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Abstract

This paper considers the properties of risk measures, primarily Value–at–Risk
(VaR), from both internal and external (regulatory) points of view. It is argued
that since market data is endogenous to market behavior, statistical analysis
made in times of stability does not provide much guidance in times of crisis. In
an extensive survey across data classes and risk models, the empirical properties
of current risk forecasting models are found to be lacking in robustness while
being excessively volatile. For regulatory use, the VaR measure is lacking in
the ability to fulfill its intended task, it gives misleading information about risk,
and in some cases may actually increase both idiosyncratic and systemic risk.
Finally, it is hypothesized that risk modelling is not an appropriate foundation
for regulatory design, and alternative mechanisms are discussed.

∗I have benefited from comments by Richard Payne, Casper de Vries, Charles Goodhart, Kevin
James, and Bob Nobay; the mistakes and analysis is of course my responsibility alone. For cor-
respondence j.danielsson@lse.ac.uk. My papers can be downloaded from www.RiskResearch.org or
fmg.lse.ac.uk/˜jond.



1 Introduction

Recent years have witnessed an enormous growth in financial risk modelling both
for regulatory and internal risk management purposes. There are many reasons
for this; stronger perception of the importance of risk management, deregulation
enabling more risk taking, and technical advances encouraging both risk taking
and facilitating the estimation and forecasting of risk. This impact has been felt
in regulatory design: market risk regulations are now model based, and we see
increasing clamoring for regulatory credit risk modelling. The motivations for
market risk modelling are obvious. The data is widely available, a large number
of models analyzing financial data exist, rapid advances in computer technology
enable the estimation of the most complicated models, and the ever–increasing
supply of well educated graduates, all led to a sense of “can do” within the
technical modelling community. Empirical modelling has been of enormous use
in applications such as derivatives pricing and risk management, and is being
applied successfully to the new fields of credit and operational risk.

There is however precious little evidence that risk modelling actually works.
Has risk management delivered? We don’t know for sure, and probably never
will. If regulatory risk management fulfills its objectives, we will not observe
any systemic failures, so only the absence of crisis can prove the system works.
There is however an increasing body of evidence that inherent limitations in risk
modelling technology, coupled with imperfect regulatory design, is more like a
placebo rather than the scientifically proven preventer of crashes it is sometimes
made out to be. Below I survey some of this evidence; the general inaccuracy and
limitations of current risk models, the impact of (externally imposed uniform)
risk constraints on firm behavior, the relevance of statistical risk measures, and
the feedback between market data, risk models, and the beliefs of market partic-
ipants. I finally relate this evidence to the current debate on regulatory design
where I argue against the notion of model based regulations, be it for market,
credit, or operational risk.

An explicit assumption in most risk models is that market price data follows a
stochastic process which only depends on past observations of itself and other
market data, not on outside information. While this assumption is made to
facilitate modelling1, it relies on the hypothesis that there are so many market
participants, and they are so different that in the aggregate their actions are
essentially random and can not influence the market. This implies that the
role of the risk forecaster is akin to a meteorologists job, who can forecast the
weather, but not influence it. This approach to modelling has a number of
shortcomings from the point of view of financial markets. If risk measurements
influence people’s behavior, it is inappropriate to assume market prices follow
an independent stochastic process. This becomes especially relevant in times

1Incorporating outside information in statistical risk models is very hard
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of crisis when market participants hedge related risks leading to the execution
of similar trading strategies. The basic statistical properties of market data
are not the same in crisis as they are during stable periods; therefore, most
risk models provide very little guidance during crisis periods. In other words,
the risk properties of market data change with observation. If, in addition,
identical external regulatory risk constraints are imposed, regulatory demands
may perversely lead to the amplification of the crisis by reducing liquidity. There
is some evidence that this happened during the 1998 crisis. Indeed, the past 3
years have not only been the most volatile in the 2nd half of the 20th century
but also the era of intensive risk modelling.

In order to forecast risk, it is necessary to assume a model which in turn is esti-
mated with market price data. This requires a number of assumptions regarding
both model design and the statistical properties of the data. It is not possible to
create a perfect risk model, and the risk forecaster needs to weigh the pros and
cons of the various models and data choices to create what inevitably can only
be an imperfect model. I present results from an extensive survey of model risk
forecast properties, employing a representative cross–section of data and models
across various estimation horizons and risk levels. The results are less than en-
couraging. All the models have serious problems with lack of robustness and high
risk volatility, implying that unless a risk model is chosen with considerable skill
and care, the model outcomes will be as accurate as predictions of the outcomes
of a roulette wheel. Off–the–shelf models can not be recommended.

Current market risk regulations are based on the 99% Value–at–Risk (VaR) mea-
sure obtained from a risk model. The VaR number can, under some assumptions,
provide an adequate representation of risk, however such assumptions are often
unrealistic, and result in the misrepresentation of risk. There are (at least) four
problems with the regulatory VaR measure. First, it does not indicate potential
losses, and as a result is flawed, even on its own terms. Second, it is not a co-
herent measure of risk. Third, its dependence on a single quantile of the profit
and loss distribution implies it is easy to manipulate reported VaR with specially
crafted trading strategies. Finally, it is only concerned with the 99% loss level,
or a loss which happens 2.5 times a year, implying that VaR violations have very
little relevance to the probability of bankruptcy, financial crashes, or systemic
failures.

The role of risk modelling in regulatory design is hotly debated. I argue that the
inherent flaws in risk modelling imply that neither model based risk regulations
nor the risk weighing of capital can be recommended. If financial regulations are
deemed necessary, alternative approaches such as state contingent capital levels
and/or cross–insurance systems are needed.
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2 Risk Modelling and Endogenous Response

The fundamental assumption in most statistical risk modelling is that the basic
statistical properties of financial data during stable periods remain (almost) the
same as during crisis. The functional form of risk models is usually not updated
frequently, and model parameters get updated slowly.2 This implies that risk
models can not work well in crisis. The presumed inability of risk models to
work as advertised has not gone unnoticed by commentators and the popular
press;

“Financial firms employed the best and brightest geeks to quantify and
diversify their risks. But they have all – commercial banks, investment
banks and hedge funds – been mauled by the financial crisis. Now they
and the worlds regulators are trying to find out what went wrong and
to stop it happening again. ... The boss of one big firm calls super–
sophisticated risk managers ‘high–IQ morons’ ”
The Economist, November 18, 1998, pp. 140–145.

