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Abstract

We show, in an exchange economy with default, liquidity constraints and
no aggregate uncertainty, that state prices in a complete markets general
equilibrium are a function of the supply of liquidity by the Central Bank.
Our model is derived along the lines of Dubey and Geanakoplos (1992). Two
agents trade goods and nominal assets (Arrow-Debreu (AD) securities) to
smooth consumption across periods and future states, in the presence of cash-
in-advance financing costs. We show that, with Von Neumann-Morgenstern
logarithmic utility functions, the price of AD securities, are inversely related
to liquidity. The upshot of our argument is that agents’ expectations com-
puted using risk-neutral probabilities give more weight in the states with
higher interest rates. This result cannot be found in a Lucas-type represen-
tative agent general equilibrium model where there is neither trade or money
nor default. Hence, an upward yield curve can be supported in equilibrium,
even though short-term interest rates are fairly stable. The risk-premium in
the term structure is therefore a pure default risk premium.
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1 Introduction

Many financial economists have been puzzled by the fact that historical
forward interest rates are on average higher than future spot interest rates.
According to the expectation hypothesis, forward interest rates should reflect
expectations of future spot rates, and this forms the basis of the efficiency
market hypothesis. However, in the words of Shiller (1990), the forward
term premium (i.e. the difference between the forward rate and the expec-
tation of the corresponding future spot rate) has empirically been positive.
Therefore, the puzzle is that forward rates have usually been higher than the
historically stable interest rates, a situation that is evident in figure 1 in the
period 1983-1984.

Figure 1: The term structure of interest rate in Germany, source: McCulloch
data (Shiller and McCulloch (1987))

In the absence of arbitrage, with complete markets, no transaction costs, un-
segmented markets, and equal tax treatment1, an increasing term structure
is possible if and only if instantaneous forward rates are increasing2. The
history of upward sloping term structure implies increasing forward rates,
and therefore, assuming the expectation hypothesis with risk-neutrality, in-

1The McCulloch data shown in the picture correct for differences in taxation
2At time t, the yield of a long-term bond maturing at T is equal to the simple averages

of the instantaneous forward rates (see Shiller (1990) p.640).
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creasing expected future spot rates - something that does not correspond to
the historical evolution of short-term interest rates.

Are rational expectations failing and bond markets inefficient then? The
early literature on the term structure had tried to explain this puzzle by
appealing to liquidity or risk. Hicks (1946) emphasized that a risk-averse
investor would prefer to lend short-term, if he was not given any premium
on long-term lending, because there is a higher risk that the prices of long-
term bonds change. Lutz (1940) suggested that long-term securities are less
liquid than short-term ones, where the most liquid asset is money. Finally,
Modigliani and Sutch (1966) proposed the preferred habitat hypothesis - a
theory that has been very influential - arguing that agents prefer to trade
bonds to match asset and liability maturities. Hence, the markets for long-
term and short-term bonds would somehow be segmented, and therefore the
link between long and short-term interest rates breaks down.

The modern literature has emphasized the importance of aggregate risk,
following Lucas (1978). In these representative agent models, the forward
interest rate is higher than the expected spot rate because of risk-aversion.
The risk-premium is shown to be proportional to the correlation between
marginal utility and the payoff of the asset (Breeden, 1979). Since high in-
terest rates tend to depress activity, the correlation between the payoff of
a bond and marginal utility is likely to be significant. Put differently, risk-
neutral probabilities - which should be used instead of subjective probabili-
ties to price any asset - are proportional to future marginal utilities (Breeden
and Litzenberger, 1978). The application of this model to the term struc-
ture is due to Cox, Ingersoll and Ross (1985a and 1985b). Other well-known
applications of this representative agent model are the Consumption CAPM
and the attempt to explain the equity-premium puzzle using the Breeden
formula (Mehra and Prescott, 1985).

In the present paper, we argue that aggregate consumption risk is not the
only source of risk-premia in asset prices. An additional risk-premium ex-
ists because of the effect of financing costs on marginal utilities. This risk-
premium cannot be captured by representative agent models because this
premium exists even in absence of aggregate uncertainty (i.e. endowments
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and aggregate consumption are constant). We model financing costs with
cash-in-advance constraints. The risk-premium exists for any asset price,
but we focus as an application on the term structure and show that it can
be upward-sloping in equilibrium, even when aggregate real uncertainty is
null.

