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Abstract

This paper gives a short introduction of the academic �eld of �-
nancial asset pricing and relates some recent as well as historical de-
velopments in �nance and in physics.
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1 Introduction

This short essay is meant to ful�ll a number of aims, none of which can
be fully achieved in the short space available. First, it tries to give a �rst
impression of what mathematical �nance is all about. Second, it tries to
relate some of the methods used in �nance to some of the tools used in
physics (or at least to some of the tools used in physics as perceived by a
�nancial economist who is not also a physicist). And lastly it gives a broad
overview of �nance-related work done by academic physicists, as well as a
biased opinion of such work. This short article then is, by necessity, partial,
fragmentary and incomplete.

2 Some historical overlaps of physics and �-
nance

One of the more common mathematical formulations for the stochastic time-
series and cross-sectional behaviour of asset prices is to assume that asset
prices are semi-martingales, and more restrictively that they are driven by
Brownian Motions. This is chronologically one of the �rst concepts shared
by mathematical �nance and by physics.

Indeed, it seems that the �rst mathematical use of what is now called
Brownian Motion or the Wiener process appears in Bachelier's 1900 thesis[4].
Bachelier was a mathematics student of Poincar�e. But he used this (then still
unnamed) process to model stock prices and to price all sorts of options in
continuous time. And legend has it that Poincar�e would never forgive him.
The paper most commonly remembered as the �rst mathematical formulation
of Brownian Motion is Einstein's[8]. Bachelier's contribution was not entirely
forgotten by mathematicians, as Feller calls Brownian motion, in his book
on probability theory, the \Wiener-Bachelier" process.

Bachelier used what amounts to dSt = �dWt as the model of stock price
increments. This is not an appealing model for stocks, since it implies, among
others, that prices have no drift and that the increments are independently
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and identically distributed, both empirically rejected at decent levels of con-
�dence.

The Brownian model then fell into oblivion until Paul Samuelson (1970
Nobel prize in economics) dug it out again in the sixties and assumed that
stock prices solve the stochastic di�erential equationdSt = �Stdt+ �StdWt.
The obvious improvement here is that prices may now have a drift, and that
the stock price increments are no longer identically distributed: asset price
changes are more volatile the higher their levels. We shall come back to the
maintained assumption of independence when we discuss some contributions
by physicists to this debate in a later section.

Mathematical �nance really took o� after the celebrated Black-Scholes
options pricing formula was published in 1973[5]. The contribution is ac-
tually more the logic of replication than the formula per se. They derived
a second order linear parabolic partial di�erential equation (PDE) that the
(unknown) pricing function would have to satisfy in order not to allow for any
arbitrage. In other words, suppose we price a new redundant asset. Then the
price we quote must be such that no-one can combine this new asset at that
price with all the remaining assets at their respective prices into a portfolio
that would generate money without needing an initial investment. In their
simple model, it turns out that there is just one such price, and it solves
the above-mentioned PDE with the corresponding boundary condition. This
PDE can be transformed, modulo some changes of variables, into the heat
equation. The resulting Cauchy problem can then be solved by Feynman-
Kac probabilistic methods or by numerical methods such as �nite-di�erence
algorithms. Again, �nance borrows heavily from physics.

Most of derivative pricing has been based on the no-arbitrage PDE until
it was reformulated (fully done around 1979 by Harrison and Kreps[12]) in
terms of equivalent martingale measures, i.e. probabilistic methods, in par-
ticular the Girsanov-Cameron-Martin Theorem. This scienti�c development
seems to parallel the reformulation in quantum mechanics from a Hamilto-
nian approach involving operators in Hilbert space to a Lagrangian formu-
lation involving Feynman path integrals. It is noteworthy, however, that
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due to the inux of probabilists into the �nance profession, the language of
mathematical �nance is now entirely the language of probability theory. A re-
cent paper by two physicists, Rosa-Clot and Taddei[19], though, argues that
these standard probabilistic methods are in fact equivalent to path integral
methods.

3 Derivative Asset Pricing

So what does mathematical �nance actually try to accomplish? One of its
main aims is to price assets. Suppose you have got an asset that is char-
acterized by its (unique) random payo� at some timeT in the future, XT .
For instance, this could be the outcome of a coin ip: you get $1 for heads
and $0 for tails. How much is that asset worth? Alternatively, it may be the
payo� of a call option,XT = maxf0; ST �Kg where ST is the stock price at
T and where K is a prespeci�ed deterministic strike price.

