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Abstract

We consider performance measurement and evaluation for managed funds. Similarities

and differences−both in econometric practice and in interpretation of outcomes of empirical
tests−between performance measurement and conventional asset pricing models are analyzed.
We also discuss how inference on ‘skill’ is affected when fund managers have market timing

information. Performance testing based on portfolio weights is also covered as is recent devel-

opments in Bayesian models of performance measurement that can accommodate errors in the

benchmark asset pricing model.

1 Introduction

Mutual funds are managed portfolios that putatively offer investors a number of benefits. Some

of them fall under the rubric of economies of scale such as the amortization of transactions and

other costs across numerous investors. The most controversial potential benefit, however, remains

the possibility that some funds can “beat the market.” The lure of active management is the

modern equivalent of alchemy, with the transformation of lead into gold replaced by hope that

the combination of specialized insights and superior information can result in portfolios that can

outperform the market. Hence, mutual fund performance evaluation − and, more generally, the

evaluation of the performance of managed portfolios − is all about measuring performance to

differentiate those managers who truly add value through active management from those who do

not.

How would a financial economist naturally address this question? The answer lies in a basic

fact that can be easily overlooked amid the hyperbole associated with the alleged benefits of active
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management: mutual funds simply represent a potential increase in the menu of assets available

to investors. Viewed from this perspective, it is clear which tools of modern finance should be

brought to bear on performance evaluation: (1) the theory of portfolio choice and, to a lesser

extent, the equilibrium asset pricing theory that follows, in part, from it and (2) the no-arbitrage

approach to valuation.

Indeed, there are many similarities between the econometrics of performance measurement and

that of conventional asset pricing. Jensen’s alpha in performance measurement is just mispricing

in asset pricing models, we test for their joint significance using mean-variance efficiency or Euler

equation tests, using benchmark portfolios that are the (conditionally) mean-variance efficient

portfolios implied by such models or, almost equivalently, via their associated stochastic discount

factors. Similarly, the distinction between predictability in performance and its converse of no

persistence must often be handled with care in both settings.

The mechanical difference between the two settings lies in the asset universe: managed portfo-

lios with given weights in the performance literature as opposed to individual securities or portfolios

chosen by financial econometricians, not by portfolio managers, in the asset pricing literature. This

mechanical difference is of paramount economic importance: it is the fact that regularities observed

in the moments of the returns of managed portfolios are the direct consequence of explicit choices

made by the portfolio manager that makes the setting so different. To be sure, corporate officers,

research analysts, investors, traders, and speculators all make choices that affect the stochastic

properties of individual asset and aggregate passive portfolio returns. However, they do not do

so in the frequent, routine, and direct way that is the norm in the high turnover world of active

portfolio management. These pages have been literally littered with examples of ways in which

the direct impact of investment choices makes concerns like stochastic betas and the measurement

of biases in alphas first order concerns.

Managed portfolios are therefore not generic assets, which makes performance evaluation dis-

tinct from generic applications of modern portfolio theory in some dimensions. Chief among these

is the question of whether active managers add value, making one natural null hypothesis that

active managers do not add value or, in other words, that their funds do not represent an increase

in the menu of assets available to investors. Another difference is in the kind of abilities we

imagine that those active managers who do add value possess: market timing ability as opposed

to skill in security selection. In contrast, rejections of the null in asset pricing theory tests are
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typically attributed to failures of the model. Others include the economic environment − that is,

the industrial organization of the portfolio management industry − confronting managers, the need

for performance measures that are objective and, thus, not investor specific, and differences in the

stochastic properties of managed portfolio returns as compared with individual assets and generic

passive portfolios.

The fact that managed portfolios’ performance is the outcome of the explicit choices of fund

managers also opens up the possibility of studying these choice variables explicitly when data is

available on portfolio composition. Tests for the optimality of a fund manager’s choice of portfolio

weights are available in these circumstances, although it is difficult to use this type of data in a

meaningful way unless the manager’s objective function is known. This is a problem, for example,

when assessing the asset/liability management skill of pension funds when data is available on asset

holdings but not on liabilities.

Our paper focuses on the methodological themes in the literature on performance measurement

and evaluation and only references the empirical literature sparingly, chiefly to support arguments

about problems with existing methods. We present a unified framework for understanding existing

methods and offer some new results as well. We do not aim to provide a comprehensive survey

of the empirical literature, which would call for a different paper altogether. We refer readers to

Cuthbertson et al (2007) for a recent survey of the empirical evidence of mutual funds.

The outline of the remainder of the paper is as follows. Section 2 establishes theoretical bench-

marks for performance benchmarks in the context of investors’ marginal investment decisions,

discusses sources of benchmarks, and introduces some performance measures in common use. Sec-

tion 3 provides an analysis of performance measurement in the presence of market timing and

time-variations in the fund manager’s risk exposures. As part of our analysis, we cover a range

of market timing specifications that involve different sorts of market timing information signals.

Section 4 looks at performance measures in the presence of data on portfolio weights. Section 5

falls under the broad title of the cross-section of managed portfolio returns. It covers standard

econometric approaches and test statistics for detecting abnormal performance both at the level of

individual funds and also for the cross-section of funds or sub-groups of (ranked) funds. Finally,

Section 6 discusses recent Bayesian contributions to the literature and Section 7 concludes.
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2 Theoretical Benchmarks

Our analysis of the measurement of the performance of managed portfolios begins with generic

investors with common information and beliefs who equate the expected marginal cost of investing

(in utility terms) with expected marginal benefits. Without being specific about where it comes

from, assume that an arbitrary investor’s indirect utility of wealth, Wt, is given by V (Wt,xt),

where xt is a generic state vector that might include other variables (including choice variables)

that impinge on the investor’s asset allocation decision, permitting utility to be state dependent

and nonseparable. Let pit and dit be the price and dividend on the ith asset (or mutual fund),

respectively, making the corresponding gross rate of returnRit+1 = (pit+1+dit+1)/pit. The marginal

conditions for this investor are given by

E

∙
V 0(Wt+1,xt+1)

V 0(Wt,xt)
Rit+1|It

¸
≡ E[mt+1Rit+1|It] = 1, (1)

where It is information available to the investor at time t andmt+1 is the stochastic discount factor.

We assume that there is a riskless asset with return Rft+1 (known at time t) and so E[mt+1|It] =

R−1ft+1.

The investment decisions of any investor who maximizes expected utility can be character-

ized by a marginal decision of this form. The denominator is given by V
0
(Wt,xt)pit − the ex

post cost in utility terms of investing a little more in asset i − and the numerator is given by

V 0(Wt+1,xt+1)(pit+1 + dit+1), the ex post marginal benefit from making this incremental invest-

ment. Setting their expected ratio to one ensures that the marginal benefits and costs of investing

are equated. Note that nothing in this analysis relies on special assumptions about investor

preferences or about market completeness.

Now consider the conditional population projection of the intertemporal marginal rate of sub-

stitution of this investor mt+1 = V 0(Wt+1,xt+1)/V
0(Wt,xt) on the N−vector of returns Rt+1 of

risky assets with returns that are not perfectly correlated:

mt+1 = δ0t + δ0tRt+1 + εmt+1

= R−1ft+1 + δ
0
t(Rt+1 −E[Rt+1|It]) + εmt+1 (2)

= R−1ft+1 +Cov(Rt+1,mt+1|It)
0
V ar(Rt+1|It)−1(Rt+1 −E[Rt+1|It]) + εmt+1
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where, letting ι denote an N × 1 vector of ones,

δt = V ar(Rt+1|It)−1Cov(Rt+1,mt+1|It)

= V ar(Rt+1|It)−1(E[Rt+1mt+1|It]−E[Rt+1|It]E[mt+1|It]) (3)

= V ar(Rt+1|It)−1(ι−E[Rt+1|It]R−1ft+1).

It is convenient to transform δt into portfolio weights via ωδt = δt/δ
0
tι, which yields the associ-

ated portfolio returns Rδt+1 = ω0δtRt+1. In terms of the (conditional) mean/variance efficient set,

the weights of portfolio δ are given by

ωδt =
V ar(Rt+1|It)−1(ι−E[Rt+1|It]R−1ft+1)
ι0V ar(Rt+1|It)−1(ι−E[Rt+1|It]R−1ft+1)

=
V ar(Rt+1|It)−1[ι−E(Rt+1|It)R−1ft+1]

(ct − bR−1ft+1)

=
Rft+1

Rft+1 −E[R0t+1|It]
ω0t −

E[R0t+1|It]
Rft+1 −E[R0t+1|It]

ωst

= ω0t +
E(R0t+1|It)

E(R0t+1|It)−Rft+1
(ωst − ω0t), (4)

where ω0t = V ar(Rt+1|It)−1ι/ct is the vector of portfolio weights of the conditional minimum vari-

ance portfolio, R0t+1 is the corresponding minimum variance portfolio return, ct = ι0V ar(Rt+1|It)−1ι,

bt = ι0V ar(Rt+1|It)−1E(Rt+1|It)R−1ft+1 and ωst = V ar(Rt+1|It)−1E(Rt+1|It)/bt is the weight vec-

tor for the maximum squared Sharpe ratio portfolio.

None of the variables in this expression for the conditional regression coefficients δt are investor

specific. All investors who share common beliefs about the conditional mean vector and covariance

matrix of the N asset returns and who are on the margin with respect to these N assets will agree

on the values of the elements of δt irrespective of their preferences, other traded and nontraded

asset holdings, or any other aspect of their economic environment. Put differently, portfolio δ is

the optimal portfolio of these N assets for hedging fluctuations in the intertemporal marginal rates

of substitution of any marginal investor. Similarly, all investors who are marginal with respect to

these N assets will perceive that expected returns satisfy

E[Rt+1 − ιRft+1|It] = βδtE[Rδt+1 − ιRft+1|It], (5)

since δ is a conditionally mean-variance efficient portfolio.1

1What is lost in the passage from the intertemporal marginal rate of substitution to portfolio δ? The answer
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There is another way to arrive at the same benchmark portfolios: the application of the no-

arbitrage approach to the valuation of risky assets. Once again, begin with N risky assets with

imperfectly correlated returns. Asset pricing based on the absence of arbitrage typically involves

three assumptions in addition to the definition of an arbitrage opportunity:2 (1) investors perceive

a deterministic mapping between end-of-period asset payoffs and underlying states of nature s; (2)

agreement on the possible; and (3) the perfect markets assumption. The first condition is met

almost by construction if investors identify states with the array of all possible payoff patterns. The

second asserts that no investor thinks any state is impossible since such an investor would be willing

to sell an infinite number of claims that pay off in that state. The perfect markets assumption

− that is, the absence of taxes, transactions costs, indivisibilities, short sales restrictions, or other

impediments to free trade − is problematic since it is obviously impossible to sell managed portfolios

short to create zero net investment portfolios.

Fortunately, there is an alternative to the absence of short sale constraints that eliminates this

concern. Any change in the weights of a portfolio that leaves its cost unchanged is a zero net

investment portfolio. Hence, arbitrage reasoning can be used when there are investors who are

long the assets under consideration. All that is required to implement the no-arbitrage approach

to valuation is the existence of investors with long positions in each asset who can costlessly make

marginal changes in existing positions. In unfettered markets, the substitution possibilities of a few

investors can replace the marginal decisions of many when the few actively seek arbitrage profits

in this asset menu.

It is now a simple matter to get from these assumptions to portfolio δ. The absence of arbitrage

coupled with some mild regularity conditions (such as investors prefer more to less) when there is

a continuum of possible states implies the existence of strictly positive state prices, not necessarily

unique, that price the N assets under consideration as in:

pit =

Z
ψt+1(s) [pit+1(s) + dit+1(s)] ds (6)

is simple: while the realizations of mt+1 are strictly positive since it is a ratio of marginal utilities, the returns

of portfolio δ need not be strictly positive since its weights need not be positive (i.e., portfolio δ might have short

positions). As a practical matter, the benchmark portfolios used in practice seldom have short positions.
2We have ignored the technical requirement that there be at least one asset with positive value in each state

because managed portfolios and, for that matter, most traded securities are limited liability assets.
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where s indexes states and ψt+1(s) is the (not necessarily unique) price at time t of a claim that

pays one dollar if state s occurs at time t + 1 and zero otherwise. Letting πt+1(s) denote the

(conditional) probability at time t that state s will occur at time t + 1, this expression may be

rewritten as:

pit =

Z
π(s)

ψt+1(s)

πt+1(s)
[pit+1(s) + dit+1(s)] ds

≡
Z

πt+1(s)mt+1(s) [pit+1(s) + dit+1(s)] ds

≡ E[mt+1(pit+1 + dit+1)|It], (7)

where mt+1(s) = ψ(s)/π(s) is a strictly positive random variable − that is, both state prices and

probabilities are strictly positive − with realizations given by state prices per unit probability,

which is termed a stochastic discount factor in the literature. All that remains is to project any

stochastic discount factormt+1 that reflect common beliefs πt+1(s) − where the word “any” reflects

the fact that state prices need not be unique − onto the returns of the N assets to recover portfolio

δ.