There is a grain of truth in this quote: Statistical financial models do break down
in crisis. This happens because the statistical properties of data during crisis is
different than the statistical properties in stable times. Hence, a model created
in normal times may not be of much guidance in times of crisis. Morris and Shin
(1999) suggest that most statistical risk modelling is based on a fundamental
misunderstanding of the properties of risk. They suggest that (most) risk mod-
elling is based on the incorrect assumption of a single person (the risk manager)
solving decision problems with a natural process (risk). The risk manager in
essence treats financial risk like the weather, where the risk manager assumes a
role akin to a meteorologist. We can forecasts the weather but can not change
it, hence risk management is like a “game against nature”. Fundamental to
this is the assumption that markets are affected by a very large number of het-
erogeneous market participants, where in the aggregate their actions become a
randomized process, and no individual market participant can move the markets.
This is a relatively innocuous assumption during stable periods, or in all peri-
ods if risk modelling is not in widespread use. However, the statistical process
of risk is different from the statistical process of the weather in one important
sense: forecasting the weather does not (yet) change the statistical properties of
the weather, but forecasting risk does change the nature of risk. In fact, this is
related to Goodharts Law:

Law 1 (Goodhart (1974)) Any statistical relationship will break down when
used for policy purposes.

2Models, such as GARCH, do of course pick up volatility shocks, but if the parameterization and
estimation horizon remain the same, the basic stochastic process is the same, and the model has the
same steady state volatility, which is only updated very slowly.
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We can state a corollary to this

Corollary 1 A risk model breaks down when used for its intended purpose.

Current risk modelling practices are similar to pre–rational expectations Key-
nesian economics in that risk is modelled with behavioral equations that are
invariant under observation. However, just as the economic crisis of the 1970’s
illustrated the folly of the old style Keynesian models, so have events in finan-
cial history demonstrated the limitations of risk models. Two examples serve to
illustrate this. The Russia crisis of 1998 and the stock market crash of 1987.

Consider events during the 1998 Russia crisis. (See e.g. Dunbar (1999)). At the
time risk had been modelled with relatively stable financial data. In Figure 3
on page 26 we see that the world had been in a low volatility state for the
preceding half a decade, volatility had somewhat picked up during the Asian
crisis of 1997, but those volatility shocks were mostly confined to the Far East,
and were leveling off in any case. In mid year 1998 most financial institutions
employed similar risk model techniques and often similar risk constrains because
of regulatory considerations. When the crisis hit, volatility for some assets went
from 16 to 40, causing a breach in many risk limits. The response was decidedly
one–sided, with a general flight from volatile to stable assets. This of course
amplified price movements and led to a sharp decrease in liquidity. In other
words, the presence of VaR based risk limits led to the execution of similar
trading strategies, escalating the crisis.

This is indeed similar to events surrounding a previous crisis, the 1987 crash when
a method called portfolio insurance was very much in vogue. (See e.g. Jacobs
(1999)). An integral component in portfolio insurance is that complicated hedg-
ing strategies with futures contracts are used to dynamically replicate options in
order to contain downside risk. These dynamic trading strategies worked well in
the stable pre–crisis periods since they depended on the presence of functioning
futures markets. However, one characteristic of the ’87 crash was that the futures
markets ceased to function properly because the institutions who used portfolio
insurance were trying to execute identical trading strategies, which only served
to escalate the crisis.

If every financial institution has its own trading strategy, no individual technique
can lead to liquidity crisis. However, each institution’s behavior does move the
market, implying that the distribution of profit and loss is endogenous to the
banks decision–making process. In other words, risk is not the separate stochas-
tic variable assumed by most risk models, instead, risk modelling affects the
distribution of risk. A risk model is a model of the aggregate actions of market
participants, and if many of these market participants need to execute the same
trading strategies during crisis, they will change the distributional properties of
risk. As a result, the distribution of risk is different during crisis than in other
periods, and risk modelling is not only useless but may exasperate the crisis, by
leading to large price swings and lack of liquidity.
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The role played by regulation during these scenarios is complex. It is rational
for most banks to reduce exposure in the event of a risk shock, independent of
any regulatory requirements, and if banks have similar incentives and employ
similar risk models, that alone can lead to a snowball effect in trading strategies
during crisis. Indeed this is what happened during the 1987 crisis when regula-
tion played no direct role. However, if regulation restricts the banks scope for
pursuing individually optimal strategies, causing banks to act in a more uniform
manner during crisis it may lead to an escalation of the crisis. Whether this
actually happens is yet unknown. In the current regulatory environment, the
banks themselves model risk, hence risk models are individual to the bank and
as a results not all institutions follow the same risk control trading strategy.
Hence, regulation may not be the straight–jacket one might think. However, the
burden of proof is on the regulators to demonstrate that the regulations do not
escalate the crisis. They have not yet done so.

The analysis presented here does not imply that risk modelling is inherently
pointless. Internally, banks do benefit from hedging as demonstrated by e.g.
Froot, Scharfstein, and Stein (1993), and risk models are reliable in stable pe-
riods, especially in dealing with idiosyncratic shocks. However, even though
(most) current risk models are useless during crisis, this is only a reflection of
the current state of risk technology. Risk models grounded in the microeconomic
theory of financial crisis, have considerable promise.

3 Empirical Properties of Risk Models

Risk forecasting depends on a statistical model and historical market price data.
The modeller makes a number of assumptions about the statistical properties
of the data, and from that specifies the actual model. This model will always
be based on objective observations and subjective opinions, and therefore the
quality of the model depends crucially on the modeller’s skill. As a result, it is
not possible to create a perfect model. Each model has flaws, where the modeller
weighs the pros and cons of each technique and data set, juggling issues like the
choice of the actual econometric model, the length of the estimation horizon,
the forecast horizon, and the significance level of the forecasts. In fact, due
to these limitations, the resulting model is endogenous to its intended use. Two
different users, who have different preferences but identical positions and views of
what constitutes risk, require different risk forecasts. This happens because risk
modelling is conditional on the user’s loss functions. The weighing of the pros and
cons is different for different users, resulting in different risk models and hence
different risk forecasts, even for identical positions. In order to address some of
these issues I refer below to results from a survey I made (Dańıelsson 2000) of
the forecast properties of various models and data sets.