It is tempting to say that the value of the coin toss should be $:50,
since by repeating the experiment independently in�nitely often, the strong
law of large numbers applies. However, this ignores two facts. First, by
introspection no-one would invest all of his or her savings in such an asset:
one would presumably have to be somehow compensated to take on the risk.
And second, it doesn't consider the market prices of related assets. If related
securities are already traded in the marketplace, the new option we would like
to price may have a value that can be deduced (maybe even unambiguously)
from the prices of the remaining assets. Or, at the very least, we may be
able to gauge the investor's risk attitudes and the resulting compensations
they require to take on this particular market risk from the prices of all the
other assets in the economy.

Mathematically, the fundamental pricing method used these days, from
which the PDE method can be easily derived if asset prices and payo�s are
Markovian, is the following. Assume thatN risky assets are traded in the
economy at prices (S1

t ; : : : SNt ), and that there is a riskless money market ac-
count Bt (a sort of savings account that grows at the rate of interest) as well.
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The price S0
t of the new asset is determined as follows. There is no (approx-

imate) arbitrage for asset prices (S0
t ; S1

t ; : : : SNt ; Bt) and the corresponding
cumulative dividend processes (D1

t ; : : : ; DN
t ) if and only if there is a measure

Q, equivalent to the real world objective measure P, under which all gains
processes after deation,Sit=Bt+

R t
0 dD

i
s=Bs, are martingales. Intuitively, this

is an internal consistency condition. If the new asset is a redundant deriva-
tive with only the �nal payo� XT � g(S1

T ; : : : ; SNT ), then we can deduce Q,
the manner by which risks are priced, from the existingN assets, and then
price the new asset unambiguously asS0

t =Bt = EQt
�
g(S1

T ; : : : ; SNT )=BT
�
.

If both the payo� of the new asset andS are Markovian, then the pricing
function F , with S0

t = F (t; St), satis�es the PDE LF (x; t) = rtF (x; t) with
boundary condition F (x; T ) = g(T; x) ; (8x;8t 2 (0; T )), where the operator
LF (x; t) � Ft(x; t) + rtF (x; t)0FS(x; t) + 1

2tr [�t�0tFSS(x; t)]. The PDE can be
easily computed numerically. Notice also the parallel between the martingale
pricing method and the probabilistic Feynman-Kac solution to the PDE.

4 A Pricing Example: the Perpetual Ameri-
can Put

We make the convenient Black-Scholes assumptions, speci�cally that dSt =
�Stdt+�StdWt, Wt a one-dimensional Brownian Motion, a constant interest
rate r and continuous and frictionless trading.

As opposed to European options, American options can be exercised at
any moment. Given an underlying stock price processS, an American Put
pays o� maxfK � S� ; 0g whenever the holder wants to exercise the option,
and the option then dies. K is called the strike price: it is the right to choose
a time � � T (T is the maturity) and to sell the stock worthS� for K, where
K and T are contractually speci�ed at the outset.

We assume there are no dividends. Still, an American put may get ex-
ercised before maturity. The reason is that the payo� of a put (as opposed
to a call) is bounded by the strike priceK (by limited liability). So if we're
at t < T and if S is low enough, say S � 0, we get K if we exercise at t.
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Waiting will not be optimal, since the maximum we could get in the future
will also be K, but discounted back to today this will be worth less thanK.
By continuity, it is optimal to exercise forS low enough. The task will be to
�nd how low low enough is.

Intuitively, denote the optimal exercise boundary by S�(t). That S� is an
increasing function of time is evident. Given that we have not exercised in
the past, the larger T � t the higher the likelihood that S will drop deeply.
Also, S�T = K. What is the put price process Yt = P (S; t)? The payo� of
the put now depends on time, g(t; S) = (K � St)+.