We set out a monetary general equilibrium model with cash-in-advance con-
straints built along the lines of Dubey and Geanakoplos (1992), Geanakoplos
and Tsomocos (2002), Tsomocos (2003, 2007) and Goodhart et al.(2006). We
need a general equilibrium model because we want to endogenise all demands
for money in order to construct the risk-neutral probabilities and the yield
curve. Provided the existence of outside money, these models are able to
generate proper demand for liquidity and unique positive nominal interest
rates. We assume that all states are equiprobable both in reality and as
understood by the investors (i.e. subjective probabilities are uniform and
beliefs are correct and homogeneous across agents). This way, we exclude
the interesting issue of agents’ utility heterogeneity (an issue covered, for
instance, in Fan, 2006). We price nominal Arrow-Debreu securities (AD se-
curities). The strong assumption of complete markets is needed here because
we want to solve for all AD securities’ prices. If the prices of AD securities
were constant through all states of nature, then the historical average of spot
interest rates that would proxy rational expectations without risk-premium
Et[rt,t+s] would be equal to the expected interest rate Eπ[rt,t+s] using risk-
neutral probabilities π. However, we will show that this is not the case in
our model, even though there is no real uncertainty.

The main result of the paper is that states with higher interest rates (lower
liquidity supplied by the Central Bank) have higher state prices. Intuitively,
since we model consumer’s utility with a Cobb-Douglas specification with
equal weights on all states of nature, the cost of consumption is constant
across all states. This cost of consumption is equal to the opportunity cost
to transfer money from period 0 to period 1 (i.e. the AD security price) mul-
tiplied by the value of trade in period 1(i.e. the price of the good multiplied
by the volume traded).

In the first paper in our study of liquidity, Espinoza and Tsomocos (2007), we
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used a cash-in-advance model in conjunction to exogenous inside and outside
money stocks. Such a cash-in-advance model is widely considered to capture
the effects of liquidity constraints in an analytically tractable way, and allows
the quantity theory of money to hold. As a result, in such models, the value
of trade is equal to overall supply of liquidity (i.e. money supply from the
Central Bank plus outside money). If state 1 has more liquidity than state
2, the value of trade in state 1 has to be higher than the value of trade in
state 2. With the Cobb-Douglas utility function assumption, this is possible
only if the cost of transferring money in state 1 (i.e. the price of a claim
with state-contingent payoff, also called the state price) is lower than the
cost of transferring money in state 2. Therefore, a state with lower interest
rate (higher liquidity) is also a state with lower state price (and therefore
lower risk-neutral probability).

But there is an unresolved lacuna (puzzle), which is why in representative
agent models, complete markets, and a transversality condition, in which
everyone always pays off their debts in full with certainty, there is any need
for money at all? Why cannot all exchanges simply be undertaken via book-
keeping, with no prior need for an exchange of money? Why is there a
cash-in-advance constraint at all? And what exactly are these costs of fi-
nancing?

Our answer to this is that the most egregious (worst) assumption is the
transversality condition. Once one allows for the possibility of default by
the buyer of the good, who becomes a debtor to the seller, the seller will no
longer be prepared to accept the buyer’s IOU. She will want, instead, a safe
asset, which will be more generally acceptable in subsequent transactions,
i.e. money. Moreover, financing costs involve assessing the credit-worthiness
of the buyer of a good, or of an asset, and of the IOU which he may be pre-
ferring as a counterpart to the purchase (n.b., even cash needs inspection to
avoid forgery, and bank drafts and cheques may be defaulted).

Incorporating positive probabilities of default (PD) into a model is complex.
Not only is the event of default non-linear, but the existence of positive PD is
hardly consistent with many of the elements of the kind of theoretical models
which are commonly in use, involving complete markets, no aggregate uncer-
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tainty and representative agents (meeting the transversality conditions). In
order to move from the standard models towards the ‘real world’ in the sim-
plest, smallest step possible, we have in this paper included the assumption
of ‘exogenous default’, whereby each agent fails, and is expected to fail, to
meet all his/her financial committments in asset markets. Otherwise all the
trappings of the standard formal model, e.g. complete markets, a represen-
tative agent model, would remain in place. Of course, incomplete markets
and endogenous default and ultimately essential for the actual phenomenon
of monetary and financial dealings that we observe. At least, we are aiming
here to make one small step towards reality.