As was noted above, there is at least one reason for taking this route: to make it clear that the

existence of portfolio δ does not require all investors to be on the margin with respect to these N

assets. Many, even most, investors may be inframarginal but some investors must be (implicitly)

making marginal decisions in these assets for this reasoning to apply. Chen and Knez (1996) reach

the same conclusion in their analysis of arbitrage-free performance measures.3

These considerations make portfolio δ a natural candidate for being the benchmark portfolio

against which investment performance should be measured for investors who are skeptical regarding

the prospects for active management. It is appropriate for skeptics precisely because managed

portfolios are given zero weight in portfolio δ. Put differently, this portfolio can be used to answer

3More precisely, they search for performance measures that satisfy four desiderata: (1) the performance of any

portfolio that can be replicated by a passively managed portfolio with weights based only on public information

should be zero, (2) the measure should be linear (i.e., the performance of a linear combination of portfolios should be

the linear combination of the individual portfolio measures), (3) it should be continuous (i.e., portfolios with similar

returns state by state should have similar performance measures), and (4) it should be nontrivial and assign a non-

zero value − that is, a positive price − to any traded security. They show that these four conditions are equivalent

to the absence of arbitrage and the concomitant existence of state prices or, equivalently, strictly stochastic discount

factors.
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the question of whether such investors should take small positions in a given managed portfolio.4 As

noted above, it is an objective measure in that investors with common beliefs about the conditional

mean vector and covariance matrix will agree on the composition of δ. Thus, we have identified a

reasonable candidate benchmark portfolio for performance measurement.

What benchmark portfolio is appropriate for investors who are not skeptical about the existence

of superior managers? One answer lies in an observation made earlier: such investors would

naturally think that managed portfolios represent a nontrivial enlargement of the asset menu.

That is, portfolio δ would change in its composition as it would place nonzero weight on managed

portfolios if they truly added value by improving investors’ ability to hedge against fluctuations in

their intertemporal marginal rate of substitution. Like the managed-portfolio-free version of δ, it

is an objective measure for investors who share common beliefs about conditional means, variances,

and covariances of returns in this enlarged asset menu.

2.1 Sources of Benchmarks

There is an apparent logical conundrum here: it would seem obvious that managed portfolios

either do or do not improve the investment opportunities available to investors. The answer, of

course, is that it is difficult to estimate the weights of portfolio δ with any precision in practice.

The required inputs are the conditional mean vector E[Rt+1|It] and the conditional covariance

matrix V ar(Rt+1|It) of these N assets. Unconditional mean stock returns cannot be estimated

with precision due to the volatility of long-lived asset returns and the estimation of conditional

means adds further complications. Unconditional return variances and covariances are measured

with greater precision but the curse of dimensionality associated with the estimation of the inverse

of the conditional covariance matrix limits asset menus to ten or twenty assets at most − a number

far fewer than the number of securities in typical managed portfolios.

This is one reason why benchmark portfolios are frequently specified in advance according

to an asset pricing theory. In particular, most asset pricing theories imply that intertemporal

marginal rates of substitution are linear combinations of particular portfolios. The Sharpe-Lintner-

Mossin CAPM implies that mt+1 is linear in the return of the market portfolio of all risky assets.

4This point is not quite right as stated because investors can only make marginal changes in one direction when

they cannot sell managed portfolios short. The statement is correct once one factors in the existence of an investor

who is long the fund in question and can make marginal changes in both directions.
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In the consumption CAPM, the single index is the portfolio with returns that are maximally

correlated with aggregate consumption growth, sometimes raised to some power. Other asset

pricing models imply that mt+1 is linear in the returns of other portfolios. In the CAPM with

nontraded assets, the market portfolio is augmented with the portfolio of traded assets with returns

that are maximally correlated with nontraded asset returns. The indices in the intertemporal

CAPM are the market portfolio plus portfolios with returns that are maximally correlated with the

state variables presumed to drive changes in the investment opportunity set. The APT also specifies

that mt+1 is (approximately) linear in the returns of several portfolios, well-diversified portfolios

that are presumed to account for the bulk of the (perhaps conditional) covariation among asset

returns.

In practice, chosen benchmarks typically reflect the empirical state of asset pricing theory and

constraints on available data. For example, we do not observe the returns of “all risky assets” −

that is, aggregate wealth − but stock market wealth in the form of the S&P 500 and the CRSP

value-weighted index is observable and, at one time, appeared to price most assets pretty well.

Before that, the single index market model was used to justify using the CRSP equally-weighted

index as a market proxy while the APTmotivates the use of multiple well-diversified portfolios. The

empirical success of models like the three-factor Fama-French model − a market proxy along with

size and market-to-book portfolios as benchmarks − and, more recently, the putatively anomalous

returns to momentum portfolios, have been added to the mix as a fourth factor.

Irrespective of the formal justification, such benchmarks take the form of a weighted average of

returns on a set of factors, fkt+1:

mt+1 =
KX
k=1

ωktfkt+1, (8)

where this relation differs from the projection (2) in having no error term. That is, the stochastic

discount factor is assumed to be an exact linear combination of observables. In the case of the

multifactor benchmarks, the weights are usually treated as unknowns to be estimated, as is the case

with portfolio δ save for the fact that there are only K weights to be estimated in this case. This

circumstance arises because most multifactor models, both the APT and the ad hoc models like

the Fama-French model, do not specify the values of risk premiums, which are intimately related

to the weights ωkt. In contrast, equilibrium models do typically specify the relevant risk premiums

and, implicitly, the weights ωkt. For example, letting Rmt+1 be the return on the market portfolio,
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the stochastic discount factor in the CAPM is given by:

mt+1 =
1−E[Rmt+1 −Rft+1|It][Rmt+1 −E(Rmt+1|It)]

Rft+1
(9)

As noted by Dybvig and Ingersoll (1982), the CAPM implicitly places constraints on the sample

space of market returns Rmt+1: the stochastic discount factor must be positive and so E[Rmt+1−

Rft+1|It][Rmt+1 −E(Rmt+1|It) < 1 must hold for all dates and states.

Another source of benchmark portfolios arises from specification of determinants of the betas

computed with respect to portfolio δ. At various times, security characteristics like firm value,

the ratio of market to book equity, price-earnings and price-dividend ratios, momentum variables,

alternative leverage ratios and such have been thought of as cross-sectional determinants of ex-

pected stock returns. To see how a priori specification of the determinants of betas facilitates the

identification of benchmark portfolios, let Zt denote an N ×M matrix, the rows of which consist

of vectors zit comprised of attributes of the ith security. Consider the population projection of βδt

on Zt in the cross-section

βδt = ZtΠδt + ηδt, (10)

and substitute this projection into the return equation

Rt+1 − ιRft+1 = βδt(Rδt+1 − ιRft+1) + ²δt+1

= (ZtΠδt + ηδt)(Rδt+1 − ιRft+1) + ²δt+1 (11)

= Ztλzt+1 + υt+1,

where λzt+1 = Πδt(Rδt+1−ιRft+1) and υt+1 = ηδt(Rδt+1−ιRft+1)+²δt+1. Since Zt is orthogonal

to ηδt by construction, Zt will be orthogonal to ηδt(Rδt+1 − ιRft+1) if the elements of ηδt are

uncorrelated with the risk premium E[Rδt+1 − ιRft+1|It]. Hence, the returns of portfolio δ are a

linear combination of returns to security characteristics that can be estimated via cross-sectional

regression of Rt+1 − ιRft+1 on Zt when the risk premium of portfolio δ is uncorrelated with the

unmodeled changes in betas computed with respect to it.

2.2 A First Pass at Performance Measurement

What does all of this have to do with portfolio performance measurement? To answer this, consider

a portfolio manager who manages a portfolio called p that is comprised of these N assets. The
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manager uses information Ipt to choose the weights ωpt. Suppose that the information available

to the manager is contained in the investor’s information set It (i.e., Ipt ⊆ It). Would an investor

whose portfolio holdings have been chosen to satisfy the marginal conditions E[mt+1Rit+1|It] = 1

find it desirable to divert some of the investment in the original N assets to this managed portfolio?

The answer is clearly no: the investor could have chosen ωpt as part of the original portfolio since

ωpt ∈ Ipt ⊆ It, since

E[mt+1Rpt+1|It] = E[mt+1ω
0
ptRt+1|It] = ω0ptE[mt+1Rt+1|It] = 1. (12)

Now consider the case in which the manager has access to information not available to the investor

so that wpt /∈ Ipt ⊆ It. In this case, the Euler equation need not hold − that is, E[mt+1Rpt+1|It]

need not equal one − if the information is available to investors only through the managed portfolio

p.

In particular, consider the (conditional) population projection of Rpt+1−Rft+1 on Rδt+1−Rft+1

and a constant:

Rpt+1 −Rft+1 = αpt + βpt(Rδt+1 −Rft+1) + εpt+1, (13)

where αpt and βpt are conditioned on It, the information available to the investor and not the

potentially richer information in the hands of the portfolio manager. Now consider the Euler

equation for p evaluated at the intertemporal marginal rate of substitution (or, equivalently, the

stochastic discount factor) after p has been added to the asset menu:

0 = E[mt+1(Rpt+1 −Rft+1)|It] = E[mt+1(αpt + βpt(Rδt+1 −Rft+1) + εpt+1)|It]

= R−1ft+1αpt +E[mt+1εpt+1|It] (14)

which implies that

αpt = −Rft+1E[mt+1εpt+1|It] (15)

Large values of αpt imply correspondingly large values of E[mt+1εpt+1|It], suggesting correspond-

ingly large gains from adding p to the asset menu in terms of hedging fluctuations in marginal

utilities. Put differently, δpt, the coefficient on Rpt+1 from the (conditional) population regression

of mt+1 on Rt+1 and Rpt+1, is given by:

δpt =
E[εmt+1εpt+1|It]
V ar(εpt+1|It)

=
E[mt+1εpt+1|It]
V ar(εpt+1|It)

= − αpt
Rft+1V ar(εpt+1|It)

(16)
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from the usual omitted variables formula. Large values of δpt also imply better marginal utility

hedging and δpt will be nonzero if and only if αpt is nonzero.

The regression intercept αpt is called the conditional Jensen measure in the performance evalu-

ation literature, the unconditional version of which was introduced in Jensen (1968, 1969).5 It has

a simple interpretation as the return on a particular zero net investment portfolio: that obtained

by purchasing one dollar of portfolio p and financing this acquisition by borrowing 1− βpt dollars

at the riskless rate and by selling βpt dollars of portfolio δ short. The Sharpe ratio of this portfolio

is
αptp

V ar(εpt+1|It)
which is proportional to the t−statistic for the difference of αpt from zero (the Sharpe ratio of any

zero net investment portfolio is its expected payoff scaled by the standard deviation of its payoff).

This Sharpe ratio is called the Treynor-Black (1973) appraisal ratio.

This role for the regression intercept also suggests that performance evaluation via Jensen

measures is fraught with hazard. A nonzero value of αpt could also reflect benchmark error. That

is, αpt would typically be nonzero if portfolio δ is not (conditionally) mean-variance efficient even

if the portfolio manager has no superior information and skill. Hence, it is often difficult to tell if

one is learning about the quality of the manager or the quality of the benchmark when examining

Jensen regressions. This is why the strictly correct interpretation of nonzero intercepts is that the

mean-variance trade-off based on portfolio δ and the riskless asset can be improved by augmenting

the asset menu to include portfolio p as well, not that the managed portfolio outperforms the

benchmark.