We assume that the option is redundant and we conjecture that, by no-
arbitrage, Y=B is a Q�martingale in the continuation region C � f(x; t) :
P (x; t) > (K � x)+g=f(x; t) : x > S�(t)g. In terms of PDEs,

LP = rP on C (1)

P (x; T ) = (K � x)+ (2)

P (S�(t); t) = (K � S�(t))+ (3)

S� maximizes the value of the option, or
@P
@S

(S�(t); t) = �1 (4)

Equation (3) is the value-matching condition (follows by continuity from
P (x; t) = (K � x)+ in the stopping region, (which is closed)). Equation (4)
is needed to determine the exercise boundary. The second condition of that
last item is called the smooth-pasting boundary condition, or the high-contact
boundary condition, and it can be justi�ed by arbitrage arguments.

The technical di�culty is that we need to simultaneously solve for the
put price and for the exercise boundary (which is a function). The PDE de-
pends on the free-boundary, and the free-boundary (for instance via smooth-
pasting) depends on the function P (�). Even making all the Black Scholes
assumptions does not help. The following special case of Perpetual Puts
(Merton[18]) makes this problem tractable.

If the put never matures, then T � t is always in�nite, independent of t.
Hence S� will simply be a nonnegative real number. But maximizing to �nd
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a number is easier than the variational methods needed to �nd an optimal
function. Also, P will not depend on t directly. The Pricing PDE becomes:

rP = rSPS +
1
2
�2S2PSS (5)

P (1) = 0 (6)

P (S�) = K � S� (7)

S� maximizesthe value of the option, or
@P
@S

(S�) = �1 (8)

The PDE became an ODE with generic solutionP (S) = a1S + a2S� with
 � 2r=�2. The �rst boundary condition tells us that a1 = 0, and the
second one that a2 = (K � S�)S�. We �nd that P (S) = (K � S�) � SS���.
Lastly, we maximize over S�, the FOC being S� = K

1+ so that P (S) =
K

1+

h
(1 + ) S

K

i�
. We can verify our intuition that the reason we'd like to

exercise early is the time-value of money. Setting r = 0 implies that  = 0,
and hence S� = 0.

5 Behavioural Content and Economic Equi-
librium

So far there was very little economic or behavioural content in our discus-
sion, pricing was rather mechanical. This was because of two assumptions.
First, we assumed that the underlying asset price processes were known and
given to us. And second, the new asset or derivative asset we were set out
to price was assumed to be redundant, i.e. the new asset's payo�s could be
completely expressed and replicated in terms of the underlying assets (the
so-called complete markets assumption), which was why pricing was unam-
biguous.

In the real world, it happens of course that markets are not complete, so
that we cannot unambiguously determineQ from existing data. In that case,
we have to model the dynamic behaviour of the stock market participants
(investors, banks, hedge funds, speculators, investment funds, governments
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etc.) whose continual interactions determineQ and therefore asset prices.
In other words, of all the possible pricing measures, we have to pick one of
them, hopefully the one that prices the new asset closest to the unknown
value the market puts on it.

Asset prices are determined by what economists hundreds of years ago,
and somewhat confusingly, called \equilibrium." The asset prices that we
observe satify the condition that at those prices, demand equals supply dy-
namically at every moment in time. If demand, say, was greater than supply
at a price and at a moment in time, then the seller could have sold his asset
at a higher price, and some investors who demanded the asset were willing to
pay the price, or even more, but they were arti�cially rationed. An e�cient
working of markets guarantees that at any moment in time demand equals
supply: every participant buys or sells exactly the quantity they intended to
at that price. Furthermore, investors' information is updated by the infor-
mation revealed by prices, which in turn a�ects demands. At an equilibrium,
these e�ects are incorporated into both prices and demands.

In the recent physics of �nance literature, this simple point tends to be
misunderstood because some physicists attach a di�erent meaning to the
word \equilibrium," a meaning of constancy and stability, while economists
mean market-clearing and purposeful behaviour. Given that asset prices are
quite volatile over time, this seems to be at odds with a steady \equilibrium."

