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Abstract

We argue that most current methodologies for value-at-risk (VaR) underestimate the
VaR, and are therefore ill-suited for market risk capital. Better VaR methods are avail-
able, such as the tail–fitting method proposed here. However, financial institutions may
be reluctant to use those methods since current market risk regulations may, perversely,
provide incentives for banks to underestimate the VaR.

� Email: j.danielsson@lse.ac.uk, p.hartmann@lse.ac.uk, and cdevries@few.eur.nl. The authors re-
search papers can be downloaded from the web site http://cep.lse.ac.uk/˜jond.
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1. INTRODUCTION

1 Introduction

In January 1998 the amendment for market risks of the Basle Capital Accord became
effective in the G-10 countries. The main change, compared to previous capital ade-
quacy regulations, is the option for banks to use their own internal market risk man-
agement models, i.e. value-at-risk (VaR) models from which their regulatory minimum
capital against trading book losses is determined. In this article we point to several im-
portant facts, which we feel have been neglected in the discussion about VaR models
in general and the Basle internal models approach in particular. We argue that the cur-
rent set of Basle requirements still provides disincentives for the development of more
reliable VaR models, and show that considerable improvement of current VaR models
is possible by means of techniques that explicitly focus on the properties of extreme
return fluctuations. We then briefly discuss how a change in the determination of the
Basle ’multiplication factor’ may encourage the industry to adopt improved VaR mod-
els, such as those proposed here.

2 Traditional VaR models and extreme returns

VaR models usually use historical data to evaluate maximum (worst case) trading
losses for a given portfolio over a certain holding period at a given confidence interval.
For example, a VaR model may tell you that a banks’ daily trading loss, of 1 million
dollars or more, will occur with 3% probability. A first important observation is that
value-at-risk applies to the extremelower tail of the return frequency distribution, i.e.
large losses, far away from the mean. This fact is recognized in the Basle market risk
amendment, which specifies the use of a one-sided confidence interval of 99 percent,
i.e. the chance of experiencing a larger loss than the value at risk should be 1 in 100 or
less.

This number obviously reflects regulators’ natural tendency for conservativeness in
their prudential supervision of banks. The same tendency also comes out in the Basle
regulators’ choice of holding period, a second important model parameter. While the
industry virtually unanimously uses daily VaRs for internal risk control, for the purpose
of determining their minimum regulatory capital against market risk, banks will be
obliged to assume that they cannot liquidate their trading portfolios quicker than within
10 business days. In order to facilitate the transition from their internal daily VaR
models to the regulatory 10-day models the application of a simple ’square-root-of-
time’ rule is permitted. We shall come back to this rule below, making the argument
that - surprisingly - this may lead to an over-estimation of the bi-weekly VaR.

The most difficult part in VaR estimations is the derivation of the portfolio return fre-
quency distribution. Two approaches have become widely popular: Variance-covariance
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2. TRADITIONAL VAR MODELS AND EXTREME RETURNS

analysis and historical simulation. Variance-covariance analysis relies on the assump-
tion that financial market returns follow a multivariate normal distribution. It is easy
to implement, because the VaR can be computed from a simple linear formula with
variances and covariances of returns as the only inputs. Its major drawback is that fi-
nancial market returns are not normally distributed, having fatter tails than the normal.
This means that losses are much more frequent than predicted by variance-covariance
analysis. It is particularly weak where a VaR model for regulatory purposes and risk
control should be strong, i.e. in the prediction of large losses.

Another feature of many VaR models is the exponential weighing of past returns, i.e.
returns closer to the present are given more weight than those several months or even a
year ago. This technique is justified by the presence of conditional heteroscedasticity
(CH) in daily financial market returns, meaning that a volatile day is usually followed
by volatile days. However, two important observations are relevant for the Basle min-
imum capital requirement discussion. First, while daily returns exhibit strong CH ef-
fects, they can hardly be detected in bi-weekly returns such as the regulatory 10-day
holding period. Second, CH effects largely originate from medium and small range
volatility periods. Extreme events, such as losses at or beyond a 99% confidence in-
terval, scatter rather independently over time, see Danielsson and de Vries (1997a).
Jackson, Maude and Perraudin (1997) discuss related issues.