As noted earlier, portfolio δ might include or exclude portfolio p. The exclusion of portfolio

p from the asset menu corresponds to a thought experiment in which hypothetical investors with

no investment in this portfolio are using portfolio δ to evaluate the consequences of adding a small

amount of portfolio p to the asset menu. Similarly, the inclusion of portfolio p in the asset menu

used to construct portfolio δ corresponds to a thought experiment in which hypothetical investors

who have a position in portfolio p are assessing whether they have invested the correct amount in

5 Interestingly, Jensen did not motivate the use of the CRSP equally-weighted portfolio solely by reference to the

CAPM. He coupled this justification with the observation that its returns would well approximate the returns on

aggregate wealth if returns follow a single factor model, implicitly making his reasoning a progenitor of one factor

versions of the equilibrium APT.
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it. In the language of hypothesis testing, the former approach corresponds to a Lagrange multiplier

test of the null hypothesis of no abnormal performance while the latter corresponds to a Wald test

when testing the hypothesis that the weight on p should be zero. The pervasive adoption of the

former approach in the performance evaluation literature probably reflects general skepticism in

the profession on the economic value of active management. It is as though we believe that asset

prices are set in an efficient market but that the market for active managers who earn abnormal

fees is inefficient.

Finally, the Sharpe ratio to which we referred above represents a non-benchmark-based approach

to performance measurement. In its conditional form, the Sharpe ratio of portfolio p is given by:

E[Rpt+1 −Rft+1|It]p
V ar[Rpt+1|It]

which is the conditional mean return divided by its standard deviation of a dollar invested in

portfolio p that is financed by borrowing a dollar at the riskless rate. The Sharpe ratio got its

start in Sharpe (1966) as a simple and intuitive measure of how far a given portfolio was from the

mean/variance efficient frontier.

Over time, it has become clear that the measurement of the distance between a given portfolio

and the mean/variance efficient frontier is quite a bit more subtle, involving Jensen’s alpha in an

unexpected way (see, for example, Jobson and Korkie (1982) and Gibbons, Ross, and Shanken

(1989)). We noted earlier that αpt is the expected return of a portfolio that is long one dollar of

portfolio p and short βpt dollars of portfolio δ and 1− βpt dollars of the riskless asset, which makes

it a costless and zero beta portfolio. As such, it is a means to get to the mean/variance efficient

frontier through a suitable combination of the N given assets, the riskless asset, and this costless

zero beta portfolio. This reasoning extends toM additional managed portfolios in a straightforward

way.

This has left the Sharpe ratio in a sort of intellectual limbo. The simple intuition has survived

and the practitioner literature and, perhaps more importantly, performance measurement in prac-

tice often refers to the Sharpe ratio. It has fallen out of fashion in the academic literature since we

now understand its deficiencies much better. It is simply not the case that managed portfolio A is

better than B if its Sharpe ratio is higher because the distance to the frontier depends on portfolio

alphas and residual variances and covariances, not on the mean and variance of overall portfolio
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returns. Benchmark-based performance measurement is the focus of the academic literature and

practitioners who use Sharpe ratios generally do so in conjunction with Jensen alphas, often under

the rubric of tracking error.

3 Performance Measurement and Market Timing

The conditional Jensen regression (13) differs from the original in Jensen (1968, 1969) in only two

details: the Jensen alpha αpt and portfolio beta βpt are conditional and not unconditional moments

and the benchmark portfolio is δ and not ”the market portfolio of all risky assets” underlying the

CAPM. There is an important commonality with the original since it is natural to decompose

returns into two components, that related to benchmark or market returns − that is, βpt(Rδt+1 −

Rft+1) − and that unrelated to them − that is, αpt+εpt+1. By analogy with the older parlance, we

can term the first component the return to market timing and, under this interpretation, the second

component must reflect the rewards to security selection. The distinction between market timing

and security selection permeates both the academic and practitioner literatures on performance

attribution and evaluation.

The impact of real or imagined market timing ability on performance measurement depends

on whether the return generating process experiences time variation. That is, the benchmark

beta βpt might change because of time-variation in individual security betas and not because the

manager is attempting to time the market. Similarly, the expected returns of portfolio p might

also change if E[Rδt+1−Rft+1|It] varied over time. Moreover, the manager might choose to make

portfolio betas shift along with changes in benchmark portfolio volatility or other higher moments.

Accordingly, we must distinguish between the case in which excess benchmark returns are serially

independent from the perspective of uninformed portfolio managers from those in which there is

serial dependence (predictability) based on public information.

Accordingly, consider first the case in which the manager of portfolio p does not attempt

to time the market and the conditional benchmark risk premium is time invariant − that is,

E[Rδt+1−Rft+1|It] = E[Rδt+1−Rft+1]. Since the fund has a constant target beta βp, the original

unconditional Jensen regression:

Rpt+1 −Rft+1 = αp + βp(Rδt+1 −Rft+1) + �pt+1 (17)

is related to that from the conditional Jensen regression (13) via:
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�pt+1 = αpt − αp + εpt+1 (18)

where αp ≡ E[αpt] is the unconditional Jensen performance measure. This is a perfectly well-posed

regression with potentially serially correlated and heteroskedastic disturbances, although there are

economic settings in which market efficiency requires αpt − αp to be unpredictable. Hence, one

can estimate αp and βp consistently in these circumstances and so the Jensen measure correctly

measures the rewards to security selection.

Unsuccessful market timing efforts complicate performance attribution, but not performance

measurement per se, when expected excess benchmark returns are constant. If the manager shifts

betas but has no market timing ability, the composite error �pt+1 in the population is now given

by:

�pt+1 = αpt − αp + (βpt − βp)(Rδt+1 −Rft+1) + εpt+1 (19)

which has unconditional mean zero because:

E[�pt+1] = E[αpt − αp + (βpt − βp)(Rδt+1 −Rft+1) + εpt+1]

= E[(βpt − βp)(Rδt+1 −Rft+1)] (20)

= Cov[βpt, Rδt+1 −Rft+1]

is equal to zero unless the manager has market timing ability. Once again, the unconditional

Jensen regression will yield consistent estimates of the unconditional beta βp and Jensen measure

αp.6 The residual, however, is no longer solely a reflection of the security selection component of

returns.

Problems crop up when managers engage in efforts to time the market and they are successful

(on average) in doing so. Once again, the unconditional Jensen measure is given by (17):

αp = E[Rpt+1 −Rft+1 − βp(Rδt+1 −Rft+1)]

= E[αpt + (βpt − βp)(Rδt+1 −Rft+1) + εpt+1]

= E[αpt] + Cov[βpt, Rδt+1 −Rft+1]

6The fact that the residual is conditionally heteroskedastic and, perhaps, serially correlated due to the αpt − αp

and (βpt − βp)(Rδt+1 −Rft+1) terms suggests that some structure might be placed on their stochastic properties to

draw inferences about their behavior. An example of this sort is presented in the next section.
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so that the sign and magnitude of the unconditional alpha depends on the way in which the manager

exploits market timing ability. The coefficient αp will measure the reward to security selection

only if the manager uses this skill to give the portfolio a constant beta, in which case �pt+1 correctly

measures the return to security selection.

Otherwise, the Jensen measure will reflect both market timing and security selection ability

when managers are successful market timers, thus breaking the clean decomposition of returns into

security selection and market timing. The Jensen alpha will be positive if the manager uses market

timing to improve portfolio performance − that is, to have a higher expected return than that

which can be gained solely from security selection ability − by setting Cov[βpt, Rδt+1−Rft+1] > 0

but the Jensen measure alone cannot be used to decompose performance into market timing and

security selection components. Similarly, market timing efforts can yield a negative Jensen alpha

when the manager tries to make the fund countercyclical by setting Cov[βpt, Rδt+1 − Rft+1] < 0.

This last possibility is not a pathological special case: managers with market timing ability who

minimize portfolio variance for a given level of unconditional expected excess returns will tend to

have portfolio betas that are negatively correlated with benchmark risk premiums. The observation

that a negative estimate of Jensen’s alpha can result from market timing skills has been made by,

inter alia, Jensen (1972), Admati and Ross (1985) and Dybvig and Ross (1985).

Performance measurement and attribution is even more complicated when there is serial depen-

dence in returns from the perspective of managers without market timing ability. The reason is

obvious: such managers can make their betas dependent on conditional expected excess benchmark

returns. That is, managed portfolios can have time-varying expected returns and betas conditional

on public information, not just private information. In particular, Cov[βpt, Rδt+1 − Rft+1] need

not be zero even in the absence of market timing ability since:

Cov[βpt, Rδt+1 −Rft+1] = E[(βpt − βp)[(Rδt+1 −Rft+1)−E(Rδt+1 −Rft+1|It)]]

+E[(βpt − βp)[E(Rδt+1 −Rft+1|It)−E(Rδt+1 −Rft+1)]]

= Cov[βpt, Rδt+1 −Rft+1|It] + Cov[βpt, E(Rδt+1 −Rft+1|It)] (21)

can be nonzero both in the presence of market timing ability, which makes the first term nonzero,

and of portfolio betas that are correlated with shifts in the benchmark risk premium, which makes

the second term nonzero. Once again, there is no simple decomposition of portfolio returns into

security selection and market timing components based on managed portfolio returns alone when
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returns are predictable on the basis of public information.

Successful market timing and, to a lesser extent, serial dependence in returns engenders more

than just problems with the measurement of security selection and market timing ability per se.

First, the distinction between conditional and unconditional moments is a subtle and important

one. Successful market timers may produce portfolios with superior conditional risk/reward ratios

that appear to be inferior when viewed unconditionally. After all, an informed manager will

of necessity substantially alter the composition of their portfolios when their information warrants

doing so while their uninformed counterparts are staying the course, giving the return of the actively

managed portfolio appear to be more volatile to the uninformed eye. Reaction to public information

that changes the conditional mean and covariance structure of returns can do so as well. Second,

this volatility created by successful active management makes for decidedly non-normal returns.

The beta of a successful market timer will be correlated with the subsequent benchmark return.

Even if benchmark returns are normally distributed, the product of the benchmark return and the

beta with which it is correlated will not be normally distributed. In some of the models in the next

section, benchmark returns are normally distributed and betas are linear in benchmark returns,

resulting in managed portfolio returns that are the sum of normally distributed and chi-squared

distributed terms. The latter are skewed to the right and bounded from below. For both kinds

of reasons, portfolio means and variances are not ”sufficient statistics” for the return distributions

produced by the portfolio manager.

3.1 Alternative Models of Market Timing

Since market timing complicates performance measurement and attribution, it is perhaps unsur-

prising that methods for dealing with it have been one of the main preoccupations of the literature.

These come in two basic flavors: simple modifications of the Jensen regression to deal with success-

ful market timing and the time-varying expected returns and models in which signals to informed

managers are drawn from analytically convenient distributions. We discuss these issues in turn.

As it happens, it is possible to improve on the Jensen regression in a very simple way. Treynor

and Mazuy (1966) pointed to an adjustment to deal with potential market timing ability by asking

a simple question: when will market timing be most profitable relative to a benchmark? Their

answer was equally simple: market timers will profit both when returns are large and positive and

when they are large and negative if they increase betas when they expect the market to rise and
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shrink or choose negative betas when they expect the market to fall. Since squared returns will be

large in both circumstances, modifying the Jensen regression to include squared benchmark returns

can facilitate the measurement of both market timing and security selection ability.