The data is a sample from the major asset classes, equities, bonds, foreign ex-
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change, and commodities. Each data set consists of daily observations and spans
at least fifteen years. The discussion below is based on forecasts of day–by–day
Value–at–Risk during the 1990s (2500 forecasts per dataset on average) The risk
level is mostly the regulatory 99% but I also consider lower and higher risk lev-
els. The survey was done with a single asset return. While a portfolio approach
would be more appropriate, this raises a number of issues which I thought best
avoided. As such, my survey only presents a best case scenario, most favorable
to risk models.

A large number of risk models exist and it is not possible to examine each and
every one. However, most models are closely related to each other, and by using
a carefully selected subsample I am confident that I cover the basic properties of
most models in use. The models studied are:

• Conditional volatility models (normal3 and student–t GARCH)

• Unconditional models (historical simulation (HS) and extreme value theory
(EVT))

(More details on the survey can be found in Appendix A.)

The risk modeller is faced with many challenges, some of the most important
are:

• Robustness of risk forecasts (Section 3.1)

• Volatility of risk forecasts (Section 3.2 on page 9)

• Determination of the appropriate measuring horizon (Section 3.3 on page 10)

• Determination of the holding period (Section 3.4 on page 11)

• Underestimation of downside risk due to asymmetries in correlation struc-
tures (Section 3.5 on page 13)

3.1 Robustness of Risk Forecasts

For a risk model to be considered reliable, it should provide accurate risk forecasts
across different assets, time horizons, and risk levels within the same asset class.
The robustness of risk models has been extensively documented, and there is not
much reason to report detailed analysis here, my results correspond broadly to
those from prior studies. I use violation ratios4 to measure the accuracy of risk
forecasts. If the violation ratio is larger than 1, the model is underforecasting
risk (it is thin tailed relative to the data), and if the violation ratio is lower
than 1, the model is overforecasting risk (the model is thick tailed relative to the

3The RiskMetricsTM model is a restricted normal GARCH model (IGARCH) and hence its per-
formance can only be worse than for the normal GARCH.

4The realized number of VaR violations over expected number of violations. By violation I mean
that realized loss was larger than the VaR forecast
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data). Violation ratios are the most common method for ranking models, since
they directly address the issue of forecast accuracy. The risk level used is the
regulatory 99%, see Table 1 on page 24.

An ideal model has violation ratios close to 1 across asset classes and significance
levels. While what constitutes “close to 1” is subjective, the range of 0.8 to 1.2
is a useful compromise. Based on this criteria, the results are depressing. For
example, the normal GARCH model produces violation ratios ranging from 0.37
to 2.18, and even for the same data set, e.g. S&P–500, the violation ratios
range from 0.91 to 1.46. The other estimation methods have similar problems
but not on the same scale. Every method overestimates the bond risk, and
underestimates the risk in Microsoft stock. The normal GARCH model (and
by extension RiskMetricsTM) has the overall worst performance, the results for
the other models are mixed. Dańıelsson (2000) reports that a similar picture
emerges from all considered risk levels, but the ranking among models changes.
At the 95% risk level, the normal GARCH model performs generally best, while
at 99.9% EVT is best.

It is also interesting to consider the importance of the estimation horizon. Con-
ventional wisdom seems to be that short horizons are preferred, say one year or
250 days. This is indeed a regulatory recommendation in some cases. It is how-
ever not supported by my results. For example, for oil prices and the Student–t
GARCH model, the violation ratio is 1.38 when the model is estimated with
300 days, and only 1.04 when the model is estimated with 2,000 days. Similar
results have been obtained in some other cases. The reason has to do with the
fact that a conditional volatility reverts to the steady state volatility, which is
dependent on the estimation horizon. If the estimation horizon is too short, the
model steady state volatility reflects past high/low volatility states which are
less relevant than the long run average.

These results show that no model is a clear winner. The forecasts, cover a very
wide range, and the lack of robustness is disconcerting. Furthermore, the estima-
tion horizon has considerable impact on the forecast accuracy. One conclusion
is that none of these models can be recommended, but since these models form
the basis of almost every other model, this recommendation is too strong. My
approach here is to use off-the–shelf models. A skilled risk manager considering
specific situations is able to specify much more accurate models. This is indeed
the situation internally in many banks. For reporting purposes, where the VaR
number is an aggregate of all the banks risky positions, the use of an accurate
specially designed model is much harder and off–the–shelf models are more likely
to be used. This coupled with ad hoc aggregation methods for risk across op-
erations, and the lack of coherence in VaR, can only have an adverse effect on
model accuracy.
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3.2 Risk Volatility

Fluctuations in risk forecasts have serious implications for the usefulness of a risk
model; however, risk forecast fluctuations have not been well documented. The
reason for this is unclear, but the importance of this issue is real. If a financial
institution has a choice between two risk models both of which forecast equally
well, but one model produces much less volatile forecasts, it will be chosen. And
if risk forecasts are judged to be excessively volatile, it may hinder the use of
risk forecasting within a bank. If a VaR number routinely changes by a factor
of 50% from one day to the next, and factor 2 changes are occasionally realized,
it may be hard to sell risk modelling within the firm. Traders are likely to be
unhappy with widely fluctuating risk limits, and management does not like to
change market risk capital levels too often. This is due to many reasons, one
of them phantom price volatility. Furthermore Andersen and Bollerslev (1998)
argue that there is an built–in upper limit on the quality of volatility forecasts
(around 47%).

In my survey I use two measures of fluctuations in risk forecasts;

• The volatility of the VaR, i.e. the standard deviation of VaR forecasts over
the sample period

• The VaR forecast range, i.e. the maximum and minimum VaR forecast over
the sample period

Both measures are necessary. The VaR volatility addresses the issue of day–to–
day fluctuations in risk limits, while the VaR range demonstrates the worst–case
scenarios.