We need to emphasize that our assumption of ‘exogenous default’ is compat-
ible with earlier work in this class of models with endogenous default. Put
differently, we could have employed Goodhart et al. (2006) and arrive at the
same conclusion, however at a significant computational and analytical cost.
The essence of the argument rests on the presence of positive default that
is turn generates positive nominal interests that ultimately affect the overall
liquidity in the economy. The upshot of studying liquidity, more generally
and as in Goodhart et al. (2006), is its interaction with default. Liquidity
affects and is affected by default.

The lesson of the model is that uncertainty in aggregate production or in
aggregate consumption is only one part of uncertainty in agents’ marginal
utilities. Bansal and Coleman II (1996) produce a representative agent gen-
eral equilibrium model with transaction costs that capture partly this effect
on bond prices. However, in their model, trade is forced, since the represen-
tative agent sells all of his endowment and subsequently buys it back, and
the transaction cost function is exogenously specified. In particular, trans-
action services are generated only from bond holdings and not from asset
holdings, and this is how they show that the equity premium may be large.

In our model, uncertainty in future financing costs and trade volumes matter,
and are endogenously derived. Therefore, any model of risk-premium that
attempts to proxy welfare by production or consumption will underestimate
risk-premium. This is especially important for the term structure risk pre-
mium since the spot interest rate has both an effect on the asset price and
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on the inter-temporal financing cost. In that case, the correlation between
the marginal utilities and the asset price is likely to be high. The error will
be an under-estimation of the risk-premium.

The model is an exchange economy with cash-in-advance constraints where
larger money supply has the only effect of lowering short-term financing
costs and has no other effect on production or endowments. More money
supply allows for more efficient trade since financing costs are lower, pro-
vided that nominal interest rates are positive. Efficiency is established when
money supply is infinite. These cash-in-advance models have several draw-
backs since money supply is exogenously given, and the value of the interest
rate depends on the existence of “outside money” (money endowed and free
and clear of any liability, see Dubey and Geanakoplos, 1992), a somehow
controversial assumption. However, the advantage of the cash-in-advance
constraint model we are using here is that it allows us to incorporate mar-
kets for money even in a finite-horizon model and markets for AD securities.
More fundamentally, the cash-in-advance constraints allow money to be non-
neutral, although money does not affect consumption.

The presence of exogenous default plays the same role as the existence of out-
side money. Arguably, liquidity in any way defined becomes important and
has real effects whenever default in the economy is present. We use therefore
default in this paper to ensure a positive interest rate and a positive value
for money. Money has then an effect on asset prices and payoffs through the
nominal and the real channels. This is summarised in figure 5 (last page).
Let us see the nominal channel first. A positive interest rate ensures that
there exists a unique money demand, equal to money supply, thus leading
to a unique interest rate that clears the credit market. Consequently, the
price level is pinned down. This is in stark contrast with dichotomous mod-
els where, since money has no value, any money demand (and therefore any
price level) can constitute equilibrium. However, when the indeterminacy on
price levels is removed, asset prices are also uniquely determined (we show
indeed that they are inversely related to liquidity, which answers our term
structure puzzle). Money also has an effect through the real channel, because
positive interest rates create a wedge between buying and selling prices and,
therefore, distort marginal rates of substitution. This is the source of non-
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neutrality of money. In particular, trade and prices are typically higher with
more liquidity. This in turn has an effect on the real asset payoffs.

INSERT FIGURE 5 HERE (SEE LAST PAGE)

This allows us to show the existence of a ‘liquidity-premium’. However,
there is a definition issue here. One can think of three effects of liquidity on
bond prices. One liquidity premium would come from the costs incurred in
a market where volumes and trade in an asset are small so that transaction
costs are larger. A second cost is the one described by Hicks (1946):

“the imperfect ‘moneyness’ of those bills which are not money is
due to their lack of general acceptability which causes the trouble
of investing in them, and causes them to stand at a discount”

The third effect, the liquidity premium we have here, comes from the the
additional cost incurred by investors (and priced in the term structure) that
an uncertain money supply will generate when liquidity is restricted (i.e.
when the constraint binds, which is the assumption behind a cash-in-advance
constraint model). Note that the level of money supply does not really
matter: in the long run, if prices adjust to the money supply, constraints
on liquidity do not have real effects - although this is not captured in our
cash-in-advance constraint where the optimal supply of money would be
infinite3. However, what still has effects is the variance (or risk) of liquidity.
This is exactly what is captured in the model, where we show that larger
liquidity risks generate higher long-term interest rates. Stricto senso, our
model is therefore a model of the “ liquidity-risk premium”. This liquidity
risk-premium is deduced immediately from the previous section, since risk-
neutral probabilities are high when the interest rates are high. The existence
of the “liquidity-risk premium” has at least two consequences. First, the term
structure is upward sloping above what is expected from the pure expectation
hypothesis even if the Lucas-type risk-premium is incorporated. Second,
stability of monetary policy matters.