Accordingly, consider the Treynor-Mazuy quadratic regression:

Rpt+1 −Rft+1 = ap + b0p(Rδt+1 −Rft+1) + b1p(Rδt+1 −Rft+1)
2 + ζpt+1

and suppose that the manager has a constant unconditional beta βp, so that βpt = βp + ξβpt is

a choice variable for the manager and not the conditional beta based on public information as in

(13).7 Substitution of this variant of the conditional Jensen regression into the normal equations

for the quadratic regression reveals that the unconditional projection coefficients b0p and b1p are

given by:⎛⎝ b0p

b1p

⎞⎠ =

⎡⎣V ar
⎛⎝ Rδt+1 −Rft+1

(Rδt+1 −Rft+1)
2

⎞⎠⎤⎦−1Cov
⎡⎣Rpt+1 −Rft+1,

⎛⎝ Rδt+1 −Rft+1

(Rδt+1 −Rft+1)
2

⎞⎠⎤⎦
=

⎛⎝ βp

0

⎞⎠+ 1

σ2δσ4δ − σ23δ

⎛⎝ σ4δ −σ3δ
−σ3δ σ2δ

⎞⎠
×

⎛⎝ Cov[ξβpt , (Rδt+1 −Rft+1)
2] + Cov[αpt, Rδt+1 −Rft+1]

Cov[ξβpt , (Rδt+1 −Rft+1)
3] + Cov[αpt, (Rδt+1 −Rft+1)

2]

⎞⎠
≡

⎛⎝ βp

0

⎞⎠+
⎛⎝ γ0p

γ1p

⎞⎠ , (22)

where σ3δ and σ4δ are the unconditional skewness and kurtosis of excess benchmark returns, re-

spectively. Similarly, the quadratic regression intercept ap is given by:

ap = αp + Cov[ξβpt , Rδt+1 −Rft+1]− γ0pE[Rδt+1 −Rft+1]− γ1pE[(Rδt+1 −Rft+1)
2]. (23)

As was the case earlier, it is convenient to separate the analysis into two cases: that in which

excess benchmark returns are serially independent and that in which they are serially dependent.

We discuss these cases in turn.

Before doing so, however, we must address the role of αpt in understanding market timing skills.

To the best of our knowledge, no paper in the performance evaluation literature has contemplated

the possibility that the conditional Jensen measure αpt is correlated with the conditional moments

7The target beta could be time-varying as long as its value is known by uninformed investors.
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of future excess benchmark returns, probably because selection skills have been thought to deliver,

at best, constant expected returns and not because there are economic reasons for thinking that

security selection prospects are not correlated with fluctuations in benchmark volatility and skew-

ness. A better reason for assuming that these correlations are zero is implicit in the observation

that security selection is a zero beta trading activity, suggesting that active managers would prob-

ably control the portfolio beta so as to make it so. Accordingly, it seems reasonable to suppose the

covariance terms involving αpt are equal to zero in what follows.

That said, these relations conceal a somewhat surprising result when excess benchmark returns

are serially independent. In this case, the two bias terms are given by:⎛⎝ γ0p

γ1p

⎞⎠ =
1

σ2δσ4δ − σ23δ

⎛⎝ σ4δ −σ3δ
−σ3δ σ2δ

⎞⎠⎛⎝ Cov[ξβpt , (Rδt+1 −Rft+1)
2]

Cov[ξβpt , (Rδt+1 −Rft+1)
3]

⎞⎠
which will be nonzero only if ξβpt is correlated with next period’s square and/or cubed excess

returns, except for singularities in these equations. That is, only a manager who possesses market

timing ability can shift portfolio betas in this fashion. Unfortunately, this ability to detect market

timing does not translate into clean measures of market timing ability because the beta shifts cannot

be inferred from returns alone without further assumptions. One simply cannot separately identify

the three moments related to systematic risk exposure − that is, βp, Cov[ξβpt , (Rδt+1 − Rft+1)
2],

and Cov[ξβpt , (Rδt+1 −Rft+1)
3] − from b0p and b1p alone without additional restrictions.

3.1.1 Gaussian Signals and Returns

Admati et al. (1986) put additional structure on the problem to measure market timing ability

within this framework.8 They assume that the manager observes excess benchmark returns with

error and that both the signal and benchmark returns are normally distributed. They show that

b1p equals the ratio of the risk aversion parameter to the variance of the noise of the market timing

signal under these assumptions. They then observe that the residual from the Treynor-Mazuy

regression has conditional heteroskedasticity related to excess benchmark returns. They show that

the coefficient from the regression of ζ2pt+1 on (Rδt+1−Rft+1)
2 is equal to the ratio of the squared risk

8Admati et al. (1986) also provide a different formulation in which both the quality of the timing and selectivity

information can be deduced. Unfortunately, their result requires an extremely large number of regressors - the levels,

squares, and cross-products of individual security and benchmark returns - to be included in a set of cross-sectional

and time-series regressions, rendering this approach infeasible.
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aversion parameter to the variance of the noise of the market timing signal, which they can use in

conjunction with b1p to disentangle the two. Finally, they note that a nonzero intercept will correctly

indicate the presence of security selection ability under their assumptions but that its quality cannot

be determined since it can only be used to measure the sum αp+Cov[ξβpt , Rδt+1−Rft+1] and not

its components.

One can gain additional insight into the Treynor-Mazuy regression by reparameterizing the

problem slightly. In particular, substitute the unconditional projection of excess benchmark returns

on ξβpt :

Rδt+1 −Rft+1 = μδ + πpξβpt + υδt+1 (24)

into the bias terms:⎛⎝ γ0p

γ1p

⎞⎠ =
1

σ2δσ4δ − σ23δ

⎛⎝ σ4δ −σ3δ
−σ3δ σ2δ

⎞⎠ (25)

×

⎛⎝ π2pσ3ξ + πpμδσ
2
ξ +E[ξβptυ

2
δt+1]

π3pσ4ξ + μδπ
2
pσ3ξ + πpCov[ξ

2
βpt

, υ2δt+1] + 2πpE[ξ
2
βpt

υ2δt+1] + μδCov[ξβpt , υ
2
δt+1]

⎞⎠ .

As is readily apparent, one determinant of the complexity of the inference problem is the possibility

of conditional heteroskedasticity in the projection relating ex post excess benchmark returns to beta

shifts. In the absence of such dependence, the bias terms reduce to:⎛⎝ γ0p

γ1p

⎞⎠ =
1

σ2δσ4δ − σ23δ

⎛⎝ σ4δ −σ3δ
−σ3δ σ2δ

⎞⎠⎛⎝ π2pσ3ξ + πpμδσ
2
ξ

π3pσ4ξ + μδπ
2
pσ3ξ + 2πpσ

2
ξσ
2
υ

⎞⎠ .

This is further simplified if normality of ξβpt and υδt+1 is assumed along the lines of Admati

et al (1986). Normality simplifies matters considerably, the resulting symmetry implying that

σ3δ = σ3ξ = 0 and the absence of excess kurtosis leading to σ4δ = 3σ4δ and σ4ξ = 3σ
4
ξ . Under these

conditions, the bias terms are given by:⎛⎝ γ0p

γ1p

⎞⎠ =

⎛⎝ μδπp
σ2ξ
σ2δ

π3p
σ4ξ
σ4δ
+ πp

2σ2ξσ
2
υ

3σ4δ

⎞⎠ =

⎛⎝ μδ
πpσ2ξ
σ2δ

πp
π2pσ

4
ξ

σ4δ
+ 2

3

πpσ2ξ
σ2δ

σ2δ−π2pσ2ξ
σ2δ

⎞⎠
≡

⎛⎝ μδ
σ2δ
θp

πp
3σ4δ

θ2p +
2
3σ2δ

θp

⎞⎠ , (26)

where θp = πpσ
2
ξ = Cov[ξβpt , Rδt+1−Rft+1] is the bias term preventing estimation of Jensen’s alpha

in the Jensen regression. The Treynor-Mazuy intercept is biased as well: while Cov[ξβpt , Rδt+1 −

Rft+1] is positive in this model, so are γ0p and γ1p and, hence, ap is of unknown sign.
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Next we exploit the conditional heteroskedasticity in the quadratic regression residual. In our

notation, the residual is given by:

ζpt+1 = (ξβpt − γ0p)(πpξβpt + υδt+1)− πpσ
2
ξ + μδξβpt − b1p[(πpξβpt + υδt+1)

2 − σ2δ] + εpt+1, (27)

when αpt = αp and there is conditional heteroskedasticity in the Treynor-Mazuy regression related

to excess benchmark returns as was observed by Admati et al. (1986). Consider the population

value of the squared quadratic regression residual on excess benchmark returns and their squares:

ζ2pt+1 = κ0p + τ0p(Rδt+1 −Rft+1) + τ1p(Rδt+1 −Rft+1)
2 + ηpt+1

which differs from Admati et al. (1986) in the inclusion of Rδt+1 − Rft+1 on the right hand side.

An exceptionally tedious calculation reveals that τ1p and τ2p are given by:⎛⎝ τ0p

τ1p

⎞⎠ =

⎛⎝ 2μδσ
2
ξ − 2μδ

π2pσ
4
ξ

σ2δ
2
3 [4γ

2
1pσ

2
δ − 8γ1pπpσ2ξ + σ2ξ + 3

π2pσ
4
ξ

σ2δ
]

⎞⎠
≡

⎛⎝ 2μδσ
2
ξ − 2μδ

θ2p
σ2δ

2
3 [4γ

2
1pσ

2
δ − 8γ1pθp + σ2ξ + 3

θ2p
σ2δ
]

⎞⎠
where τ0p is also given by 2μδσ

2
ξ(1−R2δ ) where R2δ is the coefficient from the projection of Rδt+1−

Rft+1 on ξβpt (i.e., equation (24)). These quadratic equations can be solved for σ2ξ and θp in yet

another tedious calculation. The two solutions are given by:

θp = γ21pσ
2
δ ±

q
γ21pσ

2
δμ
3
δ(3μδτ1p − τ0p)

2
√
2μ2δ

σ2ξ = γ21pσ
2
δ +

3

8μδ
(μδτ1p + τ0p)±

q
γ21pσ

2
δμ
3
δ(3μδτ1p − τ0p)

2
√
2μ2δ

The remaining parameters are now easily obtained by noting that πp =
θ2p
σ2ξ
and obtaining βp and

αp substituting θp into (26). In addition, γ1p is completely determined by πp and θp and so there

is a cross-equation restriction relating b1p, τ0p, and τ1p that can be tested using the appropriate χ2

statistic.

Despite the need for making strong assumptions to arrive at these results, it is remarkable that

we can infer a range of economically interesting parameters from a set of simple, conditionally

heteroskedastic regressions.
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Matters are more complicated still when returns are serially dependent. The first point echoes

one made in the previous section: time variation in expected returns can make a portfolio manager

without skill look like a successful market timer. That is, the covariance terms:⎛⎝ Cov[ξβpt , (Rδt+1 −Rft+1)
2]

Cov[ξβpt , (Rδt+1 −Rft+1)
3]

⎞⎠ =

⎛⎝ Cov[ξβpt , E[(Rδt+1 −Rft+1)
2|It]] + Cov[ξβpt , (Rδt+1 −Rft+1)

2|It]

Cov[ξβpt , E[(Rδt+1 −Rft+1)
3|It]] + Cov[ξβpt , (Rδt+1 −Rft+1)

3|It]

⎞⎠
can be nonzero in the absence of true market timing ability when there is serial dependence in

excess returns since ξβpt can be chosen by the manager to move with E[(Rδt+1 − Rft+1)
2|It] and

E[(Rδt+1−Rft+1)
3|It] .9 Hence, it is no longer the case that b1p 6= 0 only if the manager possesses

market timing ability.

