and by definition c* is
w*—optimal in #° . It is easily checked that this implies (using the notation

—n*t

of the preceding Proposition) that c* = n*e with n* > 0.
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6. LOGARITHMIC UTILITY

If b=1 in (2.17), the welfare functional in standardised units (when
defined) takes the form

plc,m) =E [ (tnc, + xf)qtdt ...(6.1)
in place of (2.18). We review the theory of Sections 3—4 case briefly, noting
only the main alterations. For simplicity, we assign the value —oo to
undefined integrals. This time it is clear from the outset that we may
without loss consider separately the problem of optimal consumption in
standardised units

max [o E(tnc )qdt: ce ¥, ..(6.2)
and the problem of optimal portfolio choice

max [7 E(xj)q,dt: el ...(6.3)
provided that these problems are well defined, and the question of certainty
equivalence can be considered separately for the two problems. Regarding
(2), we have

PropoSITION 6. If ce &, the deterministic function Ec defined by

(Ec), = E(c,) isin #° and is at least as good as ¢, i.e.

J2 E(tn c,)-q,dt < [ Ln(Ec,)-q,dt. ..(6.4)
The inequality is strict if both sides are finite unless ¢ = Ec.

Proor. Ec inherits from c the properties defining a c—plan. If both sides
of (4) are finite, the asserted inequality follows from the strict concavity of
the logarithm. If the left sideis 400, consider the integrals on [0,T] and go
to the limit. |
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It follows from this proposition that we may without loss replace (2) by the
problem
§
max [p (Inc,)q,dt: ce¥”. ...(6.5)
Setting K =1,itis found that necessary conditions for c*e & 5 to be
optimal are
-1 -1

(c}) "q, = (cf) "q, > 0 forallt,
K, =1=[jctdt = (c*/q)-f] qdt < oo,
J§ (tncf)q dt = [T [Lnq, —in(f7 q.ds)]q,dt,
and these calculations make sense only if
[5qdt<oo and [P |lnq.|q,dt < oo. ...(6.6)
Conversely, if (6) is satisfied, the preceding formulae allow an optimal c* to
be constructed.

Turning to (3), we assume, to avoid tedious complications, that Ex:r
is defined and finite for all 7 and T and further that the functions VA
A AL
0 %t
‘instantaneous covariance matrix’ [ai‘t] being non—negative definite for

and (M’\C,Mlc) are absolutely continuous with derivatives v , the
every t. We have

PROPOSITION 7. Let I =11 If well, the deterministic function Ex
defined by (Ex), = E(m,) isin 1°. For each TeJ,

Ex,i,r < E(x,?”). ...(6.7)
Proor. If 7r€1'I+, the expectation E'lrt is defined and finite and inherits
from 7 the properties defining a non—negative portfolio plan. Consider the
formula for x™ in (2.6) and compare it with the corresponding expression for
xET. Since T is predictable and 0 < 7 < 1, the integrals in the first and
third lines of (2.6) are (true) martingales with zero expectation, so that these

lines can be left aside in proving (7). For given (w,t), the integrands in the
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second line are finite concave functions of the vector m{w,t), while in the
fourth line each summand is a finite concave function of 7{w,t). Then (7)
follows from Jensen’s inequality. ||

CoroLLARY. The inequality (7) is strict for T in some interval [r,00) if =

is not deterministic and either (2.24) or both (2.28) and (2.31) are satisfied.

It follows from Proposition 7 that we may without loss replace (3) by
the problem
max [J (Ex:r)qtdt: nell® ...(6.8)
if I =N, Theorem 3 is in this case an immediate consequence of
Propositions 6 and 7, and in its turn implies Theorems 1 and 2. Next we
define, in place of (4.9), the function
W(nT) = ExNT), mel®, Ted. ..(6.9)
A necessary condition for 7* to be a solution of (8) is that ‘IIL(.,T) attains
a finite maximum on II° at 7= 7* for almost all T, or equivalently for
all T because of right continuity. Conversely, this condition is sufficient if
[O(Bxt)qudt, x*=x", ...(6.10)
is defined and finite, and this can always be achieved by a suitable choice
of q. Accordingly we may define the problem of optimal sure portfolio choice
simply as the problem of choosing (if possible) a 7* € II° such that (9)
attains a finite maximum at 7* for each T. The statement corresponding
to Theorem 4 which is valid in the present case is contained in the preceding

discussion and need not be set out separately.
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As regards the uniqueness assertions of Proposition 1, these remain valid, but
can be strengthened as follows. First, (ii) may be replaced by

(i)’ If (c*,7*) and (c°,7°) are optimal, then c® = c¥;

from which it follows, by Proposition 1(i), that (iii) can be replaced by

(iii)’ If (c*,7*) and (c°,1°) are optimal, then x° = x*.