3We acknowledge that a deterministic decrease in money supply may also have a short-
term liquidity cost if there is some inertia
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2 The Model

The model is an exchange economy without production. Trade takes place
between two agents who want to trade across periods (for consumption
smoothing purposes) and across states (because of risk-aversion). Because
cash is needed before commodity transactions, and because receipts of sells
cannot be used immediately to buy commodities (the timing of the mar-
kets’ meetings is represented in figure 2), agents require cash as a derived
demand due to their transaction needs. Liquidity is supplied exogenously by
the Central Bank who can diminish short-term financing costs by increasing
money supply. With lower financing costs, more trade (i.e. more activity in
this exchange economy) takes places and agents are closer to the standard
General Equilibrium Pareto optimum.

Figure 2: Timing of commodity and money markets

2.1 Structure of the Model

The model is built around two periods, period 0 (now) and period f (future).
Periods are divided into sub-periods at which the different commodity and
money markets meet, as pictured in figure 2. The supply of money by the
Central Bank is the only source of randomness in the future. There are n

states of nature possible, indexed by i ∈ N = {1, . . . , n} and with subjective

probabilities all equal to
1
n

. The Central Bank thus provides money for:

• the short-run period-0 money market, with money supply M00, interest

rate r00 and bond price η00 =
1

1 + r00
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• ∀i ∈ N the state-i money market, with money supply Mi, interest

rate ri and bond price ηi =
1

1 + ri

Figure 3: Uncertainty Tree

The money supplies Mi in the different states of nature are exogenous. Al-
though the interest rate in each of these money markets will be deduced from
demand and supply, the form of the model ensures in fact that the interest
rates are just inversely proportional to the Central Bank money supply (see
below). Therefore, the interest rates for all money markets are almost ex-
ogenous to the model. In addition to these n + 1 money markets, the two
agents can trade n Arrow-Debreu securities (ADi)1≤i≤n that give 1 in state i

and 0 in all other states j 6= i. All Arrow-Debreu securities are available for
trade (but in zero net supply) and therefore financial markets are complete
with this structure. Figure 2.1 summarizes all endowments and assets in
the model. Knowing the exogenous interest rates, we will compute the AD
security prices and show how they are related to interest rates. The first step
is however to ensure a positive value for money and nominal determinacy
using a cash-in-advance model.

2.2 Cash-in-Advance Models and the Value of Money

Cash-in-advance models4 aim at capturing the importance of liquidity for
transactions. To ensure a positive nominal interest rate, a sufficient re-

4The modern treatment of cash-in-advance models dates as far as Clower (1967).
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quirement is that agents hold some exogenous endowment of money (called
outside money), and this has been a common modern treatment of cash-in-
advance constraints as in Dubey and Genanakoplos (1992, 2006). In these
models, when M is the supply of money by the Central Bank, if outside
money endowed to the agents is m, the nominal interest is r =

m

M
. Al-

though an exogenous endowment of money can be justified in a one-period
model5, this assumption is harder to explain in a multi-period setting. In
fact, one should think of outside money as a compact simplification for a
more general nominal friction that pins down the price of money. Default
on the money market can play, for instance, the same role as outside money
to ensure existence of positive interest rate. Shubik and Tsomocos (1992)
model endogenous default, and generate positive interests, but we draw here
a simpler model with exogenous default, without loss of generality, and show

that the interest rate is equal to r =
d

M
(see below)6.

Positive interest rates, as we already suggested in the introduction, are key
to the model because they ensure nominal determinacy, which is required
for a theory of the term structure, and create financing costs which affect
real variables. Positive interest rates are therefore determinant for both the
yield curve and for the real payoffs of assets.

2.3 Budget Set for Agent α

There are two agents in the model. For any period or state of nature, each
agent can pay b units of money to buy b/p units of good, or can sell q units
of good and receive pq units of money. Hence, consumption in each period
or state is

c = e− q +
b

p

keeping in mind that either q = 0 (if the agent wants to buy) or b = 0 (if
the agent wants to sell).