Historical simulation does not suffer from the tail-bias problem, because it does not
rely on normality. By applying the full empirical market return distribution to all the
items in the current trading portfolio, the outcome exactly reflects the historical fre-
quency of large losses over the specific data window. Another advantage of this ap-
proach compared to variance-covariance analysis is that it can incorporate non-linear
positions, such as derivative positions, in a natural way; see Kupiec and O’Brien
(1995a) on this ”full-valuation” property. The problem with historical simulation is
that it is very sensitive to the particular data window, which the Basle Committee has
chosen to be at least one year of past returns. In other words, whether October 1987
is included or not makes a huge difference for the value at risk predicted. Stated dif-
ferently, the empirical return distribution is very ’dense’ and smooth around the mean,
so that no parametric model based on a standard distribution, such as the normal, can
beat the accuracy of the empirical distribution there. Due to the few occurrences of
extremely large price movements, however, it becomes ’discrete’ in the tails. Hence,
VaR predictions based on historical simulation exhibit high variances. Moreover, at its
lower end, the empirical return distribution sharply drops to zero and remains there,
i.e. more severe losses in the future than the largest one during the past year is given a
probability of zero, which might be considered as imprudent.

Our interim conclusion is that a good value-at-risk model to satisfy regulatory mini-
mum capital standards should correctly represent the likelihood of extreme events by
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3. A NEW APPROACH BASED ON EXTREME-VALUE THEORY

providing smooth tail estimates of the portfolio return distribution which extend be-
yond the historical sample (up to infinity). Exponential or other weighing schemes
need not be adopted. In what follows we shall sketch a new VaR model which satisfies
these requirements by combining historical simulation for the interior of the portfolio
return distribution with a parametric estimator for the tails.

3 A new approach based on extreme-value theory

Our predictions for tail events will be based on the well documented fact that asset
return data have fatter tails than the normal. All heavy-tailed distributions eventually
display the same tail behavior when we consider large losses or gains. Heavy-tailed
distributions all have tail shapes which to a first order approximation are identical to
the tail shape of the Pareto distribution. Thus if we know that the distribution is heavy
tailed, then the largest losses occur with the following approximate probability:

Pr fR < �rg = F (�r) � ar��; asr !1 (1)

The tail probabilities depend on two parameters, a scaling constanta, and the so called
tail index�. Equation (1) shows that the smaller the tail index is, the more likely are
extreme events and the fatter are the tails. Statistical extreme value theory provides
the tools for estimating these tail parameters. See Danielsson and de Vries (1997a)
and Danielsson and de Vries (1997b) for a more detailed description of the theory and
applications. We have estimated these parameters for a number of return data series.

Boudoukh, Richardson and Whitelaw (1995) and Bahar, Gold and Pilizu (1997) argue
that VaR should focus on the worst case scenario by means of studying the distribution
of the minimum return out of a number of n returns. This distribution is known to be
1� [1� F (�r)]n, and can be computed if the underlying distributionF (�r) is given.
Interestingly, what these articles did not recognize is, that ifn becomes large, then the
distribution of the minimum converges to a limit distribution which is known a priori
(the so-called extreme value distribution). If the data are fat tailed then the leading
term in a Taylor expansion of this extreme value distribution is given by (1). Thus our
approach genuinely takes care of the worst case scenario, but does not require prior
knowledge of the specific distribution.