A representative sample of the results using the S&P–500 index is presented
below in Table 2 on page 25. Consider e.g. the regulatory 99% level and the
300 day estimation horizon. The return volatility is 0.9%, and the volatility
of the VaR estimates is 0.7% It is almost like we need a risk model to access
the risk in the risk forecasts! The largest drop in returns is -7.1% (in 2527
observations), while the lowest normal GARCH model forecast is -7.5% at the
99% level or an event once every 100 days. With longer estimation horizons both
the volatility and the range decrease, suggesting that longer estimation horizons
are preferred. The same results are obtained from the other data sets. Another
interesting result is that the least volatile methods are historical simulation (HS)
and extreme value theory (EVT). The reason is that conditional volatility models
are based on a combination of long estimation horizons (more than 250 days)
along with very short run VaR updating horizons (perhaps five days). In contrast,
the HS and EVT methods are unconditional and as a result produce less volatile
risk forecasts. Note that a hybrid conditional volatility and EVT method, such as
the methods proposed by McNeil and Frey (1999) produce VaR forecasts which
are necessarily more volatile than the condition volatility methods.
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The contrast between GARCH and EVT volatility can be seen in Figure 4 on
page 27 which shows Hang Seng index returns during the last quarter of 1997. Set
in the middle of the Asian crisis, the Hang Seng index is very volatile, with the
largest one day drop of more than 15%. Both models have an excessive amount of
violations, but while the EVT forecast is relatively stable throughout the quarter,
the GARCH forecast is very volatile. The lowest GARCH VaR is 19%, and the
model takes more than a month to stabilize after the main crash. In addition,
the main contributor to the GARCH VaR volatility is the positive return of
18% following the main crash. Since conditional volatility models like GARCH
have a symmetric response to market movements, a positive and negative market
movement has the same impact on the VaR.

Because the Value–at–Risk numbers are quantiles of the profit and loss distribu-
tion it is not surprising that they are volatile. However, I find them surprisingly
volatile. It is not uncommon for VaR numbers to double from one day to the
next, and then revert back. If VaR limits were strictly adhered to, the costs
of portfolio rebalancing would be large. This has not gone unnoticed by the
financial industry and regulators. Anecdotal evidence indicates that many firms
employ ad hoc procedures to smooth risk forecasts. For example, a bank might
only update its covariance matrix every three months, or treat risk forecasts
from conditional volatility models as an ad hoc upper limit for daily risk lim-
its. Alternatively, covariance matrices are sometimes smoothed over time using
non–optimal procedures. If Value–at–Risk is used to set risk limits for a trading
desk, strict adherence to a VaR limit which changes by a factor of two from one
day to the next is indeed costly. The same applies to portfolio managers who
need to follow their mandate, but would rather not rebalance their portfolios
too often. In addition, since regulatory VaR is used to determine market risk
capital, a volatile VaR leads to costly fluctuations in capital if the financial insti-
tution keeps its capital at the minimum level predicted by the model. This may
turn cause lack of confidence in risk models and hinder their adoption within a
firm. Anecdotal evidence indicates that (some) regulators consider bank capital
as a constant to be allocated to the three categories of risk, market, credit, and
operational, and not the widely fluctuating quantity predicted by the models.

3.3 Model Estimation Horizon

The estimation of a risk model depends on sufficiently long historical data series
being available. The regulatory suggestion is (at least) 250 days, and anecdotal
evidence indicates that short estimation horizons are very much preferred. This
must be based on one of two assumptions;

• Older data is not available, or is irrelevant due to structural breaks

• Long run risk dynamics are so complicated that they can’t be modelled
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While the first assumption is true in special cases, e.g. immediately after a
new instrument is introduced such as the Euro, and in emerging markets, in
general, it is not correct. The second assumption is partially correct: long run
risk dynamics are complicated and often impossible to model explicitly; however,
long run patterns can be incorporated, it just depends on the model.

Long run risk dynamics are not a well understood and documented phenomena,
but it is easy to demonstrate the existence of long cycles in volatility. Consider
Figure 3 on page 26 which demonstrates changes in average daily volatility for
the second half of the 20th century. Daily volatility ranges from 0.5% to almost
2% in a span of few years. The 1990s demonstrate the well–known U–shaped
pattern in volatility.

Observing these patterns in volatility is one thing, modelling them is another.
Although existing risk models do not yet incorporate this type of volatility dy-
namics, conceivably this it possible. Most conditional volatility models, e.g.
GARCH, incorporate both long run dynamics (through parameter estimates)
and very short–term dynamics (perhaps less than one week). Long memory
volatility models may provide the answers; however, their risk forecasting prop-
erties are still largely unexplored.

The empirical results presented in Table 1 on page 24 and Table 2 on page 25 show
that shorter estimation horizons do not appear to contribute to more accurate
forecasting, but longer estimation horizons do lead to lower risk volatility. For
that reason alone longer estimation horizons are preferred.

3.4 Holding Periods and Loss Horizons

Regulatory Value–at–Risk requires the reporting of VaR for a 10 day holding
period. This is motivated by a fear of liquidity crisis where a financial institution
might not be able to liquidate its holdings for 10 days straight. While this may
be theoretically relevant, two practical issues arise;

• The contradiction in requiring the reporting of a 10 day 99% Value–at–
Risk, i.e. a two week event which happens 25 times per decade, in order to
catch a potential loss due to a liquidity crisis which is unlikely to happen
even once a decade. Hence the probability and problem are mismatched.

• There are only two different methods of doing 10 day Value–at–Risk in
practice:

– Use non–overlapping5 10 day returns to produce the 10 day Value–at–
Risk forecast

– Use a scaling law to convert one day VaRs to 10 day VaRs (recom-
mended by the Basel Committee on Banking Supervision (1996))

5Overlapping returns cannot be used for obvious reasons
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Both of these methods are problematic

If 10 day returns are used to produce the Value–at–Risk number, the data re-
quirements obviously also increase by a factor of 10. For example, if 250 days
(one year) are used to produce a daily Value–at–Risk number, ten years of data
are required to produce a 10 day Value–at–Risk number with the same statistical
accuracy. If however 250 days are used to produce 10 day Value–at–Risk num-
bers, as sometimes is recommended, only 25 observations are available for the
calculation of something which happens in one observation out of every hundred,
clearly an impossible task. Indeed, at least 3,000 days are required to directly
estimate a 99% 10 day VaR, without using a scaling law.