Agent α does not own any good in period 0 but owns e > 0 units of the
5Outside money may be inherited from previous periods and free from any debt re-

quirement outstanding.
6We could have allowed for endogenous default and still get the same results at a

significant computational cost. The focus of the present paper is primarily, however, on
liquidity
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consumption good in the future, where e is non-random. (Variables without
supscript refer to agent α - who will be the borrower- while variables with
supscript ∗ will refer to agent β -who will be the lender). Agent α maximises
an inter-temporal Von Neumann-Morgenstern utility function with discount
factor 1, equal weights between the n-states (since the states are assumed to
be equi-probable) and logarithmic felicity function u.

In period 0, agent α sells qADi securities at price θi to finance consumption
at time 0. This is equivalent to say that agent α borrows with repayments
conditional on the state of nature i.
In the future, in state i, agent α has to to give qADi (the state-contingent
repayment) to agent β who - as we will see later - has bought the AD se-
curities. Since agent α cannot use yet the receipts of the goods he just
sold, he borrows

µi

1 + ri
to the Central Bank (i.e. rolls over his debt) to

pay agent β the qADi he owed him from the ADi-security. He can then use
the receipts of his sells (piqi) to repay the short-term loan µi that he had
contracted with the Central Bank. However, agent α defaults of di units
of account on his repayments to the Central Bank and does not repay the
whole loan. He repays therefore only µi − di to the Central Bank. This de-
fault is assumed non-random, without loss of generality: ∀i ∈ N di = d > 0.

To summarise, agent α’s maximisation programme is (in brackets are the
lagrangian multipliers used in the Annexes)7

max
b0,(qi,µi,qADi

)i∈N

U (b0, (qi)i∈N ) = ln

(
b0

p0

)
+

1
n

∑
i∈N

ln(ei − qi) (1)

s.t. b0 ≤
∑

1≤i≤n

θiqADi (ϕ) (2)

∀i ∈ N

{
qADi ≤ ηiµi (Ψi)
µi − di ≤ piqi (χi)

(3)

7We do not make explicit in these equations that agent α can carry money over from
period 0 to period f because he will in fact never choose to do so, as all constraints are
binding - something we will see later.
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2.4 Budget Set for Agent β

Agent β is endowed with e∗0 units of the good in period 0, but has nothing
in the future. He has the same preferences than agent α.

In period 0, he sells q∗0 to agent α and wants to invest it for next pe-
riod, lending to agent α with repayments conditional on the state of nature
(i.e. he buys AD securities b∗ADi

).8 However, he will receive the cash only at
the end of the period, after the securities market meets. Hence, he first bor-

rows
µ∗00

1 + r00
to the Central Bank. He will repay the loan with the receipts

of his sells p0q
∗
0. Since agent β also defaults by d∗0 > 0, he in fact will repay

only µ∗00 − d∗0 .

In state i, he receives the state-contingent repayments for agent α (i.e.

he receives
b∗ADi

θi
from each ADi-security) and he uses this to buy

b∗i
pi

units

of the consumption good (at total cost b∗i ).

To summarise, agent β’s maximisation programme is

max
q∗0 ,(b∗i ,b∗ADi

,µ∗0)1≤i≤n

U (q∗0, (b
∗
i )i∈N ) = ln(e∗0 − q∗0) +

1
n

∑
1≤i≤n

ln

(
b∗i
pi

)
(4)

s.t.
∑

1≤i≤n

b∗ADi
≤ η00µ

∗
00 (ϕ∗) (5)

µ∗00 − d∗00 ≤ p0q
∗
0 (ξ∗) (6)

∀i ∈ N b∗i ≤
b∗ADi

θi
(χ∗i ) (7)

2.5 Financial General Equilibrium

The Financial General Equilibrium is reached when:
(i) Agents maximise utility, as explicited above
(ii) Commodity markets clear, i.e.

8We do not make explicit the possibility for agent β to carry money over since he will
never do so, since we will show that all constraints are binding. As a result, all the receipts
from the sells of good 0 are invested in AD securities, and this means that agent β borrows
short-term as much as he will be able to repay
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p0 =
b0

q∗0
⇐⇒ p0q

∗
0 = b0

∀i ∈ N pi =
b∗i
qi
⇐⇒ piqi = b∗i

(iii) Money and AD security markets clear, i.e.