Little can be done about this problem without a priori information on time variation in the

distribution of excess benchmark returns. Suppose we know both the conditional mean and variance

of excess benchmark returns, perhaps in the form of models of the form μδt = E[Rδt+1−Rft+1|It] =

f(zt, θ) and σ2δt = E[(Rδt+1−Rft+1−μδt)2|It] = g(zt, θ) where zt ∈ It and θ is a vector of unknown

parameters. Rewrite the Treynor-Mazuy quadratic regression with the linear and quadratic terms

in deviations from conditional means:

Rpt+1 −Rft+1 = Ep + b∗0p(Rδt+1 −Rft+1 − μδt) + b∗1p[(Rδt+1 −Rft+1 − μδt)
2 − σ2δt] + ζpt+1

where Ep is the unconditional mean return of the managed portfolio. Similarly, rewrite the uncon-

ditional projection (24) in terms of Rδt+1 −Rft+1 − μδt:

Rδt+1 −Rft+1 = μδt + π∗pξβpt + υ∗δt+1 (28)

where the projection coefficient π∗p generally being different from πp since μδ is replaced by μδt in

this projection. In these circumstances, managed portfolio returns are given by:

Rpt+1 −Rft+1 = αpt + βpt(Rδt+1 −Rft+1) + εpt+1

= αpt + βpt(μδ + π∗pξβpt + υ∗δt+1) + [βpt(μδt − μδ)] + εpt+1, (29)

where the term in square brackets − that is, βpt(μδt − μδ) − is the additional variable present

in this conditional Jensen regression over that in the independently distributed case. Hence, the
9 In addition, a manager with true selection skill can appear to be a market timer as well since Cov(αpt, E[(Rδt+1−

Rft+1)
2|It]) and Cov(αpt, E[(Rδt+1 − Rft+1)

3|It]) can be nonzero as well. Our earlier argument suggests that we

should not be so concerned about spurious market timing measures from this source.
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quadratic regression coefficients are given by:⎛⎝ b∗0p

b∗1p

⎞⎠ =

⎡⎣V ar
⎛⎝ Rδt+1 −Rft+1

(Rδt+1 −Rft+1)
2

⎞⎠⎤⎦−1Cov
⎡⎣Rpt+1−Rft+1,

⎛⎝ Rδt+1 −Rft+1 − μδt

(Rδt+1 −Rft+1 − μδt)
2 − σ2δt

⎞⎠⎤⎦
=

⎡⎣V ar
⎛⎝ Rδt+1 −Rft+1

(Rδt+1 −Rft+1)
2

⎞⎠⎤⎦−1 ×
E

⎡⎣[αpt+βpt(μδ+π∗pξβpt+υ∗δt+1) + εpt+1]

⎛⎝ Rδt+1 −Rft+1 − μδt

(Rδt+1 −Rft+1 − μδt)
2 − σ2δt

⎞⎠⎤⎦
+

⎡⎣V ar
⎛⎝ Rδt+1 −Rft+1

(Rδt+1 −Rft+1)
2

⎞⎠⎤⎦−1E
⎡⎣βpt(μδt−μδ)

⎛⎝ Rδt+1 −Rft+1 − μδt

(Rδt+1 −Rft+1 − μδt)
2 − σ2δt

⎞⎠⎤⎦
=

⎛⎝ βp

0

⎞⎠+ 1

σ̄2δ σ̄4δ−σ̄23δ

⎛⎝ σ̄4δ −σ̄3δ
−σ̄3δ σ̄2δ

⎞⎠×
E

⎡⎣ξβpt(μδt+π∗pξβpt+υ∗δt+1)
⎛⎝ π∗pξβpt + υ∗δt+1

(π∗pξβpt + υ∗δt+1)
2 − σ2δt

⎞⎠⎤⎦
where the bars over the variance and covariance terms represents the unconditional expectation

of the corresponding time-varying conditional moments. While this expression bears a formal

resemblance to (22), it is still potentially corrupted with spurious market timing both because ξβpt
is uncorrelated with υ∗δt+1 but need not be independent of it and because ξ

2
βpt

and ξβptυ
∗
δt+1 can

be correlated with μδt as well. Accounting for the serial dependence in excess benchmark returns

alone is insufficient to solve the problem posed by spurious market timing.

One way out of this conundrum is to break the beta shift terms ξβpt into two components, one

that reflects the expected portfolio beta given public information and another that represents the

manager’s market timing efforts beyond that which can be accounted for with public information.

Put differently, we took the target beta to be constant earlier but we could just as easily have made

it time-varying as in:

βpt = βpt + ξβpt ≡ βp + ςβpt + ξβpt (30)

where ςβpt has mean zero conditional on public information It. As was the case with μδt and

σ2δt, we will treat ςβpt as an observable even though it is modeled, usually as a projection on time

t information, in actual practice. Measurement of this component of beta fluctuations eliminates
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spurious market timing biases in the simple Jensen measure since:

Rpt+1 −Rft+1 = αpt + βp(Rδt+1 −Rft+1) + ςβpt(Rδt+1 −Rft+1) + εpt+1 (31)

and αp = E[αpt] and βp can be estimated without bias when the manager does not possess market

timing ability and ςβpt(Rδt+1 − Rft+1) is observed. The words ”without bias” are replaced by

”consistently” when ςβpt is not observed but can be estimated consistently. Ferson and Schadt

(1996) assume that both βpt and ςβpt are linear projections on conditioning information and study

a version of the Treynor-Mazuy quadratic regression that takes the form:

Rpt+1−Rft+1 = αpt+βpt(Rδt+1−Rft+1)+ ςβpt(Rδt+1−Rft+1)+b∗1p(Rδt+1−Rft+1)
2+εpt+1 (32)

Similarly, we can refine the Treynor-Mazuy regressions while simultaneously weakening the

assumption regarding the observability of replacing observation of ςβpt . In particular, augmenting

the quadratic regression with the assumption that Cov[ςβpt , σ
2
δt] = Cov[ςβpt , σ3δt] = 0 solves the

market timing problem in that, since ςβpt is in the time t public information set,⎛⎝ b∗0p

b∗1p

⎞⎠ =

⎡⎣V ar
⎛⎝ Rδt+1 −Rft+1

(Rδt+1 −Rft+1)
2

⎞⎠⎤⎦−1E
⎧⎨⎩(βp + ςβpt)E

⎡⎣⎛⎝ (Rδt+1 −Rft+1 − μδt)
2

(Rδt+1 −Rft+1 − μδt)
3

⎞⎠ |It
⎤⎦⎫⎬⎭

+

⎡⎣V ar
⎛⎝ Rδt+1 −Rft+1

(Rδt+1 −Rft+1)
2

⎞⎠⎤⎦−1E
⎡⎣ξβpt(μδt+π∗pξβpt+υ∗δt+1)

⎛⎝ π∗pξβpt + υ∗δt+1

(π∗pξβpt + υ∗δt+1)
2 − σ2δt

⎞⎠⎤⎦
=

⎛⎝ βp

0

⎞⎠+ 1

σ̄2δ σ̄4δ−σ̄23δ

⎛⎝ σ̄4δ −σ̄3δ
−σ̄3δ σ̄2δ

⎞⎠×
E

⎡⎣ξβpt(μδt+π∗pξβpt+υ∗δt+1)
⎛⎝ π∗pξβpt + υ∗δt+1

(π∗pξβpt + υ∗δt+1)
2 − σ2δt

⎞⎠⎤⎦
=

⎛⎝ βp

0

⎞⎠+
⎛⎝ γ∗0p

γ∗1p

⎞⎠ .

In so doing, we have recovered the earlier result that b∗1p = γ∗1p will be nonzero if and only if the

manager possesses market timing ability.

A few additional moment conditions will permit us to recover the results we obtained earlier

for the case of serially independent returns. If the lack of correlation between ξβpt and υ∗δt+1 is
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strengthened to independence, the bias terms reduce to:⎛⎝ γ∗0p

γ∗1p

⎞⎠ =
1

σ̄2δ σ̄4δ − σ̄23δ

⎛⎝ σ̄4δ −σ̄3δ
−σ̄3δ σ̄2δ

⎞⎠⎛⎝ π2pσ̄3ξ+πpE[μδtσ
2
ξt]

π3pσ̄4ξ+π
2
pE[μδtσ3ξt] + 2πpE[σ

2
ξtσ

2
υt]

⎞⎠ , (33)

and so the bias terms are structurally identical to γ0p and γ1p if μδt is uncorrelated with σ3ξt and

σ2ξt and if σ
2
ξt is uncorrelated with σ

2
υt. Similarly, normality of ξβpt and υδt+1 further simplifies the

bias terms to: ⎛⎝ γ∗0p

γ∗1p

⎞⎠ =

⎛⎝ μ̄δπp
σ̄2ξ
σ̄2δ

π3p
σ̄4ξ
σ̄4δ
+ πp

2σ̄2ξσ̄
2
υ

3σ̄4δ

⎞⎠ ≡
⎛⎝ μ̄δ

σ̄2δ
θ̄p

πp
3σ̄4δ

θ̄
2
p +

2
3σ̄2δ

θ̄p

⎞⎠ , (34)

where θ̄p = πpσ̄
2
ξ = Cov[ξβpt , Rδt+1 −Rft+1] is the average bias term preventing consistent estima-

tion of Jensen’s alpha. The conditional heteroskedasticity analysis goes through as written with

starred and barred quantities once again replacing their unadorned counterparts.

3.1.2 Period Weighting Measures

Returning to the case of time invariant risk exposures and risk premiums, Grinblatt and Titman

(1989) point to circumstances in which Jensen-like alphas will correctly signal the presence of

managerial skill in a model with the same basic structure as Admati et al. (1986). A good starting

point is the Jensen regression with time invariant alphas and betas. As is well known, the least

squares estimator of the Jensen alpha is a linear combination of managed portfolio returns:

α̂p =
TX
t=1

ωαt(Rpt+1 −Rft+1)

with weights that satisfy:

TX
t=1

ωαt = 1

TX
t=1

ωαt(Rδt+1 −Rft+1) = 0.

Grinblatt and Titman (1989) point out that the least squares weights are only one linear combina-

tion with these features: any intercept estimator based on weights that satisfy these constraints

will provide an unbiased estimate of the regression intercept (which will generally not be equal to

the Jensen alpha in the presence of market timing ability) as long as it has weights of order 1
T .

They termed the estimators in this class period weighting measures because each of the weights
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ωαt gives potentially different weight to each observation and they searched for estimators that

improve on the Jensen alpha under the normality assumptions made in Admati et al. (1986).

Period weighting measures are given by:

α̂GTp =
TX
t=1

ωαt(Rpt+1 −Rft+1) =
TX
t=1

ωαt[αpt + βpt(Rδt+1 −Rft+1) + εpt+1]

and their associated expectations αGTp = E[α̂GTp ] are given by:

αGTp =
TX
t=1

E[ωαt(αpt + βpt(Rδt+1 −Rft+1) + εpt+1)]

=
TX
t=1

E[ωαt(αpt + εpt+1)] +
TX
t=1

E[ωαtβpt(Rδt+1 −Rft+1)]

Now suppose that the weights are chosen to be functions of the normally distributed excess bench-

mark returns alone. Uncorrelated random variables are independent under joint normality, so the

first term is an unbiased estimate of the expected alpha as before because:

αGTp =
TX
t=1

ωαtE[αpt + εpt+1] +
TX
t=1

E[ωαtβpt(Rδt+1 −Rft+1)]

= αp +
TX
t=1

E[ωαtβpt(Rδt+1 −Rft+1)], (35)

as was the case for the Jensen measure. In this model, the bias term can be rewritten as:

αGTp = αp +
TX
t=1

E[ωαt(βp + ξβpt)(Rδt+1 −Rft+1)]

= αp +
TX
t=1

E[ωαtξβpt(Rδt+1 −Rft+1)] (36)

because
PT

t=1 ωαt(Rδt+1 − Rft+1) = 0. If, in addition, the weights ωαt are strictly positive, this

bias term is positive as well since the substitution of the projection:

ξβpt = πβ(Rδt+1 −Rft+1 − μδ) + υβt+1
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into (36) yields:

αGTp = αp +
TX
t=1

E[ωαt[πβ(Rδt+1 −Rft+1 − μδ) + υβt+1](Rδt+1 −Rft+1)]

= αp +
TX
t=1

E[ωαt(Rδt+1 −Rft+1)E[πβ(Rδt+1 −Rft+1 − μδ) + υβt+1|Rδt+1 −Rft+1]]

= αp +
TX
t=1

E[ωαt(Rδt+1 −Rft+1)πβ(Rδt+1 −Rft+1 − μδ)]

= αp +
TX
t=1

πβE[ωαt(Rδt+1 −Rft+1)
2] > 0

where the transition from the penultimate to the last line follows from the constraint
PT

t=1 ωαt(Rδt+1−

Rft+1) = 0 and where αGTp > 0 because ωαt > 0 implies ωαt(Rδt+1−Rft+1)
2 > 0. Once again, α̂GTp

does not measure the degree of ability or whether it is of the market timing or security selection

variety. Grinblatt and Titman’s insight was that positive period weighting measures are positive

in the presence of skill in this setting.

3.1.3 Directional Information

Merton (1981) and Henriksson and Merton (1981) provide a framework for testing market timing

skills when forecasters make directional forecasts that produces another variant of the Treynor-

Mazuy regression. That is, they study market timers who may have information on whether excess

benchmark returns Rδt+1−Rft+1 are expected to be positive or negative and not their magnitudes.

The market timing strategies assumed by them are particularly simple: the portfolio beta is set

to the high value βh when the benchmark is predicted to exceed the riskless rate and to the low

value βc when the expected excess benchmark return is negative.