To bypass this problem most users tend to follow the recommendation in the
Basel regulations (Basel Committee on Banking Supervision 1996) and use the
so–called ‘square–root–of–time’ rule, where a one day VaR number is multiplied
by the square root of 10 to get a 10 day VaR number. However, this depends on
surprisingly strong distribution assumptions, i.e. that returns are normally iid:

• Returns are normally distributed

• Volatility is independent over time

• The volatility is identical across all time periods

Needless to say, all three assumptions are violated. However, creating a scal-
ing law which incorporates violations of these assumptions is not trivial. (For a
technical discussion on volatility and risk time scaling rules see appendix B.) For
example, it is almost impossible to scale a one day VaR produced by a normal
GARCH model to a 10 day VaR (see Drost and Nijman (1993) or Christoffersen
and Diebold (2000)). Using square–root–of–time in conjunction with conditional
volatility models implies an almost total lack of understanding of statistical risk
modelling. The problem of time scaling for a single security, e.g. for option pric-
ing, is much easier than the scaling of an institution wide VaR number, which
currently is impossible. When I have asked risk managers why they use the
square–root–of–time rule, they reply that they do understand the issues (these
problems have been widely documented), but they are required to do this any-
way because of the demand for 10 day VaRs for regulatory purposes. In other
words, regulatory demands require the risk manager to do the impossible! I have
encountered risk managers who use proper scaling laws for individual assets, but
then usually in the context of option pricing, where the pricing of path depen-
dent options depends crucially on using the correct scaling method and accurate
pricing has considerable value. The pricing of path dependent options with fat
tailed data is discussed in e.g. Caserta, Dańıelsson, and de Vries (1998).

In fact, one can make a plausible case for the square–root–of–time rule to be
twice as high, or alternatively half the magnitude of the real scaling factor. In
other words, if a daily VaR is one million, a 10 day VaR equal to 1.5 million
or 6 million is as plausible. Indeed, given current technology, it is not possible
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to come up with a reliable scaling rule, except in special cases. The market
risk capital regulatory multiplier of 3 is sometimes justified by the uncertainty
in the scaling laws, e.g. by Stahl (1997), however as suggested by Dańıelsson,
Hartmann, and de Vries (1998), it is arbitrary.

Estimating VaR for shorter holding horizons (intra day VaR, e.g. one hour)
is also very challenging due to intraday seasonal patterns in trading volume, as
frequently documented, e.g. by Dańıelsson and Payne (2000). Any intraday VaR
model needs to incorporate these intraday patterns explicitly for the forecast to
be reliable, a non–trivial task.

Considering the difficulty given current technology of creating reliable 10 day
VaR forecasts, regulatory market risk capital should not be based on the 10 day
horizon. If there is a need to measure liquidity risk, other techniques than VaR
need to be employed. If the regulators demand the impossible, it can only lead
to a lack of faith in the regulatory process.

3.5 Asymmetry and Correlations

One aspect of risk modelling which does not seem to get much attention is the
serious issue of changing correlations. It is well known that measured correlations
are much lower when the markets are increasing in value, compared to market
conditions when some assets increase and other decrease, and especially when
the markets are falling. Indeed, the worse market conditions are, the higher the
correlation is: in a market crash, all assets collapse in value and correlations
are close to hundred percent. However, most risk models do not take this into
consideration. For example, conditional volatility models, e.g. GARCH or Risk-
Metrics, produce correlation estimates based on normal market conditions, hence
these models will tend to underestimate portfolio risk. Furthermore, since the
correlations increase with higher risk levels, a conditional variance–covariance
volatility model which performs well at the 95% level, will not perform as well
at the 99%

This problem is bypassed in methods which depend on historical portfolio re-
turns, since they preserve the correlation structure. An example of methods
which use historical portfolio returns are historical simulation, extreme value
theory, and Student–t GARCH6

One study which demonstrates this is by Erb, Harvey, and Viskanta (1994) who
consider monthly correlations in a wide cross–section of assets in three different
market conditions (bull markets , bear markets, mixed). They rank data ac-
cording to the market conditions, and report correlations for each subsample. A

6A non–ambiguous representation of the multivariate Student–t does not exist, hence in practice
a Student–t conditional volatility model can only be used with a single asset, not a portfolio. This
applies to most other non–normal distribution as well. In addition, the normal GARCH model can
be used in this manner as well.
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small selection of their results is reported below:

Asset Pair Up–Up Down–Down Mixed Total

US Germany 8.6 52 -61 35
Japan 21 41 -54 26
UK 32 58 -60 50

Germany Japan 4.6 24 -47 40
UK 22 40 -62 42

Japan UK 12 21 -54 37

We see that correlations are low when both markets are increasing in value, for
example for the U.S. and Germany the correlation is only 8.6%. When both of
these markets are dropping in value, the correlation increases to 52%. Similar
results have been obtained by many other authors using a variety of data samples.

These problems are caused because of the non–normal nature of financial return
data. The only way to measure tail correlations is by using bi–variate extreme
value theory where under strict assumptions it is possible to measure tail correla-
tions across probability levels, see e.g. Longin (1998) or Hartmann, Straetmans,
and de Vries (2000). However, this research is still in an early stage.

Another problem in correlation analysis relates to international linkages. Since
not all markets are open at the exact same time, volatility spillovers may be
spread over many days. This happened during the 1987 crisis where the main
crash day was spread over two days in Europe and the Far East. A näıve anal-
ysis would indicate that the US markets experienced larger shocks than other
markets, however this is only an artifact of the data. This also implies that it is
very hard to measure correlations across timezones. Any cross–country analysis
is complicated by market opening hours, and is an additional layer of complexity.