µ∗00 = (1 + r00)M00 = M00/η00

∀i ∈ N µi = (1 + ri)Mi = Mi/ηi

∀i ∈ N θiqADi = b∗ADi

3 Interest Rates and the Quantity Theory of Money

The following results, proved in Annex A9, determine the value of money and
recall the quantity theory of money in a cash-in-advance model with default.
Proposition 1 shows that short-term interest rates are inversely related to
the supply of money by the Central Bank. Proposition 2 shows that the
Quantity Theory of Money holds in a liquidity-constrained economy, i.e.
the nominal activity is equal to the supply of money.

Proposition 1: Term Structure

r00 =
d∗00
M00

∀i ∈ N ri =
di

Mi

Proposition 2: Quantity theory of money in period 0

p0q
∗
0 = b0 = M0

∀i piqi = b∗i = Mi

4 Financing Costs and State Prices

This section shows how the marginal utilities and the financing costs affect
equilibrium state prices. The proofs are available in Annex B, and for more

9see Geanakoplos and Tsomocos (2002) for similar proofs using outside money
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general utility functions in Espinoza and Tsomocos (2007). First, note that
all constraints are binding, i.e. no money is carried over. This is a result
of the completeness of markets which ensures that the strategy of carrying
money is dominated by holding a riskless debt instrument.10 The same
argument applies for agent β.

Theorem 1: Endogenous State Prices

In an equilibrium, states with higher interest rates correspond to higher state
prices (i.e. bigger risk-neutral probabilities).

Proof

The first order conditions for agent β give (see Annex B)

θib
∗
i = θjb

∗
j . (8)

Since we know from the section on the term structure that b∗j = Mj and
Mi = b∗i and that interest rates are inversely related to liquidity. Therefore

rj < ri ⇐⇒ Mj > Mi ⇐⇒ b∗j > b∗i ⇐⇒ θj < θi

The intuition of the result is straightforward. Since we model consumer’s
utility with a Cobb-Douglas specification with equal weights on all states of
nature, the cost of consumption is constant through all states (see equation
8). This cost of consumption is equal to the cost to transfer money from pe-
riod 0 to period 1 (i.e. the AD security price) multiplied by the value of trade
in period 1 (i.e. the price of the good multiplied by the volume traded). The
value of trade is equal to the overall supply of liquidity because the quantity
theory of money holds. For example, if there is more liquidity in state 1 than
in state 2, the value of trade in state 1 has to be higher than the value of
trade in state 2. However, according to equation 8 , this is possible only if
the cost of financing consumption in state 1 is lower than the financing cost
in state 2. Therefore, a state with lower interest rate (higher liquidity) is
also a state with lower inter-temporal financing cost (i.e. lower state price
and therefore lower risk-neutral probability).

10proof: since the marginal utility of consuming b0 is never null (this is the case with
the logarithmic utility function used here) and is equal to ϕ, ϕ 6= 0. Similarly, χi 6= 0.
Finally, ηiΨi = χi and this ensures that the Ψi are non-null.
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We can also work with the risk-neutral probabilities

πi =
θi∑

1≤k≤n θk
(9)

and show that
∀i 6= j rj > ri ⇐⇒ πj > πi (10)

This is the main result of our model. It first shows that risk-neutral prob-
abilities are endogenous in a cash-in-advance general equilibrium model, in
contrast with arbitrage models whereby prices follow various stochastic pro-
cesses and thus risk-neutral probabilities are not demand and supply driven.
Furthermore, the fact that states with higher interest rates are given higher
weights yields important results for the yield curve and resolves the para-
dox we stated in the introduction without violating the rational expectation
hypothesis. A comparative statics version of this result is possible, with a
logarithmic version.

Theorem 2: Comparative statics

With this logarithmic utility function, an increase in state-i interest rate
increases the risk-neutral probability associated to this state.

This requires a closed-form solution for the state price, something we do
easily with this logarithmic model. We show in fact that the state price is

θi =
M00

nMi
(See proof in Annex C), from which the theorem follows.

5 Interpretation and Real Asset Payoffs

The model excludes aggregate endowment uncertainty by setting ei = e.
Therefore, our result is not simply a version of the risk-premium found in
pure exchange general equilibrium models with heterogeneous agents or in a
representative agent model (Lucas, 1978; Breeden, 1979 ; Cox, Ingersoll and
Ross, 1985). Indeed, the endowment risk-premium has been removed in our
model, and state prices are only a function of money. However, the model
still exhibits a risk-premium, since risk-neutral probabilities are higher in
states of nature with higher spot interest rate. As we are going to see, the
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additional risk-premium has both a nominal and a real component. When
ri is high, activity (i.e. qi) is low, something showed in Annex C and in
Espinoza and Tsomocos (2007) for any Von Neumann-Morgenstern concave
utility function. The fact that the state price is simply a ratio of money
supplies, i.e.