This structure makes it easy to analyze the impact of market timing on performance measure-

ment. There are four states of the world hu, hd, cu, and cd where u denotes states in which

Rδt+1 ≥ Rft+1 and where d denotes states in which Rδt+1 < Rft+1. Beta choices are concordant

with realized benchmark returns in states hu and cd – that is, a high beta when the benchmark

return exceeds the riskless rate and a low beta when the expected excess benchmark return is

negative – and discordant in states hd and cu since the betas move in the opposite direction from

benchmark returns in these states. To facilitate the analysis, let πhu, πhd, πcu, and πcu denote

the probabilities of the corresponding states and let πu = πhu+ πcu and πd = πhd+ πcd so that
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πu + πd = 1.

The managed portfolio return is still described by the conditional Jensen regression but the

model for portfolio betas takes a particularly simple form in this case. The conditional beta in

up markets is equal to βh with probability
πhu
πu

and equals βc with probability
πcu
πu
while the down

market beta is equal to βh with probability
πhd
πd
and equals βc with probability

πcd
πd
. Now consider

the regression of portfolio returns on both the up market excess benchmark return (Rδt+1−Rft+1)
+

and the down market excess benchmark return (Rδt+1 −Rft+1)
−:

Rpt+1 −Rft+1 = αp + β+p (Rδt+1 −Rft+1)
+ + β−p (Rδt+1 −Rft+1)

− + εpt+1, (37)

where β+p and β
−
p are the up and down market portfolio betas, respectively. As is readily apparent,

the up and down market betas as well as the average beta are given by:

β+p =
πhu
πu

βh +
πcu
πu

βc

β−p =
πhd
πd

βh +
πcd
πd

βc (38)

βp = (πhu + πhd)βh + (πcu + πcd)βc.

Moreover, the conditions under which the manager has market timing ability takes a particularly

simple form since:

β+p − βp =

∙
πhu
πu
− (πhu + πhd)

¸
βh +

∙
πcu
πu
− (πcu + πcd)

¸
βc

= (1− πu)

∙
πhu
πu

+
πcd
πd
− 1
¸
(βh − βc) (39)

is positive if and only if πhu
πu
+ πcd

πd
> 1 or, equivalently, if πhu

πu
> πhd

πd
. Since β−p − βp must be

negative if β+p − βp is positive, the covariance between betas and subsequent excess benchmark

returns is positive as well in this case and so only managers whose information and behavior is

such that πhu
πu
+ πcd

πd
> 1 possess market timing ability. This makes intuitive sense: the concordant

probabilities have to be larger than the discordant ones or betting on the up and down market

betas is a losing proposition. Note also that αp is the expected return to selection because the

covariance between betas and subsequent excess benchmark returns is embedded in the fitted part

of the regression.

This first version of this regression in Merton (1981) looks more like Treynor-Mazuy regres-

sion. Instead of having up and down market excess benchmark returns on the right hand side
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as in (37), the regressors in the original model are Rδt+1 − Rft+1 and −(Rδt+1 − Rft+1)
−. This

reparameterization of (37) is given by:

Rpt+1 −Rft+1 = αp + b1p(Rδt+1 −Rft+1)− b2p(Rδt+1 −Rft+1)
− + εpt+1 (40)

which is related to (37) via:

Rpt+1 −Rft+1 = αp + β+p (Rδt+1 −Rft+1)
+ + β−p (Rδt+1 −Rft+1)

− + εpt+1

= αp + β+p (Rδt+1 −Rft+1)
+ + β+p (Rδt+1 −Rft+1)

−

−β+p (Rδt+1 −Rft+1)
− + β−p (Rδt+1 −Rft+1)

− + εpt+1

= αp + β+p (Rδt+1 −Rft+1)− (β+p − β−p )(Rδt+1 −Rft+1)
− + εpt+1. (41)

The expressions for β+p and β−p in (41) imply that b1p and b2p are given by:

b1p = β+p =
πhu
πu

βh +
πcu
πu

βc

b2p = β+p − β−p =

∙
πhu
πu

+
πcd
πd
− 1
¸
(βh − βc) (42)

and so b2p 6= 0 if and only if the manager possesses market timing ability. Merton (1981) provided

an elegant economic interpretation of b1p and b2p: b1p is the hedge ratio for replicating the option

with returns that are perfectly correlated with the returns to market timing and b2p is the implicit

number of free put options on the benchmark struck at the riskless rate that is generated by the

market timing ability of the manager.

3.2 Observable Information Signals

In the analysis so far the key variable is the timing signal, the variable that causes the manager

to bet on market direction. If we observed the signals themselves, we could separate the question

of whether the manager has forecasting ability – that is, whether πhu
πu
+ πcd

πd
> 1 – from that of

how it informs the manager’s trading strategy – that is, the uses to which the forecast is put. It

could be that some managers are good forecasters but are poor at executing appropriate trading

strategies or have other unknown motives for trade. Irrespective of the reason, studying the signals

or forecasts observed by the manager can be an interesting exercise. Bhattacharya and Pfleiderer
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(1985) discuss conditions (including symmetry of the underlying conditional payoff distribution)

under which a principal can elicit the agent’s (fund manager’s) true information.

Henriksson and Merton (1981) propose a simple nonparametric method for evaluating prediction

signals. The states of the world are the same as outlined above – that is, hu, hd, cu, and cd –

but h and c refer to positive and negative market timing signals, respectively, not high and low

betas. For the concordant pairs hu and cd, πhuπu
+ πcd

πd
= 1 if and only if the signal is of no value and

πhu
πu
+ πcd

πd
> 1 if it has positive value; as noted by Henriksson and Merton (1981) πhu

πu
+ πcd

πd
< 1 also

has positive value in the perhaps unlikely event that one recognizes that the forecasts are perverse.

The adding up restrictions for up and down probabilities – that is, πu + πd = 1 – under the null

hypothesis of no market timing ability imply that πhu
πu
= πhd

πd
and πcu

πu
= πcd

πd
or, in other words, that

the high and low signals are independent of whether ex post excess benchmark returns are positive

or negative.

Now consider a sample based on this implicit experiment: the 1’s and 0’s corresponding to

positive h signals and negative c signals and those corresponding to whether the observed excess

benchmark returns are positive or negative. A sample of size T will then have Thu, Thd, Tcu, and Tcd

observations in the cells corresponding to each state of the world with T = Thu+Thd+Tcu+Tcd and

with Tu = Thu+Tcu and Td = Thd+Tcd observations in the up and down cells, respectively. Suppose

that returns are independently and identically distributed under the null hypothesis, a condition

that is a bit stronger than is necessary, so that the up and down probabilities are constant over

time. If the null is true, independent of the up and down probabilities, the sample proportions

respect:

πhu
πu

= E

∙
Thu

Thu + Tcu

¸
= E

∙
Thd

Thd + Tcd

¸
=

πhd
πd

= E

∙
Thu + Thd

T

¸
= πh.

Henriksson and Merton (1981) used this independence – that is, πhu = πhπu and πhd = πhπd

– to calculate the conditional probability of receiving one cell count from the other three. This

computation is facilitated by partitioning the sample into Thu, Th, Tu, and Td. Then the probability
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of receiving Thu concordant up market pairs given the other three cell counts is given by:

Pr[Thu = Nhu|Tu, Td, Th] =
Pr[Thu = Nhu, Th = Nh|Tu, Td]

Pr[Th = Nh|T ]

=
Pr[Thu = Nhu, Thd = Nh −Nhu|Tu, Td]

Pr[Th = Nh|T ]

=
Pr[Thu = Nhu|Tu]Pr[Thd = Nh −Nhu|Td]

Pr[Th = Nh|T ]
.

This holds because the high/low split is independent of the up/down split in the absence of

market timing ability. The reason for repartitioning the sample in this fashion is now obvious:

each probability is that of a binomial random variable with the same probability πh. Hence, the

probability is given by:

Pr[Thu = Nhu|Tu, Td, Th, πh] =
Pr[Thu = Nhu|Tu, πh]Pr[Thd = Nh −Nhu|Td, πh]

Pr[Th = Nh|T, πh]

=

¡ Tu
Thu

¢
πThuh (1− πh)

Tu−Thu
¡ Td
Th−Thu

¢
πTh−Thuh (1− πh)

Td−(Th−Thu)¡ T
Th

¢
πThh (1− πh)T−Th

=

¡ Tu
Thu

¢¡ Td
Thd

¢¡ T
Th

¢ =
Th!Tc!Tu!Td!

Thu!Tcu!Thd!Tcd!T !
(43)

independent of the high signal probability πh. The test is therefore distribution-free under the null

hypothesis so long as the up probability πu is constant. Henriksson and Merton (1981) point out

that this ratio follows a hypergeometric distribution, which makes sense because this distribution

is appropriate for experiments that differ in one detail for binomial experiments: a sample is first

drawn at random from some overall population without replacement and is then randomly sorted

into successes and failures. In this application, T is the size of the population, Th is the size of

the random sample, Thu is the number of successes, and Thd is the number of failures. Cumby and

Modest (1987) noted that the Henriksson/Merton test statistic is identical to Fisher’s exact test

for 2x2 contingency tables since:

prediction realization sum

Up Down

High Thu Thd Th

Low Tcu Tcd Tc

sum Tu Td T

They also noted that there is a convenient normal approximation to the test of the moment condition

31



E[ThuT −
Th
T

Tu
T ] = 0 that is given by:

Thu − Th
T

Tu
Tq

ThTcTuTd
T 2(T−1)

∼ N(0, 1) (44)

Pesaran and Timmermann (1992) show how to extend the analysis to more than two outcomes.

4 Performance Measurement and Attribution with Observable

Portfolio Weights

This state of affairs is somewhat unsatisfying and reflects the fact that returns are being asked to

do a lot of work. The theory is straightforward and beautiful: all marginal investors agree that

performance should be judged relative to portfolio δ, a specific conditionally mean-variance efficient

portfolio. Unfortunately, the identification of an empirical analogue of this portfolio is problematic

and it is likely that much of the evidence on fund performance reflects the inadequacy of benchmarks

and not the abilities of fund managers. Moreover and perhaps more importantly, fund returns are

being asked to tell us both the fund’s normal performance– that is, the appropriate expected return

given its normal exposure to risk – as well as any abnormal performance due to security selection

skill or market timing ability. In addition, the role played by parametric assumptions such as

normality in dealing with this problem is worrisome. In the absence of a priori information about

time-variation in expected benchmark returns and fund risk exposures, performance evaluation

based solely on fund and benchmark returns is simply not feasible. Performance evaluation is

somewhat less problematic when it is plausible to assume that risk exposures are constant a priori,

leaving benchmark error as the principle source of difficulty.

Of course, simplest of all is the case in which managers are judged on the basis of excess

returns over an explicit benchmark. It is noteworthy that compensation contracts are increasingly

taking this form and that managed portfolio performance is now routinely reported relative to an

explicit benchmark irrespective of the nature of the manager’s compensation. This change in best

practice is a very real measure of the considerable impact that the academic performance evaluation

literature has had on the portfolio management industry.

In fact, performance evaluation via the difference between the managed portfolio and benchmark

returns contains an implicit model of the division of labor between two hypothetical (and, often,
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real) active portfolio managers: a market timer and a stock picker.10 The stock picker chooses

a portfolio of these N assets called δS which is structured to have a beta of one on δ because its

performance is measured relative to δ. That is, its return is given by:

RS
δt+1 = Rδt+1 + αpt + εpt+1 (45)

where αpt = E[RS
δt+1−Rδt+1|It] correctly measures the conditional expected excess return produced

by the stock picker. The quantity RS
δt+1−Rδt+1 = αpt+εpt+1 is called the tracking error in portfolio

δS (with respect to its benchmark δ). The market timer takes this portfolio as given and determines

the fraction ωpt of the overall portfolio p that is allocated to portfolio δS at time t and the fraction

1− ωpt that is allocated to the riskless asset. Hence, the overall return on p is given by:

Rpt+1 = (1− ωpt)Rft+1 + ωptR
S
δt+1 (46)

We have a division of labor and a benchmark for evaluating the performance of one of the laborers.

What is missing is a benchmark for the market timer, a measure of normal performance for the

asset allocation choice. For simplicity, suppose that the normal or strategic asset allocation –

the passive portfolio that would be chosen by the manager of the overall portfolio in the absence

of attempts to time the market – is an allocation of ωnpt to portfolio δ
S and 1−ωnpt to the riskless

asset. Clearly any measure of the performance of the market timer should involve ωpt − ωnpt, the

market timer’s policy tool, and how it moves with benchmark returns.