4 The Concept of (Regulatory) Risk

A textbook definition of risk is volatility7, however, volatility is a highly mislead-
ing concept of risk. It depends on the notion of returns being normal iid8, but
since they are not, volatility only gives a partial picture. Consider Figure 5 on
page 27 which shows 500 realizations of two different return processes, A which
is normally distributed and B which is not normal. For the purpose of risk,
returns B are clearly more risky, for example the regulatory 99% Value–at–Risk
for asset A is 2, while the VaR for B is 7. However, the volatility of A is 1, while
the volatility of B is 0.7. If volatility was used to choose the less risky asset,

7The standard deviation of returns.
8See Section 3.4 on page 12 for more on iid normality
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the choice would be B, but if Value–at–Risk was used correctly9 to make the
choice it would be A. This demonstrates the advantages of using a distribution
independent measure, like VaR, for risk.

Value–at–Risk (VaR) is a fundamental component of the current regulatory en-
vironment10, and financial institutions in most countries are now expected to
report VaR to their supervisory authorities. (See the Basel Committee on Bank-
ing Supervision (1996) for more information on regulatory VaR.) Value–at–Risk
as a theoretical definition of risk has some advantages, primarily;

• Ease of exposition11

• Distributional independence

There are some disadvantages in the Value–at–Risk concept as well;

• It is only one point on the distribution of profit and loss

• It is easy to manipulate, leading to moral hazard, hence potentially increas-
ing risk, while reporting lower risk

We address each of these issues in turn.

4.1 Lower Tail and Alternative Risk Measures

Regulatory Value–at–Risk measures one point on the profit and loss (P/L) dis-
tribution of a portfolio of a financial institution, i.e. the 1% lower quantile.
This is demonstrated in Figure 1 on the next page which shows the cumulative
distribution function (CDF) for returns.

Value–at–Risk does not take into account the entire lower tail of the profit and
loss (P/L) distribution, only the quantile. However this may not be a relevant
measure in many cases. What matters is how much money a bank loses when
a disaster strikes, not the minimum amount of money it loses on a bad day. If
the VaR is 1 million, one has no way of knowing whether the maximum possible
loss is 1.1 million or 100 million. While users may implicitly map the VaR
number into a more useful measure, perhaps relying on dubious distributional
assumptions, this can not be recommended. If a different measure is needed, it
should be modelled explicitly.

9If a volatility model (e.g. GARCH) was used to produce the VaR, it would incorrectly choose B
10Mathematically, regulatory VaR is defined as:

0.01 = Probability[Loss10Day ≥ V aR].

11It is however surprising how many authors confuse Value–at–Risk with other risk measures, c.f.
expected shortfall (see Section 4.1)
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Figure 1: Value–at–Risk and the CDF of Profit and Loss
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In addition, Artzner, Delbaen, Eber, and Heath (1999) note that VaR is not
a coherent measure of risk because it fails to be subadditive.12 They propose
to use instead the expected shortfall measure which measures the expected loss
conditional on reaching the VaR level. A related measure is the first lower partial
moment which attempts to map the entire lower tail into one number.13

However, this need not to be a serious criticism. As discussed by Cumper-
ayot, Dańıelsson, Jorgensen, and de Vries (2000) and Dańıelsson, Jorgensen, and
de Vries (2000), these three risk measures provide the same ranking of risky
projects under second order stochastic dominance, implying that Value–at–Risk
is a sufficient measure of risk. This however only happens sufficiently far the tails.
Whether the regulatory 99% is sufficiently far out, remains an open question.14

12A function f is subadditive if f (x1 + ... + xN ) ≤ f (x1) + ... + f (xN ).
13The formal definition of expected shortfall is:

∫ t

−∞
x

f(x)
F (t)

dx.

First lower partial moments:
∫ t

−∞
(t − x)f(x)dx =

∫ t

−∞
F (x)dx.

14Answering this question ought not to be difficult, it only requires a comprehensive empirical study,
as the theoretical tools do exist.
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Figure 2: Impact of options on the C.D.F. of Profit and Loss
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4.2 Moral Hazard

The reliance on a single quantile of the P/L distribution as in VaR is conducive
to the manipulation of reported risk. Consider Figure 1 on the preceding page
from the perspective of a bank which is faced with externally imposed regulations
targeting the 99% point on the curve. In addition, suppose the bank considers the
regulatory VaR unacceptably high. Ahn, Boudukh, Richardson, and Whitelaw
(1999) consider the optimal response by the bank to this by the use of options.
Dańıelsson, Jorgensen, and de Vries (2000) consider a richer example where the
bank sets up trading strategies to manipulate the VaR. Assume that the VaR
before any response is V aR0 and that the bank really would like the VaR to be
V aRD where the desired VaR is V aRD > V aR0. One way to achieve this is to
write a call with a strike price right below V aR0 and buy a put with a strike
right above V aRD, i.e. Xc = V aR0 − ε and Xp = V aRD + ε. The effect of this
will be to lower expected profit and increase downside risk, see Figure 2. This
is possible because the regulatory control is only on a single quantile, and the
bank is perfectly within its rights to execute such a trading strategy. A measure
like expected shortfall or first lower partial moment render this impossible. The
regulatory focus on a simple measure like VaR may thus perversely increase risk
and lower profit, while the intention is probably the opposite.

This example is very stylistic since it assumes that a bank knows the tail dis-
tribution, but as argued above, it is unlikely to do so. However, the example
demonstrates how trading strategies can be used to mis–represent risk, and it is
not hard to create a trading strategy which works with uncertain tail distribu-
tions.
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4.3 The Regulatory 99% Risk Level

The regulatory risk level is 99%. In other words, we expect to realize a violation
of the Value–at–Risk model once every hundred days, or 2.5 times a year on
average. Some banks report even lower risk levels, JP Morgan (the creator of
VaR and RiskMetrics) states in its annual report that in 1996, its average daily
95% VaR was $36 million. Two questions immediately spring to mind: why was
the 99% level chosen, and how relevant is it?

The first question may have an easy answer. Most models only have desirable
properties in a certain probability range and the risk level and risk horizon govern
the choice of model. For example, at the 95% risk level, conditional normal
models such as normal GARCH or RiskMetrics are the best choice. However,
the accuracy of these models diminishes rapidly with lower risk levels, and at the
99% risk level they cannot be recommended, and other, harder to use techniques
must be employed. In general, the higher the risk level, the harder it is to forecast
risk. So perhaps the 99% level was chosen because it was felt that more extreme
risk levels were too difficult to model?