So much for the case T =TT,

If =1 (X continuous) the proof of Proposition 7 does not work
as stated, first because E.7rt may be undefined for some 7 and t, and then
because the integral in the first line of (2.6) is in general only a loca!
martingale. A possible way out is to restrict II to elements of 1° which
are uniformly bounded on compacts, i.e. such that, for each 7 and T, there
is an o such that, a.s.,, |m(wt)] <« forall t<T.

Alternatively, Theorem 3 may be proved along the lines of Section 3.
Briefly, if (6) above is assumed, it is enough to consider @(7) = | zEqutdt
as the functional instead of ¢(c,7) and to apply to it a simplified version of
the replacement procedure. A u.f.s. condition of the form
sup {]z Elelﬂ-qtdt : 1€1°} < oo for some > 1 ...(6.11)
ensures that  is defined for all 7 and that the step corresponding to (vii) of
Section 3 is valid. In fact, |x1r|ﬂ can be replaced in (11) by (xZGH_)ﬂ + |x:r—|,

where x+

, X denote the positive and negative parts of x. We omit further
details. Once Theorem 3 is proved, Theorems 1 and 2 follow, and the
problem of optimal sure portfolio choice can be formulated as above. Once
again, Theorem 2 is valid without the u.f.s. condition. The uniqueness

conditions of Proposition 1 as amended above remain valid under (6), but

only the first part of (iv) applies and its proof requires a stopping argument.



Finally, Theorem 1 can be proved by the method outlined in Section 4
without the function space set—up or a u.f.s. condition. Suppose that
(c*,7*) is optimal sure and set K, =1,q, =1. Then c* must satisfy the
conditions preceding (6.6), and we may further set [q-dt = 1, o that c* = q.
Obviously ¢{c*,7*) is finite, (4.2) is satisfied and Ex*(t) is defined and
finite for all t. The shadow price processes (4.8) and (4.10) are replaced by

-1 -1 A xMt)—x*(t) |
vi =(c}) "q, =(c}) "q, =7} y; =vyie (t)=x(¥), | ...(6.12)
and y} is trivially a martingale so that c* is r*—optimal in F It remains

to show that y)‘

is a supermartingale if II = H+, a martingal;? if TM=1°
— or equivalently, since x)‘ and x* are PII, that Eyi‘ is non{j—increasing in
the former case, constant in the latter; we shall return to these 1points in [3].

This completes our survey of the theory for logarithmic uti]jty.%
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7. POSTSCRIPT

The requirement that a portfolio plan be collor, although intuitively
appealing, has the drawback that the existence of an optimum is liable to be
ruled out unless the characteristics of the PII X are sufficiently smooth with
respect to time. This topic will be pursued more fully in [3]; here we give a
short informal discussion of points relevant to the results proved above.

To begin with an example, assume CRRA utility with b#1 and
exponential discounting, II = T, and suppose first that X =X is a
Brownian motion with drift and covariance relative to . With a
sufficiently high rate of discount, there is an optimal plan (c*,7*) with
T = #° forall t, where 7° is some element of of —see (5.1). Now let
X =X +X, where X is as before and X = AX I {tsr}> ™0 being a fixed
time and AXT an ¢ _—measurable random vector independent of .£__.
Intuitively, it is clear that under suitable conditions of integrability we
should have an ‘optimal plan’ with 7* of the form
o= “Tl{t=T} + %BI{#T}, .(7.1)
where 77 maximises (l—b)—lEe(l_b)Ax“(T) among all 7€ o; but,
accidents apart, such a plan is not collor. To state the point another way:
the best portfolio to hold when t#7 is the usual ‘Brownian’ portfolio 7rB,
the best to hold at 7 is the usual ‘single—period’ portfolio 7', but during
(0,7) there is no latest time for switching, and during (7,00) no earliest time
for switching back.