In order to illustrate the differences between the tail estimation technique and other
methods for VaR inference, such as variance-covariance analysis and pure historical
simulation, a particularly volatile asset class is used, i.e. daily returns on spot oil prices
from 1986 to 1997. By applying the method of Danielsson and de Vries (1997b) we
can predict from the derived tail probabilities that the maximum expected one-day drop
in oil prices during a period of 15 years is 28%, and that a drop of 44% is expected
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4. SURPRISES FROM TIME AGGREGATION

Table 1: Performance of Different VaR Models (1000 day horizon)

Confidence level 95% 99% 99.95%
Expected number of VaR violations 50 10 0.5
Average number of realized VaR violations (percentage error in parenthesis)
Variance-Covariance Approach 52.45 16.28 3.55

(4%) (63%) (610%)

Historical Simulation 43.24 7.66 0
(-14%) (-23%) (-100%)

Tail Estimator 43.14 8.19 0.59
(-14%) (-18%) (18%)

Note: Models tested with 500 random portfolios comprising 7 US stocks for the period 1993 through 1996.

the variance-covariance approach gave on average 16 violations, while for the tail esti-
mation approach the actual portfolio loss exceeded the predicted value at risk in only 8
cases. For the 95% level the variance-covariance method performs best with 4% error,
but as the confidence level increases the performance of this method steadily worsens,
e.g. at the 99% confidence level the error is over 60%. Historical simulation has mixed
performance; it provides reasonable predictions at the lower confidence levels, but it
worsens with higher levels and becomes uninformative at the out-of-sample 99.95%
confidence level. Note that the tail estimator still provides a remarkably good estimate
at that level.

4 Surprises from time aggregation

As has been pointed out before Kupiec and O’Brien (1995a), the simple ’square-root-
of-time’ formula to aggregate daily VaR estimates to bi-weekly estimates can be rather
imprecise when returns of the underlying market risk factors are non-normal. This has
led to concerns among regulators that the simple time-aggregation rule can easily lead
to an under-estimation of potential losses and therefore to too little capital against
market risk, suggesting a more stringent regulatory approach.

We rather come to the opposite conclusion and argue that the square-root formula may
lead to anover-estimation of value at risk, when returns are not normally distributed
and exhibit fat tails. Assume that observed financial market returnsr have finite vari-
ance. This implies that the tail index� is larger than 2 in (1). Lett denote the length
of the holding period. Increasing the holding periodt increases the VaR under the nor-
mal model by a factor of2

p
t(’square-root-of-time rule’). If the return distribution is fat

tailed, then this factor equals�
p
t, and since� > 2; 2

p
t > �

p
t . Hence the ’square-root-

of-time’ rule eventually results in a higher VaR than the value implied by a heavy tailed
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5. INCENTIVES AND THE BASLE MULTIPLICATION FACTOR

distribution. This result follows from equation (1) and is a direct implication of the lin-
ear tail additivity of fat tailed distributed random variables, and the self-additivity of
normally distributed variables. (See e.g. Dacorogna, Muller, Pictet and de Vries (1995)
for further details.)

In sum, by prescribing the ’square-root-of-time’ rule for time-aggregation regulators
have - consciously or unconsciously - introduced another element of conservativeness
in the internal models approach to market risk capital requirements, which has passed
widely unnoticed.

5 Incentives and the Basle multiplication factor

The regulatory requirement that banks’ 10-day, 99 % VaR estimate has to be multiplied
by a factor of at least 3 to determine the minimum regulatory capital against market
risk has received a cool reception by the industry. National bankers associations ar-
gued that such a high factor would discourage the application of quantitative models
and obstruct progress in risk management techniques, see e.g. Elderfield (1995). For
example, even when applying the tail estimation approach proposed above, which is
clearly much more precise than more widely known standard approaches, a bank could
not be granted a lower factor than 3. Nevertheless, the Basle Committee has confirmed
that it will retain the size of the factor. In addition, this factor can be increased through
a variable add-on between 0 and 1 depending on the performance of a bank’s 1-day
model in back-testing procedures. The Basle Committee points out that the variable
component provides for built-in incentives to develop and use better models. However,
we would argue that the fixed component of 3 is already so high that it completely dom-
inates any potential advantages from achieving a zero add-on through a good model.
In fact, we would propose that the fixed component should be lowered and the range
of the variable add-on potentially extended in order to leave sufficient incentives for
banks to use the best models.