θi =
1
n

M00

Mi
=

1
n

riM00

di
(11)

(proved in Annex C) makes clear why the risk-premium is to a large extent
a nominal risk-premium: state prices are higher for states with low money
supply simply because the value of money increases. But this is only part
of the story. The other part is that real variables and marginal utilities are
also affected by changes in money supply.

It is however not possible to link directly state prices and the effect of money
on marginal utilities, because the model is not a representative agent model.
When ri is low, because qi is high, agent α’s marginal utility is low, but agent
β’s marginal utility is high. This is why we looked at demand and supply of
assets to solve for state prices, and we proved in theorem 1 that the nominal

state price θi is low when ri is low. One can also show that
1

piθi
, the real

payoff of an Arrow-Debreu security is decreasing when the spot interest rate
ri increases. This is easily seen by computing the price level (the proof is in
Annex C)

pi =
Mi(2 + ri)

ei
(12)

Therefore, the real payoff of the ith Arrow-Debreu security is:

1
piθi

=
ei

(2 + ri)Miθi
=

ei

(2 + ri)M00/n

and is clearly decreasing in ri. The fact that the asset’s real payoff is lower
when the interest rate is higher confirms that the risk-premium also includes
a real component.

A representative agent model is unable to reproduce such a result if there is
no aggregate real uncertainty (aggregate endowment or aggregate consump-
tion is ei + e∗i = ei = e = qi + (ei − qi)).The upshot of our argument is that
uncertainty in aggregate production or in aggregate consumption is only one
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part of uncertainty in agents’ marginal utilities. Financing costs also gener-
ate variability of marginal utilities (and therefore of asset demands) in the
future. Therefore, any model of risk-premium that attempts to proxy wel-
fare by production or consumption will underestimate risk-premium. This
is especially important for the term-structure risk premium since the spot
interest rate has both an effect on the asset price (inter-temporal financing
cost) and on the short-term financing cost. In that case, the correlation
between the marginal utilities and the asset price is likely to be high. The
error will be an under-estimation of the risk-premium.

6 The Term Structure of Interest Rates

Let B a bond that would be bought in the first period at the time when the
money market clears and that would mature at the time the intra-period
bond of second period matures, as shown in the thick arrow of figure 6.

A no arbitrate argument ensures that the price of such a bond is:

Figure 4: Long-term bond

PB = η00

(
n∑

i=1

θiηi

)
(13)
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or equivalently

PB = η00η0

(
n∑

i=1

πiηi

)
(14)

Note that no ones in our model needs such a bond. A more relevant bond
may be the one that is bought at the time the AD market meets and would
mature at the time the intra-period bond of second period matures. For this
bond b, a no-arbitrage arguments ensure that its price is

Pb =
n∑

i=1

θiηi (15)

or equivalently

Pb = η0

n∑
i=1

πiηi (16)

By approximating, we find

rb ≈ r0 +
n∑

i=1

(πi(ri)ri) (17)

It is clear here how the long-term interest rate depends on a convex function11

of ri. The first consequence of this is that the long-term interest rate is
above the average of spot rates, something we define as the “liquidity-risk
premium”. The second result is that a larger variance in spot rates will
generate a higher “liquidity-risk premium” and long-term interest rate, so
that stability of monetary policy matters in determining the equilibrium
value of long-term interest rates.

7 Concluding Remarks

In a state with low liquidity, trade has to be low, and, in order to induce
consumers to have trade at a low level, the opportunity cost of transferring
money to this state must be high. This inter-temporal financing cost is equal
to the state price. Therefore, state prices and risk-neutral probabilities are
higher in states with higher interest rates. It is important to stress that the
result is due to the interaction of the money market (the quantity theory of
money) with the exchange economy (the maximisation problem) and there-