More generally, if X is a PII with a finite or countable set J = (7))
of fixed discontinuities, X can be represented as the sum X + X of two PII,

where X = [I.dX and X has no fixed discontinuities, see [4] p.91. An
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optimum with 7 collor is liable not to exist in cases where both components
are present (unless X is constant in a neighbourhood of each rm) or where J
has a finite point of accumulation in J. It might thus appear that the
theory developed in this paper in empty in such cases. However, the main
results, in particular Theorems 1—4, generalise without much difficulty if the
set II of admissible portfolio plans is extended to allow processes of the form
—ra} t ?tl{tﬂ}’ (7.2)
where 7 is a collor portfolio plan as previously defined and, for each m, 7rm

isan .6 __—measurable random vector satisfying )3)“7?;‘1 (w)=1 as., also

m
V. é‘l >0 for each A a.s. if short sales are forbidden. (Some changes are needed
in the conditions for uniqueness and strict concavity given in Section 2.) As
a matter of common sense it may be questioned whether, by allowing as
“feasible’ a plan involving an instantaneous portfolio switch at the same
instant 7 as the market jumps we do not violate the requirement that the
investor should not be able to observe the jump AXT when selecting the
vector _; however, all is well formally since T is A T_—measurable
whereas AXT is independent of £ — and in practice an ‘instantaneous’
switch might be approximated by switching at nearby times or by means of
options or other contingent contracts.

As will be seen in (3], there are also cases without fixed discontinuities
where, because of insufficient smoothness of the characteristics of X, no
optimum with a collor 7 exists, but an optimum does exist if in the
definition of a portfolio plan we replace ‘adapted collor’ by ‘predictable and

locally bounded’; in particular, it can happen that no optimal sure collor =

exists but that there is an optimal sure measurable 7 which is bounded on
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compacts of . In conclusion, we review briefly the implications of such a
revised definition for the preceding discussion.

A portfolio plan is now defined explicitly as a locally bounded,
predictable vector process satisfying (2.2) for all (w,t); a non—negative 7
must in addition satisfy (2.3) for all (w,t) and A. The definitions of 1n°,
I, 1T are revised accordingly. The theory in [1] goes through virtually
unchanged with the wider definitions, so that Section 2 above stands, up to
and including the definitions of sure and invariable plans, apart from
amendments needed to take account of the possible non—existence of the
limits m(+). The discussion of portfolio separation for sure plans in Section 4
and the alternative proof of Theorem 1 are also practically unchanged.

Turning to the discussion of uniqueness at the end of Section 2, we
assume here that the functions VA and (M)‘C,MLC) as well as G are
absolutely continuous on . Under (2.24), or under (2.28) and (2.31),
= x! now implies only that 67rt =0 for almostall t a.s., (not ér = 0);
conversely, 61rt =0 for a.a.t a.s. implies 6x =0 without the stated
assumptions. The concavity and strict concavity properties of x" stated in
Section 2 remain valid, but some changes are needed in the proofs. The
assertions in Proposition 1 concerning the uniqueness of optimal ¢*, c¢*, and
x* then stand with the same proof, but the assertion concerning 7* needs
an amendment relating to null sets.

Passing to Section 3, it is found that with the new definition of a
portfolio the proofs of Theorem 3 breaks down at step (iii), and consequently
also at step (iv). The proof of Theorem 2 without the u.f.s. condition is

similarly affected. However, if some condition is in force which implies that

an optimal x* is unique, so that an optimal c¢* or #* is also unique, the
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procedure outlined in Remark 2 of Section 3 shows that ¢* or 6* isin fact
sure, even if the corresponding inference for #* is no longer valid. It follows
that an optimal plan (c*,7*) is one which maximises the functional ¢(c,7)
in the form (4.1) with ¢ sure. The problem of proving Theorem 2 is then
reduced to showing that, if thereis a #* in Il which maximises ¥(r,T)
among all 7ell for each T, then thereissucha 7* in 115, This problem
no longer involves the interdependence between consumption and portfolio

planning and can be attacked by the methods to be considered in [3].
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