Armed with this additional datum, the overall return to p can be rewritten as:

Rpt+1 = (1− ωpt)Rft+1 + wptR
S
δt+1

= Rft+1 + ωpt(R
S
δt+1 −Rft+1) (47)

= Rft+1 + ωnpt(R
S
δt+1 −Rft+1) + (ωpt − ωnpt)(R

S
δt+1 −Rft+1)

which is almost, but not quite, in a form suitable for assessing the performance of the market timer.

The missing element is the substitution of the return of the security selection portfolio δS into this

10Obviously, the more correct term here is ”asset picker” or ”security selector.” Both seem awkward and the phrase

stock picker is the term of art in the profession.

33



expression which yields:

Rpt+1 = Rft+1 + ωnpt(Rδt+1 + αpt + εpt+1 −Rft+1)

+(ωpt − ωnpt)(Rδt+1 + αpt + εpt+1 −Rft+1)

= [Rft+1 + ωnpt(Rδt+1 −Rft+1)] + ωnpt[αpt + εpt+1]

+[(ωpt − ωnpt)(Rδt+1 −Rft+1)] + [(ωpt − ωnpt)(αpt + εpt+1)] (48)

Note this expression is perfectly compatible with the conditional Jensen regression with βpt = ωpt,

ωptαpt equal to the conditional Jensen alpha, and ωptεpt+1 equal to the residual return. Note also

that observation of the portfolio weights ωpt and ωnpt are equivalent to observation of the conditional

and target betas, respectively, in these circumstances.

This simple portfolio arithmetic was introduced in Brinson et al. (1986) and provides a nearly

perfect decomposition of returns into economically relevant components. The first term in square

brackets is the normal portfolio return, the return on the portfolio in the absence of active man-

agement. The second term in square brackets is the return to security selection which is given by

the portfolio tracking error since the stock picker is measured relative to the benchmark portfolio

δ. The third term in square brackets is a natural measure of the performance of the market timer:

the product of ωpt−ωnpt, the deviation from the normal weight that is chosen by the manager, and

the excess return on the benchmark portfolio. The choice of the benchmark portfolio makes sense:

the use of δS would mix market timing ability with the security selection skill of the stock picker.

Of course, this ambiguity is merely pushed into the fourth term in square brackets: the product of

the asset allocation choice of the market timer ωpt − ωnpt and the tracking error of the stock picker

αpt + εpt+1.

This residual component (ωpt − ωnpt)(αpt + εpt+1) cannot be clearly assigned to either active

manager, which is why we termed this decomposition ”nearly perfect.” This circumstance arises

because the market timing portfolio is the stock picker’s portfolio δS , not the benchmark portfolio.

In fact, the residual would vanish if the tools of active management were modified so that the

market timer used the benchmark portfolio since the decomposition would be given by:

Rpt+1 = (1− ωpt)Rft+1 + ωnptR
S
δt+1 + (ωpt − ωnpt)(Rδt+1 −Rft+1)

= [Rft+1 + ωnpt(Rδt+1 −Rft+1)] + ωnpt[αpt + εpt+1] (49)

+[(ωpt − ωnpt)(Rδt+1 −Rft+1)]
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which cleanly allocates overall return to strategic or normal asset allocation, security selection,

and market timing. Actual managed portfolios can use this decomposition when their market

timers use index futures markets to make market timing bets and the allocations to their stock

pickers are permitted to drift away from normal weights with infrequent reallocations when the

cumulative deviation grows sufficiently large. Of course, the residual will be small when the

allowable deviations from strategic asset allocations as well as the returns to security selection are

small, conditions that frequently obtain in actual practice.

Of course, the universe of assets is seldom broken down into only two asset classes or sectors.

The decomposition into J asset classes is straightforward:

Rpt+1 ≡
JX

j=1

ωpjtRjt ≡
JX

j=1

ωnpjtRnjt +
JX

j=1

ωnpjt(Rjt −Rnjt) +

JX
j=1

(ωpjt − ωnpjt)Rnjt +
JX
j=1

(ωpjt − ωnpjt)(Rjt −Rnjt) (50)

where ωpjt and ωnpjt are the actual and normal or strategic asset allocations of portfolio p, respec-

tively, and Rjt and Rnjt the corresponding actual and benchmark asset class returns. This relation

can be rewritten in the excess return form when the riskless asset, often termed cash in common

parlance, is one of the asset classes.

This decomposition of the performance of active managers into market timing and security

selection components across asset classes or sectors is called performance attribution and it is

now widely used in actual practice. This division of labor also roughly reflects the management

structure at many, if not most, large pension funds, although the market timing or tactical asset

allocation is often done passively. Their investment policy statements typically carve up the asset

menu into a number of asset classes and choose explicit benchmarks against which asset class

returns are measured with no beta adjustment, corresponding to a structure in which asset class

managers are hired and instructed to remain fully invested in the asset class since their performance

will be measured against the asset-class-specific benchmark. Moreover, they often specify both

the normal or strategic asset allocation weights and the permissible amounts by which the actual

asset allocations are allowed to deviate from the normal ones, which corresponds to a short run

or tactical asset allocation manager (or managers) who choose asset class exposures and who sit

one level above the asset class managers. In addition, it is now common for fiduciaries to read

performance attribution reports that make routine reference to tracking errors and risk exposures.
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It is fair to say that performance measurement and attribution along these lines is one of the many

dimensions in which financial economics has had an effect, and a beneficial one at that, on real

world investment practice.

Note that there is an implicit assumption about the investment opportunity set in this man-

agement structure. Asset class managers can look at correlations within asset classes and market

timers can consider comovements across benchmarks but neither has the incentive to consider

the covariances between each asset class benchmark and individual security returns in other asset

classes. In fact, they have a disincentive to do so because they are typically rewarded according

to benchmarks that make no provision for such correlations. Hence, it is imperative that the asset

class definitions be narrow enough so that the fund does not unintentionally overlook valuable

diversification opportunities. Put differently, carving up the asset menu into asset classes with

specific benchmarks creates another potential source of benchmark error when:

Rδt+1 −Rft+1 6=
JX
j=1

ωnpjtRnjt (51)

While we are unaware of any empirical evidence on this question, a cursory examination of the

investment policy statements of large public US pension funds suggests that such breakdowns are

quite refined and probably do not result in materially inferior diversification.

The extent to which performance attribution can be usefully employed depends on whether one

is viewing the portfolio from inside the fund or from the outside. Clearly, this method cannot

be used without information on actual and normal or strategic asset allocations along with actual

and benchmark asset class returns. Data on all of these quantities can be obtained within the

fund when it has an explicit investment policy governing asset allocation and benchmarks. The

academic perspective, however, is typically external to the fund and so which of these data are

available hinges on what has been reported to the data source. Actual and benchmark asset class

returns along with the actual allocation were available in the two main academic applications of

these tools, Brinson et al. (1986, 1991), who studied US pension funds, and Blake, Lehmann and

Timmermann (1999), who examined UK pension funds. Neither study had data on normal or

strategic asset allocations.

While our emphasis is on methods and not on empirical evidence, there are two results that are

both quite striking and of great relevance for performance measurement and attribution. The first

concerns the extent to which performance measurement based on tracking error results in managers
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actually setting betas equal to one. Lakonishok, Shleifer, and Vishny (1992) found sample equity

betas to be tightly clustered about one – raw beta estimates and not betas significantly different

from one at some significance level – in a sample of US pension fund stock portfolios and Blake

et al. (1999) found similar results for their sample of UK pension funds. That is, managers

typically have the incentive to set betas to one and the evidence suggests that they are good at

doing so. The second broad result concerns market timing. Brinson et al. (1986) found that only

one out of the 96 U. S. pension funds they studied had positive – not statistically significant at

some confidence level but simply positive – market timing measures. Similarly, Blake et al (1999)

found that roughly 80 per cent of the 306 UK pension funds they examined had negative market

timing measures with the average return from market timing (at -34 basis points per annum) was

statistically significant. Put differently, pension fund managers have typically attempted to time

the overall market or individual asset class returns but they have been unsuccessful in doing so.

This last observation has had a profound impact on beliefs about the extent to which managed

portfolios benefit from market timing. Many pension funds now follow the passive market timing

strategy based on mechanical rebalancing rules, letting their asset class managers – that is, those

engaged in security selection – implicitly choose increased pension fund exposure to asset classes

when they outperform their benchmarks and lower exposures after underperformance. Other

pension funds manage their ”traditional” assets this way but buy explicit market timing services

from hedge funds, with performance being measured against Treasury bills. That is, a generation

of pension fund investment consultants have used this evidence to persuade their clients to forego

market timing or to treat it as an asset class with a strict performance standard.

In any event, external performance measurement and attribution with data on actual asset

allocations along with actual and benchmark asset class returns requires a model for the strategic

or normal asset allocation. Brinson et al. (1986) use sample averages of portfolio weights as the

normal portfolio weights:

ωnpjt = ωnpj =
TX
t=1

ωpjt/T (52)

which is a reasonable definition if the fund has a stable de facto asset allocation. However, asset

allocations that drift in a particular direction as was the case in the UK pension funds by Blake et

al. (1999) makes this assumption untenable. The models they explored include a linear trend in
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normal portfolio weights:

ωnpjt = ωpj1 + (t/T )(ωpjT − ωpj1), (53)

identical strategic asset allocations across funds at a point in time:

ωnpjt =
PX
p=1

ωnpjt, (54)

where P is the number of pension funds in the sample, which implicitly assumes zero timing ability

for the funds as a whole.11

Returning for simplicity to the case of two assets, recall that the portfolio weights wpt and wn
pt

are equal to the conditional and target betas, respectively, of a portfolio managed in this fashion.

This observation suggests that tests for the presence of market timing ability can be based on the

conditional and unconditional projections (24) and (28). Consider first the baseline case in which

both ωpt and ωnpt are observed for a particular asset class so that ξβpt = βpt− βpt = ωpt − ωnpt.

Since ξβpt is the innovation in the conditional portfolio beta given publicly available information

(i.e., E[ξβpt |It] = 0), the projection of benchmark returns on ξβpt is given by:

Rδt+1 −Rft+1 = π0 + πpξβpt + υδt+1 (55)

πp 6= 0 if and only if the manager possesses market timing ability in great generality. In partic-

ular, benchmark excess returns can have arbitrary serial dependence so long as it does not affect

the ability of least squares to estimate πp consistently.12 This is an obvious consequence of the

assumption that both βpt and βpt are observed via ωpt and ωnpt.

Of course, we typically observe ωpt but not ωnpt which corresponds to observations on βpt but

not on βpt and, hence, not on ξβpt . The unobservability of ωnpt is a subtle problem because its

11Other alternatives are the error components model used to summarize the stochastic properties of asset class

weights in Blake et al. (1999) and the asset allocation guidelines of the funds with public investment policy statements.

Neither approach has been tried in the literature to the best of our knowledge.

12The residual in this projection inherits the serial corrrelation properties of excess benchmark returns. That is:

E[υδt+1|It] = E[Rδt+1 −Rft+1|It]− π0 = μδt − μδ

which would typically be assumed to be well-behaved. Typical bounds on higher order dependence would then yield

consistency of least squares in this application.
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strategic nature suggests that most of its fluctuations occur at low frequencies. That is, πp in (55)

is given by:

πp =
Cov(μδt, βpt + ξβpt)

V ar[βpt]
+

E[(Rδt+1 −Rft+1 − μδt)(βpt + ξβpt)]

V ar[βpt]

=
Cov(μδt, βpt)

V ar[βpt]
+

Cov(Rδt+1 −Rft+1, ξβpt)

V ar[βpt]
(56)

The first term is the bias due to predictability of benchmark returns and the absence of observations

on βpt while the second term is nonzero if and only if market timing is present. Note that only the

conditional first moment of excess benchmark returns (and not higher moments) is relevant here,

one of the benefits of the observability of βpt under these assumptions.