The question of the relevance of a 99% VaR is harder to answer because it depends
on the underlying motivations of the regulators. The general perception seems
to be that market risk capital is required in order to prevent systemic failures.
However, systemic failures are very rare events, indeed so rare that one has never
been observed in modern economies. We have observed near–systemic collapses,
e.g. in the Scandinavian banking crisis, but in that case even a meticulously
measured VaR would not have been of much help.

The regulatory risk level is clearly mismatched with the event it is supposed to
be relevant for, i.e. systemic collapse. In other words, the fact that a financial
institution violates its VaR says nothing about the probability of the firms prob-
ability of bankruptcy, indeed, one expects the violation to happen 2.5 times a
year. There is no obvious mapping from the regulatory risk level to systemic risk,
however defined. Whether there is no link between regulatory risk and systemic
risk is still an open question.

5 Implications for Regulatory Design

The arguments voiced above suggest that modelling as a regulatory tool cannot
be recommended. It does not imply anything about the need to regulate. Bank
regulation is a contentious issue which is beyond the scope of this paper. Assum-
ing that regulations are here to stay, the important question must be whether
it is possible to create a regulatory mechanism that is successful in reducing
systemic risk, but not too costly.

For most of the 1990s the answer to this question seemed to be risk modelling,
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and it is only after the Asian and Russian crisis that modelling as a regulatory
tool has come under serious criticism. Risk modelling is simply too unreliable,
it is too hard to define what constitutes a risk, and the moral hazard issues are
too complicated for risk modelling to be an integral part of regulatory design,
whether for market, credit, or operational risk. This is a reflection of the current
state of technology.

My analysis focuses on market risk models. Market risk modelling is much easier
than credit risk modelling due to the abundance of accurate market risk data
and more established methodology, compared to the lack of reliable credit risk
data. My criticism applies equally to credit and operational risk models, hence
the case for model based credit and operational regulations is even weaker than
for market risk.

If the authorities want banks to hold minimum capital, crude capital adequacy
ratios are the only feasible way. Risk weighing of capital will not work for the
same reason as regulatory risk modelling does not work. However, it is unrealistic
to expect banks to meet minimum capital ratios in times of crisis, therefore, such
capital would have to be state contingent, i.e., a bank would be allowed to run
capital down during crisis. The question what constitutes a crisis, of course still
remains to be answered.

Another possible way is to follow the lead of New Zealand and do away with
minimum capital, but require banks instead to purchase insurance, in effect
require financial institutions to cross insure each other. This market solution
has the advantage that much more flexibility is built into the system while at
the same time sifting the burden of risk modelling back to the private sector.
While such a system may work for small country like New Zealand which can
insure in larger markets, it is still an open question whether this would work for
larger economies.

6 Conclusion

Empirical risk modelling forms the basis of the market risk regulatory environ-
ment as well as internal risk control. Market risk regulations are based on using
the lower 1% quantile of the distribution of profit and loss

(
V aR99%

)
as the

statistic reported as risk. This paper identifies a number of shortcomings with
regulatory Value–at–Risk (VaR), where both theoretic and empirical aspects of
VaR are analyzed.

I argue that most existing risk models break down in times of crisis because
the stochastic process of market prices is endogenous to the actions of market
participants. If the risk process becomes the target of risk control, it changes
its dynamics, and hence risk forecasting becomes unreliable. This is especially
prevalent in times of crisis, such as events surrounding the Russia default of 1998.
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In practice, Value–at–Risk (VaR) is forecasted using an empirical model in con-
junction with historical market data. However, current risk modelling technology
still in the early stages of development, is shown in the paper to be lacking in
the robustness of risk forecasts, and to produce excessively volatile risk forecasts.
If risk modelling is not done with great skill and care, the risk forecast will be
unreliable to the point of being useless. Or even worse, it may impose significant
but unnecessary costs on the financial institution, due to the misallocation of
capital and excessive portfolio rebalancing.

This, however, is only a reflection on the current state of technology. A risk model
which incorporates insights from economic and financial theory, in conjunction
with financial data during crisis, has the potential to provide much more accurate
answers by directly addressing issues such as liquidity dynamics. There is a need
for a joint market and liquidity risk model, covering both stable and crisis periods.

The theoretic properties of the VaR measure, conceptually result in VaR pro-
viding misleading information about a financial institution’s risk level. The very
simplicity of the VaR measure, so attractive when risk is reported, leaves the
VaR measure wide open to manipulation. This in turn implies that founding
market risk regulations on VaR, not only can impose considerable costs on the
financial institution, it may act as a barrier to entry, and perversely increase
both bank and systemic risk.

The problems with risk modelling have not gone unnoticed. Anecdotal evidence
indicates that many firms employ ad hoc procedures to smooth risk forecasts,
and that (some) regulators consider capital as a constant rather than the widely
fluctuating variable suggested by the models. Risk modelling does, however,
serve a function when implemented correctly internally within a firm, but its
usefulness for regulatory purposes is very much in doubt.
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A Empirical Study

The empirical results are a subset of results in Dańıelsson (2000). I used there 4
common estimation methods

• Normal GARCH

• Student t GARCH

• Historical simulation

• Extreme value theory

as well as representative foreign exchange, commodity, and equity datasets con-
taining daily observations obtained from DATASTREAM, from the first recorded
observation until the end of 1999.

• S&P 500 index

• Hang Seng index

• Microsoft stock prices

• Amazon stock prices

• Ringgit pound exchange rates

• Pound dollar exchange rates

• Clean U.S. government bond price index

• Gold prices

• Oil prices

I estimated each model and dataset with a moving 300, 1,000, and 2,000 day
estimation window, and forecast risk one day ahead. Then I record the actual
return, move the window and reestimate. This is repeated until the end of the
sample.

B Scaling Laws

This discussion is partially based on de Vries (1998) and Dacorogna, Muller,
Pictet, and de Vries (1999), and it draws on insight from extreme value theory.

The following holds for all iid distributions for which the second moment is
defined.

• The variance of sum is sum of variances V (X + Y ) = 2× V (X) if V (X) =
V (Y ) and COV (X, Y ) = 0. This is called self additivity.