In fact, quite the opposite is true. It is easy to show[13] that asset prices
need to be of unbounded variation in order to preclude arbitrage. In some
sense, if asset prices were not so irregular, they could be somehow predicted
locally, and investors would be able to construct money-machines. But if
that was the case, every investor would be on the same side of the market,
say buy, and demand could not equal supply. I.e. the auctioneer, or the
specialist, or the market maker as the case may be, could not clear markets
and asset markets would collapse. So at every moment in time there are
demand and a supply functions that aggregate investors' beliefs, random
pieces of information and needs, causing prices to randomly change over
time to accomodate demand and supply and to induce market clearing at
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that price.
Economic equilibrium also does not mean that all limit orders are matched,

as some authors seem to believe. Of course there are at any moment agents
out there who would like to buy an asset if only its price dropped sharply,
or sell an asset if only the price rose dramatically, which is reected by un-
matched limit orders. Market clearing implies that there is no rationing of
any sort. It is the \invisible hand" that sets the right incentives and har-
monizes the many traders' diverse needs and opinions, even considering that
participants learn from prices.

So in order to model the stochastic behaviour of asset prices, one needs
to model demand, supply and the mechanism of market clearing, and this is
where economics and behaviour enters the picture.

6 A simple general equilibrium model.

To illustrate how asset price behaviour can be deduced from traders' pur-
poseful interactions, we briey outline an excessively simpli�ed toy model.

Time ows in [0; T ]. There are A + 1 assets, with dividend processes
(0; D1; : : : ; DA). We want to �nd their price processes (S0; : : : ; SA).

Investor h tries to maximize his increasing and concave (reecting risk-
aversion) \utility function"U(c) = E

hR T
0 uh(ct; t)

i
by choosing a self-�nancing

trading strategy �h such that

�ht � St =
Z t

0
�hs (dSs + dDs)�

Z t

0
ps(chs � ehs )ds (9)

�hT �XT = 0 (10)

where eh is investor h's non-�nancial (labour) income stream and where
pt is the consumption price process. The investor solves this problem anew
in each period, having updated his or her information from the information
revealed by prices and income.

Formally, an equilibrium is then de�ned as a collection

fS; p; (ch; �h)Hh=1g (11)
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such that
1) given S and p all investors maximize their utility by choosing optimal

(ch; �h), and
2) markets clear,

HX
h=1

�h = 0;
HX
h=1

[ch � eh] = 0 (12)

Implicitly, as a consistency requirement, agents re�ne their information
via observing prices, which in turn gives rise to demand functions which,
when crossed, generate the observed prices. For simplicity, assume that mar-
kets are complete. It can then be shown that equilibrium asset prices satisfy

St =
1

u�c (et; t)
Et
�Z T

t
u�c (es; s)dDs

�
for a particular vector �, and where

u�(e; t) = sup
x2RH

HX
h=1

�huh(xh; t) s.t.
X
h

xh = e (13)

Recall that by the Fundamental Theorem of Asset Pricing there is no
arbitrage i� there is a measureQ equivalent to P s.t.

St = EQt
�Z T

t
exp

�
�
Z s

t
rudu

�
dDs

�
(14)

while we just showed that at equilibrium

St =
1

u�c (et; t)
Et
�Z T

t
u�c (es; s)dDs

�
(15)

It follows that we can think of exp
�� R st rudu� dQdP = u�c (es;s)

u�c (et;t) . In other
words, we pinned down Q from more fundamental processes, namely the
labour incomes. In a more complete model, these labour incomes themselves
are endogenous, of course, because they depend on the supply and demand
of labour.
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Also in equilibrium St = 1
u�c (et;t)Et

hR T
t u

�
c (es; s)dDs

i
. The naive strong

law of large numbers on the other hand would have predicted something like
St = Et

�
exp

�� R st rudu� dDs
�
. The strong law of large numbers, contrary to

common sense and empirical evidence, values a dollar of payo� per unit of
probability in each state of the world equally, whether you're rich or poor,
whether you're risk averse or not, whether you're retired or saving, whether
prices of consumption commodities are high or low, whether GDP is high or
low, whether you're in a bull or a bear market.

7 On "econophysics" as a discipline

There is a growing litterature written by academic physicists on �nance,
sometimes called "econophysics", which is published in their own journals
and evolves largely apart from academic �nance. Many authors seem to
ignore the vast �nance literature that has already tackled many of those
problems and to avoid contacts with academic �nancial economists generally.
Economists are typically not aware of the "econophysics" literature, which
would be a shame if wheels got reinvented on both sides. Some relevant web
sites are http://www.mailbase.ac.uk/lists/finance-and-physics, and
http://www.unifr.ch/econophysics or http://www.econophysics.org.
The working papers on these sites vary from naive, uninformed, arrogant
and amusing (to economists) conjectures to serious and scienti�c analysis,
and it is hard to give an overall impression.