Stahl (1997) has recently advanced an interesting theoretical justification for the fixed
factor of 3, which has formerly been interpreted as a somewhat arbitrary political
compromise. His two arguments, one related to the tail misspecification in variance-
covariance approaches, the other related to potential time-variation of portfolio return
distributions over the relevant data window (in particular unidentified increases in the
variance of returns), are both based on a very general statistical result known as Cheby-
shev Inequality. IfR is a random variable with mean�R and finite variance�2

R
, then

Pr [�
R
� k�R < R < �

R
+ k�R] � 1� 1

k2
(2)
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6. CONCLUSIONS

Equation (2) implies, for example, that – whatever the true distribution of a random
variableR – the boundaries of a 99% confidence interval (Pr [�] = 0:99) are never
wider than 10 standard deviations left and right from the mean.0:99 � 1� 1=k2 ,
jkj � 10

Note that Chebyshev’s inequality (2) is true for any type of distribution which has
a finite variance. Applied to VaR, it says in a way: Assume we do not know anything
about the structure of financial market returns, what is the extreme boundary that could
cover any specification error? Of course, at this level of generality the answer must
be a very conservative multiplication factor (something between 3 and 4 according
to Stahl’s calculations) in order to cover even the weirdest distributions. An example
showing how far off this theoretical bound can be, is given in Haan, Jansen, Koedijk
and de Vries (1994).

We do know much more than ’nothing’ about financial market returns. As discussed
above, we know that these returns have fat tails and that a single limit law determines
the shape of these tails. Including this information, as done in the tail estimation ap-
proach described above, is both efficient from the risk manager’s perspective and pru-
dent from the regulator’s point of view.

This conclusion is not subjective and hardly dependent on any particular empirical
specifications. The fixed component of 3 in the Basle multiplication factor is unnec-
essarily conservative. In order to give banks the opportunity to reap the benefits of
better VaR models, in terms of lower minimum regulatory capital against market risks,
the fixed component of the Basle multiplication factor should be reduced. In order to
sufficiently penalize bad models the range of the variable add-on could be increased.
This would avoid any disincentives through prudential capital requirements to future
progress in banks’ risk management techniques, while preserving the fundamentals of
the Basle internal models approach, see Goodhart, Hartmann, Llewellyn, Rojas-Suarez
and Weisbrod (1997) ch. 5.

To be sure, it is extremely difficult for external regulators to evaluate to which extent
they can have confidence in banks’ internal risk management techniques, and some de-
gree of conservativeness is a necessary characteristic of every financial regulator con-
fronted with the sometimes wild gyrations of financial market behavior. But it seems
that in the “Amendment to the Basle Capital Accord to Incorporate Market Risks” this
conservatism may have gone too far.

6 Conclusions

In this article we have argued that most traditional VaR techniques fail to properly
model the tails of portfolio return distributions - the very essence of the value-at-risk
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6. CONCLUSIONS

concept. A semi-parametric approach, based on results from extreme value theory,
turns out to produce much more reliable VaR estimates. Furthermore we argue that,
in the light of theoretical and empirical considerations, the fixed Basle multiplication
factor of 3 appears to be very conservative and should be reduced, while the range of
the variable add-on should be increased.

There are already more far-reaching reform proposals on the table. Not the least the
pre-commitment approach for market risk capital requirements Kupiec and O’Brien
(1995b) and Kupiec and O’Brien (1997). Although rarely pointed out, pre-commitment
actually implies an endogenous, incentive compatible multiplication factor. These new
ideas have their merits, but before they are ready for political compromise, the present
regulatory approaches should be improved to ensure financial stability at reasonable
costs for both consumers and market participants.
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