If in addition, X is normally distributed, the self additivity property extends to
the tails:
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• Implication for the quantile: Pr [X ≤ x] = p

– for the sum over two days, the probability of an outcome,

Pr
[
X1 + X2 ≤ 2

1
2 x

]
= p

– For the sum over T days

Pr
[
X1 + X2 + ... + XT ≤ T

1
2 x

]
= p

– i.e. V aRT = T
1
2 V aRone day

If however X is iid but not normal, the self additivity property does not apply
to the tails, however, even if heavy tailed distributions are typically not self
additive, the tails are self additive in a special way:

• Consider i.i.d. fat tailed daily returns Xt where Pr [Xt ≤ x] = p

• Then for a sum of the returns

– Pr
[
X1 + X2 ≤ 2

1
α x

]
= p

• where α is the tail index

• α is also the number of finite bounded moments

• therefore V aRT = T
1
α V aRone day

It is known that for financial data α > 2 (if α ≤ 2 the variance is not defined,
with serious consequences for much financial analysis). Since we can assume that
the tail index α > 2, then

T
1
2 > T

1
α ,

which has a number of interesting consequences, e.g.

• The use of the square–root–of–time rule to obtain multi–day Value–at–Risk
estimates eventually overestimates the risk

• The
√

T rule usually used for multi day returns

• For fat tailed data, a T day VaR extrapolated from a one day VaR

V aRT = T
1
α V aR

Therefore, the
√

T rule will eventually lead to an overestimation of the VaR
as T increases.

This has implications in other areas besides risk, e.g. in the pricing of path
dependent options, see e.g. Caserta, Dańıelsson, and de Vries (1998).
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Table 1: 99% VaR Violation Ratios 1990–1999

Data Estimation GARCH GARCH Historical Extreme
horizon Normal Student-t simulation value theory

S&P–500 300 1.46 1.07 0.79 0.79
S&P–500 1, 000 1.27 0.83 0.95 0.99
S&P–500 2, 000 0.91 0.67 1.07 1.07

US bond 300 0.94 0.66 0.49 0.49
US bond 1, 000 0.53 0.57 0.66 0.41
US bond 2, 000 0.37 0.49 0.67 0.37

Oil 300 1.76 1.38 1.17 1.17
Oil 1, 000 1.67 1.30 0.92 1.00
Oil 2, 000 1.64 1.04 0.35 0.35

Hang Seng 300 2.18 1.41 0.69 0.69
Hang Seng 1, 000 1.90 1.29 1.17 1.21
Hang Seng 2, 000 2.02 1.21 1.09 1.09

Microsoft 300 2.24 1.78 1.58 1.58
Microsoft , 1000 1.98 1.60 1.84 1.74
Microsoft 2, 000 2.25 1.69 2.06 1.87

GBP/USD 300 2.13 1.42 0.79 0.79
GBP/USD 1, 000 1.85 1.18 0.63 0.63
GBP/USD 2, 000 1.62 1.14 0.47 0.47

Notes: Each model was estimated with three different estimation horizons, 300, 1000, and 2000 days.
The expected value for the violation ratio is one. A value larger than one indicates underestimation
of risk, and a value less than one indicates overestimation. These results are a part of results in
Dańıelsson (2000)
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Table 2: S&P–500 Index 1990–1999. VaR Volatility

Risk Statistic Estimation Returns GARCH GARCH Historical Extreme
Level Horizon Normal Student-t simulation value theory

5% SE 300 0.89 0.47 0.44 0.41 0.41
5% Min 300 −7.11 −5.32 −4.17 −2.19 −2.19
5% Max 300 4.99 −0.74 −0.66 −0.73 −0.73

5% SE 2, 000 0.89 0.42 0.41 0.12 0.12
5% Min 2, 000 −7.11 −3.70 −3.31 −1.55 −1.55
5% Max 2, 000 4.99 −0.81 −0.74 −1.15 −1.15

1% SE 300 0.89 0.66 0.68 0.71 0.71
1% Min 300 −7.11 −7.52 −6.68 −3.91 −3.91
1% Max 300 4.99 −1.05 −1.09 −1.26 −1.26

1% SE 2, 000 0.89 0.60 0.64 0.29 0.33
1% Min 2, 000 −7.11 −5.23 −5.45 −2.72 −2.84
1% Max 2, 000 4.99 −1.14 −1.26 −1.90 −1.90

0.4% SE 300 0.89 0.76 0.82 1.94 1.94
0.4% Min 300 −7.11 −8.58 −8.25 −7.11 −7.11
0.4% Max 300 4.99 −1.19 −1.36 −1.81 −1.81

0.4% SE 2, 000 0.89 0.68 0.80 0.74 0.63
0.4% Min 2, 000 −7.11 −5.96 −6.84 −4.27 −4.18
0.4% Max 2, 000 4.99 −1.30 −1.61 −2.50 −2.49

0.1% SE 300 0.89 0.88 1.06 1.94 1.94
0.1% Min 300 −7.11 −9.99 −10.92 −7.11 −7.11
0.1% Max 300 4.99 −1.39 −1.82 −1.81 −1.81

0.1% SE 2, 000 0.89 0.80 1.06 2.10 1.42
0.1% Min 2, 000 −7.11 −6.94 −9.31 −8.64 −7.49
0.1% Max 2, 000 4.99 −1.52 −2.26 −3.13 −3.15

Notes: For each model and the risk level, the table presents the standard error (SE) of the VaR
forecasts, and the maximum and minimum forecast throughout the sample period. These results are
a part of results in Dańıelsson (2000)
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Figure 3: Estimated Daily Unconditional Volatility (Smoothed) S&P–500
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Figure 4: Daily Hang Seng Index 1997 and 99% VaR
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Figure 5: Which is More Volatile and which is more Risky?
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Cumperayot, P. J., J. Dańıelsson, B. N. Jorgensen, and C. G. de Vries

(2000): “On the (Ir)Relevancy of Value–at–Risk Regulation,” Forthcomming
book chapter: Springer Verlag.

Dacorogna, M. M., U. A. Muller, O. V. Pictet, and C. G. de Vries

(1999): “Extremal foreign exchange rate returns in extremely large data sets,”
www.few.eur.nl/few/people/cdevries/workingpapers/workingpapers.htm.
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