One has to welcome the (re)discovered interest by physicists to �nancial
problems because �nance is a fascinatingly complex �eld. The hope is that
new tools may contribute via technical problem solving, via original ideas or
via good empirical work. However, the somewhat uneasy relation between
physicists and economists has already been described by Doyne Farmer (of
the Santa Fe Institute, also co-heading his own �nancial trading company,
called \Prediction Company") who wrote a nice piece on \Physicists attempt
to scale the ivory towers of �nance," in which he makes points similar to the
ones I raise here, for instance that the problem solving approaches are quite
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di�erent, and that it is not obvious that methods that work in physics also
work in �nance. Another survey paper is \Econophysics - A new area for
computational statistical physics ?" by Dietrich Stau�er (to be found on
http://www.unifr.ch/econophysics/). In the end of the day, one can-
not assume that economic decision makers as well as the resulting actions
and prices behave like lifeless particles or feedback rules following automata.
Banks, investors, government etc. behave purposefully, they interact and
play games, they anticipate each other's actions, and they try to change the
rules of the game if that may remove ine�ciencies. Behaviour and prices are
endogenous and each variable depends on each other variable via complicated
relations like expectations about future actions of the Fed and how agents
perceive them to a�ect ination, GDP etc. That's what makes economics a
social science.

8 On some recent work on �nance by physi-
cists

There seem to be 3 main �elds of research where physicists have contributed
to �nance: empirical statistical regularities in prices, market crashes and
derivatives pricing. I will address them in turn, and illustrate them with the
help of some representative papers, both from physicists and from economists.

8.1 Empirical statistical regularities in prices

For a given unit of time, log returns should be normally distributed since any
log-return lnp(t+ �)� ln p(t) can be decomposed into many log-returns over
arbitrarily small subintervals, at least if these sub-returns are iid. However, it
has been known for a long time (at least since the 50s, �rst known reference in
1915) that returns over short horizons are not normal, they have \fat tails."
Refer for instance to Fama's[9][10] and Mandelbrot's[17] seminal articles and
to the references given therein. It was thought then that returns have a
stable Levy distribution. Based on daily prices, the characteristic exponent
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� was estimated to be 1.7.
Some economists pointed out that variances seem to be de�ned, though,

an observation that invalidates the assumption of Levy processes. They
addressed these issues by using random clock changes or stochastic volatility
(volatility clustering), methods to mix normals, thereby yielding fat tails,
but keeping second moments �nite. In independent work, it has recently
been shown both in the econophysics literature and in the �nancial literature
that indeed the tail index ranges from 3 to 5, incompatible with a Levy
distribution.

Physicists also analyzed the exact power laws in the tails, and conclude
that the price-formation process cannot be fully understood in terms of cen-
tral limit theorems at all, even in generalized form, con�rming Clark's results
from 1973. They also characterize how large the central part of the distri-
bution that does converge nicely is, and how slowly the tails converge. Since
that central part and its cuto�s change with the scale chosen, they con�rm
that the process underlying prices must have nontrivial temporal structure.
Physicists also pointed out that some of the proposed solutions by economists
for this dependency (like stochastic volatility models, ARCH/GARCH mod-
els etc.) do address some issues, but not others, since they do not connect
the behaviour on multiple timescales.

Over and above measuring the fatness, it seems primordial to try to un-
derstand what CAUSES tails to be fat. Some economists[7][1] argue that the
central limit theorem (CLT) fails because sampling is random. The number
of individual e�ects added together to give the return during a day is vari-
able and in fact random, making the standard CLT inapplicable. An�e and
Geman[1] for instance showed empirically that when one uses the cumula-
tive number of transactions as \business time" then the resulting returns (1
minute, 5 minutes, 10 minutes and 15 minutes) under business time are nor-
mal. They show that the densities conditioned on the number of trades are
normal. Olsen and Associates have similarly done extensive work on high-
frequency foreign exchange data, see for instance [20]. Interestingly, their
research sta� consists mainly of physicists.
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This line of research that aims to characterize and explain the statistical
properties of returns is still booming, and joint research would certainly be
useful.