11almost a quadratic function in fact
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fore cannot be found in a pure financial model. Ultimately, it is the risk in
the supply of money that matters to determine the risk in trade values ; and
because of the Von Neumann-Morgenstern Cobb-Douglas utility function, it
is trade values (i.e. nominal trade as opposed to real trade) that are equalised
through states. Our result is therefore more general and can be found in any
model with complete markets, Von Neumann-Morgenstern logarithmic util-
ity, some form of the quantity theory of money, and some transaction cost
effect on trade. Other shocks different from liquidity shocks may of course
also affect the transaction technology, and hence risk-neutral probabilities.
Liquidity shocks are however crucial to understand the upward sloping term
structure because two phenomena push in the same direction: first, the fu-
tures spot interest rates are affected ; second the risk-neutral probabilities are
modified. The interaction of these two effects pushes long-term rates above
the historical average of future spot rates, even with nonexistent aggregate
real risk. And the more uncertainty in the future spot rates, the higher the
long-term rates. Stability of monetary policy is, therefore, required to main-
tain flat yield curves.
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Appendix A - Value of Money and the Quantity The-
ory of Money

First, note that all budget constraints are binding. This is proved in Ap-
pendix B, and means that no money is carried over, an intuitive result with
complete markets.

Proof of Proposition 1

Money and AD security markets clear, i.e.

µ∗00 = (1 + r00)M00 = M00/η00

∀i ∈ N µi = (1 + ri)Mi = Mi/ηi

∀i ∈ N θiqADi = b∗ADi

As a result, we have the existence of a positive interest rate

(1 + r00)M00 = µ∗00 = p0q
∗
0 + d∗00 = b0 + d∗00 =

∑
1≤i≤n

θiqADi + d∗00

=
∑

1≤i≤n

b∗ADi
+ d∗00 = η00µ

∗
00 + d∗00 = M00 + d∗00

Therefore
r00 =

d∗00
M00

Similarly, ∀i ∈ N

(1 + ri)Mi = µi = piqi + di = b∗i + di =
b∗ADi

θi
+ di

= qADi + di = ηiµi + di = Mi + di

Therefore
ri =

di

Mi

Proof of Proposition 2

b0 =
∑

1≤i≤n

θiqADi =
∑

1≤i≤n

b∗ADi
= η00µ

∗
00 = M00
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Similarly
b∗i = b∗ADi

/θi = qADi = ηiµi = Mi

Appendix B - First Order Conditions

Agent α First Order Conditions

The first order conditions are

1
b0
− ϕ = 0 (18)

∀i ∈ N
−1

n(ei − qi)
+ piχi = 0 (19)

∀i ∈ N ηiΨi − χi = 0 (20)

θiϕ−Ψi = 0 (21)

Agent β First Order Conditions

Denote L the lagragian formed from the maximisation problem. The first
order conditions are:

∂L

∂q∗0
=

−1
e∗0 − q∗0

+ p0ξ
∗ = 0 (22)

∀i ∈ N
∂L

∂b∗i
=

1
n

1
b∗i
− χ∗i = 0 (23)

∂L

∂µ∗00
= η0ϕ

∗ − ξ∗ = 0 (24)

∂L

∂b∗ADi

= −ϕ∗ +
χ∗i
θi

= 0 (25)

Note that all constraints are binding. This is easy to prove since the
marginal utility of consuming b0 - which is never null with a well-defined
utility function - is equal to ϕ : therefore, ϕ 6= 0. Similarly, χi 6= 0. Finally,
ηiΨi = χi and this ensures that the Ψi are non-null. The consequence is
that no money is carried over.
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Appendix C - Asset and Commodity Prices

We first compute state prices. From equation (5)∑
1≤k≤n

b∗ADk
= M00 (26)

Since ∀i, k ∈ N b∗ADk
= θkb

∗
k = θib

∗
i = b∗ADi

∀i ∈ N
∑

1≤k≤n

b∗ADk
= nθiqADi = M00 (27)

Hence θi =
M00

nqADi

=
M00

nMi
because qADi = Mi.

We compute now prices and trade volumes. From agent α first-order condi-
tions:

piχi =
1

n(ei − qi)
= piηiΨi = piηiθiϕ = pi

θi

(1 + ri)b0

Furthermore, qi = Mi/pi. Hence, piθin(ei −Mi/pi) = b0(1 + ri). Therefore

piθinei = b0(1 + ri) + Miθin

Or,

pi =
b0(1 + ri)/(nθi) + Mi

ei
=

Mi(1 + ri) + Mi

ei

and
qi =

ei

1 + b0(1+ri)
nθiMi

=
ei

2 + ri

since θi =
1
n

M00

Mi
. A higher Mi therefore increases qi through a decrease in

ri. A lower interest rate ensures lower financing costs and therefore better
consumption smoothing.
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Figure 5: Summary of the Model
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