8.2 Market crashes

The methods of investigation in this sub�eld of econophysics are inspired
largely by the physics of critical phenomena, in particular by the idea of
log-periodic oscillations.

The basic idea goes as follows (from a paper by Laloux, Potters, Cont,
Aguilar and Bouchaud[14]): �nancial crashes are the analogue of critical
points in statistical mechanics, where the response to a small external per-
turbation becomes in�nite, because all the subparts of the system respond co-
operatively. If one further assumes that `log-periodic' corrections are present,
then one can try to use the oscillations seen on the markets as precursors to
predict the crash time, which is the time where those oscillations accumulate.
The authors do point out that there is no theoretical evidence substantiating
the claim that crashes are critical points - not even speaking of log-periodic
oscillations. They then go on and show that some crashes were not predicted,
but more importantly that most predictions of crashes did not happen. In
other words, no statistical signi�cance has been assessed, and it is not obvious
that money could be consistently made. Of course, if the theory works and
money can be made, then the pro�t opportunity vanishes quickly since many
people will try to sell short just before the crash, causing the crash to happen
already at that time, which by induction will cause a crash instantaneously,
without anyone being able to bene�t from the insight.

A paper by Bouchaud and Cont[6] proposes ad-hoc non-linear Langevin
equations as a model of stock market uctuations. The paper assumes an
ad-hoc price-setting rule and feedback e�ects of prices on themselves. These
rules drive their results. The techniques used are very useful, but again for
my taste I would like to see why agents and market makers should behave
that way. Also, prices cannot be thought of as exogenous processes that crash
according to some law. This kind of assumes what was to be shown. Prices

14



are the outcomes of trades and expectations of zillions of agents with di�erent
motivations to trade, and the prices themselves inuence the motivations.

I would like to contrast these approaches with the ones chosen by economists
studying the same topics. Prices on many markets are set by informed market
makers. Economists, for instance Madrigal and Scheinkman[16], use rational
models. Traders possess private and heterogenous information, and the mar-
ket maker acts strategically to maximize pro�ts. The market maker must
now consider that the prices he sets a�ect both the information he acquires
(through the order ow) and the information he releases back to the market.
They show that the equilibrium price as a function of the order ow displays
a discontinuity, which can be interpreted as a market crash.

Economists Avery and Zemski[2] on one hand, and Lee[15] on the other
hand, construct models of herd behaviour, informational cascades, bubbles
and crashes entirely built upon rational optimizing agents. The main ingredi-
ents are event uncertainty and composition uncertainty (Avery and Zemski)
or trading costs (Lee).

8.3 Derivative Pricing

Obviously many physicists work on Wall Street, their technical skills being
highly valued. Monte-Carlo simulations, �nite di�erence methods and neural
networks have been fruitfully used in �nance for a long time.

Academically, some papers introduced a path integral approach to derivat-
ice security pricing, reformulating the models in terms of quantum mechanical
formalism, see for instance Baaquie[3]. This paper also claims to have shown
that the price of the stock option is the analogue of the Schrodinger wave-
function of quantum mechanics and to have obtained the exact Hamiltonian
and Lagrangean of the system. Papers along this line reformulate standard
�nance models in a di�erent language, but it is too early to report extensions
and new insights. The hope is to �nd accelerated numerical methods.
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9 Conclusion

The �eld of �nance recently received a lot of attention by physicists, and my
hope is that the interaction between �nancial economists and physicists will
lead to new insights into the way �nancial markets work. A great �rst step
would be to submit research papers to the appropriate �nance journals for
refereeing and for dissemination among the �nance profession. There is a lot
to be gained from both sides.

I could not �nd a better way to conclude than citing Doyne Farmer[11],

With some justi�cation, many economists think that the entry of
physicists into their world reects merely audacity, hubris, and
arrogance. Physicists are not known for their humility, and some
physicists have presented their work in a manner that plays into
that stereotype.

...

Many of the physicists know very few empirical facts and are
largely ignorant of the literature in economics and �nance... Physi-
cists like me should stop reinventing the wheel.

Maybe one could add that �nancial economists like me should stop pre-
suming that many physicists simply look for a way to have fun and to recycle
physics methods, and invite physicists to take part in �nancial workshops and
conferences.
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