As in our earlier discussion of the Treynor-Mazuy regressions, there are three approaches to

dealing with the bias term in this regression. The first is to assume it away via constancy of μδt

and/or βpt or Cov
£
μδt, βpt

¤
= 0. Alternatively, one can postulate a model for μ̂δt and rewrite

(55) in terms of Rδt+1 − Rft+1 − μ̂δt, which requires model errors – that is, nonzero values of

E[Rδt+1 − Rft+1 − μ̂δt|It] – to be uncorrelated with βpt. Finally, one can postulate a model for

the target beta βpt = f(zt, θ), where zt ∈ It is publicly available conditioning information and θ is

a vector of unknown parameters that can be estimated consistently since consistent estimation of

βpt implies consistent estimation of ξβpt .
13

Graham and Harvey (1996) adopt a variant of this last approach which works instead with

changes in actual asset allocations and zt as additional regressors as in:

Rδt+1 −Rft+1 = π∗0z zt + π∗p4ωpt + υ∗δt+1

where a test of the hypothesis π∗p = 0 is a test of the hypothesis that portfolio weight changes

Granger-cause (i.e., predict) benchmark excess returns. This projection is conveniently analyzed

by considering the two unconditional population projections:

μδt = φ0δzt + eδt,

βpt − βpt−1 − ξβpt−1 = φ0wzt + ewt

13Note that this last approach requires that f(zt, θ) be incorporated in (55) in the restricted fashion:

Rδt+1 −Rft+1 = π0 + πp[ωpt − f(zt, θ)] + υδt+1

if the goal is to mimic (55) exactly because the required regressor is ξβpt . However, the natural desire to correct for

serial correlation in υδt+1 would normally militate in favor of including zt or suitable functions of zt as regressors.
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since:

π∗p =
Cov(Rδt+1 −Rft+1 −φ0δzt,4ωpt − φ0wzt)

V ar[4ωpt − φ0wzt]

=
Cov[μδt − φ0δzt,4βpt − ξβpt−1 − φ

0
wzt] + Cov(Rδt+1 −Rft+1, ξβpt)

V ar[ξβpt + ewt]

=
Cov[eδt, ewt]

V ar[σ2ξ + σ2ew ]
+

Cov(Rδt+1 −Rft+1, ξβpt)

σ2ξ + σ2ew
, (57)

where the bias term depends on the correlation of the projection errors. A priori confidence in

the merits of this specification involves a belief that the bias is small and that 4βpt is close to an

innovation sequence, thus mitigating the main source of serial correlation in this specification.

Another test of market timing when portfolio weights are observed is suggested by the Henriks-

son and Merton (1981) analysis of the fidelity between signals and outcomes given at the end of

the previous section. An interesting special case is that of tactical asset allocation in which the

manager allocates 100% to the benchmark portfolio when placing an up market bet and 100% to

the riskless asset when placing a down market bet. This corresponds to setting βh = 1 and βc = 0

and with up, down, and expected betas of β+p =
πhu
πu
, β−p =

πhd
πd
, and βp = πh, respectively. Accord-

ingly, evaluating the performance of tactical asset allocation with observable portfolio weights that

only take on the values one and zero is equivalent to the evaluation of prediction signals given in

the previous section. Hence, inference for the hypothesis πhu
πu
+ πcd

πd
= 1⇔ πhu

πu
= πhd

πd
can proceed

based on the hypergeometric distribution while that for the hypothesis πhu = πhπu can be based

on the asymptotic normal approximation.

More generally, we can use observed portfolio weights to implicitly evaluate the fidelity of market

timing signals using the Henriksson-Merton approach. If we assume that up and down markets

have constant probabilities and that the manager has a constant target beta, ωpt − ωp will be

perfectly correlated with the signal since the manager will have a beta above the mean – that is,

βpt > βp – in the high signal state and one below the mean in the low market state. When the

strategic asset allocation and, hence, the target beta is observed, which is possible in some cases

through examination of investment policy statements, the cell counts can be based on the sign of

ωpt − ωp and inference can be based on can be the hypergeometric distribution (43). If it is not,

the cell counts can be based on the sign of ωpt − ω̄p, where ω̄p = 1
T

PT
t=1 ωpt, and inference can be

based on the normal approximation (44) since ω̄p → ωp in probability in great generality.

Grinblatt and Titman (1993) implement period weighting measures when portfolio weights are
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observed under the assumption that uninformed investors perceive expected asset returns to be

constant over time and returns to be independently and identically distributed. In this circum-

stance, changes in portfolio weights should not be correlated with future returns. In contrast,

informed investors will adjust portfolio weights in anticipation of future returns and, if their infor-

mation is valid, portfolio weight changes should be correlated with future returns. The exact form

of the relation will depend on the way in which the informed investor’s information and preferences

interact to produce a portfolio decision rule. That said, the unconditional covariance between

portfolio weights and future returns should be positive under the weak assumption that portfolio

weights are increasing in each asset’s conditionally expected return. A simple test for the presence

of performance ability can be based on the sum of the covariances between portfolio weights and

asset returns across all assets in the universe:

cov =
NX
j=1

(E[ωjRj ]−E[ωj ]E[Rj ]). (58)

This is equal to the expected return of the investor’s actual portfolio minus the expected return if

portfolio weights and returns were uncorrelated. The second term also acts as a risk-adjustment

since it gives the expected return on a portfolio with the same average risk as the actual portfolio.

Equation (58) can equivalently be rewritten in two ways:

cov =
NX
j=1

E[ωj(Rj −E[Rj ])] (59)

or

cov =
NX
j=1

E[(ωj −E[ωj ])Rj ]. (60)

Since ωj and Rj are observed, these expressions point to two types of additional information that

can be used to produce period weighting measure estimates described in the previous section.

The first of these expressions (59) requires an estimate of the (unconditional) expected return,

E[Rj ]. Given the assumption that returns are identically and independently distributed, a natural

way to proceed is to use average future returns on these assets, making this approach much like an

event study in that returns from outside the event window − the performance measurement period

in this case − measure normal performance. Abnormal performance arises when these assets earn

higher returns when they are in the investor’s portfolio than at other times.

The second expression (60) requires instead an estimate of the expected portfolio weight ωj .

This formulation is more problematic because serial dependence in weights − such as that produced,
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for example, by momentum or contrarian investment strategies − causes sample period weighting

measures to be biased. If the serial dependence in momentum or contrarian portfolio weights is

short-lived, such biases can be mitigated or eliminated by introducing a lag between return and

expected portfolio weight measurement. For example, if weights are covariance stationary, each

observed weight is an unbiased estimate of expected portfolio weights. If weights and returns are

K dependent − that is, if they are independent when K periods separate their measurement −

there is no such bias. Hence, Grinblatt and Titman (1993) recommend setting E[ωj ] = ωjt−K ,

resulting in period weighting estimates of the form:

ccovω = 1

T

NX
j=1

TX
t=K

(ωjt − ωjt−K)Rjt,

and they use the same idea for expected returns by setting E[Rj ] = Rjt+K in the revised estimate:

ccovR = 1

T

NX
j=1

T−KX
t=1

ωjt(Rjt −Rjt+K),

Each of these measures will converge to zero provided fund managers use no information with

predictive content regarding future returns when setting their portfolio weights and returns are not

predictable for uninformed investors. That said, ccovω makes for simpler inference than ccovR, since
its returns are serially uncorrelated when individual asset returns are serially uncorrelated as well.

In contradistinction, the overlapping returns implicit in ccovR make its returns K − 1 dependent
when individual asset returns are serially uncorrelated. Hence, the test statistic based on ccovω is
a simple test of the null hypothesis that a mean is zero.

4.1 Should investors hold mutual funds?

A key question from an investor’s point of view is whether−and how much−to invest in one or more

mutual funds. Suppose that we cannot reject the null hypothesis that a particular fund’s alpha

equals zero although its point estimate indicates a sizeable skill level. This is a likely empirical

outcome due to the weak power of these tests. Does this mean that the investor should not invest

in this mutual fund? Clearly this is not implied by the outcome of the statistical test, which is

typically based on a discrete loss function that is typically very different from the underlying utility

function. Statistical tests do not in general trade off the cost of wrongly including an investment
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in a mutual fund versus wrongly excluding it.14 Conversely, suppose we reject the null that the

portfolio weight on the mutual fund(s) equals zero, then how much should be invested in such

funds?

The investor’s decision of whether to hold mutual funds at all is naturally set up as a test on the

portfolio weights when data on these are available. When investors have mean-variance preferences,

constructing such a test and deriving its properties is quite straightforward and can be based on

a simple regression approach to portfolio selection that minimizes the squared deviations between

the excess returns on a constructed portfolio and the excess returns implicit in the unity vector,

ι, cf. Britten-Jones (1999). This minimization can be implemented through a projection of ι on

excess returns on the risky assets and mutual funds, excluding an intercept term. To this end,

define the N + P−vector of period-t+ 1 excess return on all risky assets extended to include a set

of P mutual funds as ert+1= (R0t+1 R0pt+1)0 − ιRft+1, and let er= (r1 r2 · · · rT )0 be the T × (N + P )

matrix of stacked returns, where the ‘tilde’ on top of the vector of excess returns indicates that

we are referring to the original set of assets extended to include returns on the mutual funds. The

projection proposed by Britten-Jones is

ι = erβ + u. (61)

The resulting vector of estimated coefficients,

b̂ = (er0er)−1er0ι, (62)

gives − up to a proportionality factor − the weights of the mean-variance efficient portfolio of risky

assets. Using the scaling b̂/ι
0
b̂, we get the maximum Sharpe ratio (tangency) portfolio:

Σ̄−1r̄

10Σ̄−1r̄

where r̄ = er0ι/T is the sample mean while the (maximum likelihood) sample covariance matrix is

Σ̄ = (er− 1r̄0)0(er− 1r̄0)/T .
Suppose that there are P mutual funds under consideration (the last P assets in the vector of

excess returns, er). Then the restriction that the investor should entirely exclude mutual funds from
14Although in principle one could make the critical level used to define the nominal size of the statistical test a

function of the relative cost of type I and type II errors, this does not resolve the problem that the hypothesis testing

uses a discrete decision, whereas the investor’s utility function is generally assumed to be continuous.
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the portfolio takes the form

Γb = 0,

where the P × (N + P ) matrix of restrictions, Γ, is given by

Γ =
³
0P×N IP

´
.

Assuming that returns are joint normally distributed and independently and identically distributed,

this restriction can be tested through the F -statistic

(SSRr − SSRu)/P

SSRu/(T −N − P )
, (63)

where SSRu is the sum of squared residuals implied by the unrestricted regression underlying the

coefficient estimates in (62), SSRr is the sum of squared residuals from estimation of regression

(62) subject to the restriction that Γb = 0. This test statistic has an exact central F distribution

with P and T − N − P degrees of freedom. Under less restrictive distributional assumptions, a

method of moments type test can be used instead.

This framework lends itself to testing other economically interesting hypotheses. In particular

it can be used to testing whether a portfolio of the managed funds spans the asset menu by testing

if the weights on the non-mutual funds are jointly zero. We are unaware of any research in which

this role for managed portfolios has been examined.

4.2 Determining the optimal holdings in mutual funds

When preferences outside the mean-variance class are considered and we are also interested in

answering the second question − namely how much to invest in mutual funds − a more general

approach is called for. We illustrate a simple method valid in a single-period setting where dynamic

programming concerns can be ignored. Let Wt,Wt+1 be an investor’s current and future wealth

and suppose that the investor evaluates utility from future wealth through the function U(Wt+1).

Returns on traded risky assets and mutual funds are again given by eRt+1=(R
0
t+1 R

0
pt+1)

0, whileeωt = (ω
0
t ω

0
pt)
0 is the associated vector of portfolio holdings. Future wealth associated with a given

set of portfolio holdings is simply

Wt+1 =Wt(eω0t eRt+1),
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while the investor’s optimization problem is to maximize expected utility conditional on current

information, It :

max
ωt

E[U(Wt(eω0t eRt+1))|It].

The portfolio weights on the mutual funds can be obtained from the last P elements of eωt corre-

sponding to the mutual fund returns.

For example, in the earlier example with mean-variance preferences,

E[U(Wt+1)|It] = E[Wt+1|It]−
γ

2
V ar(Wt+1|It),

where γ is the absolute risk aversion. This gives a closed-form solution (cf. Ait-Sahalia and Brandt

(2001)): eωt = Σ
−1
t ι

γWt − ι0Σ−1t μt

γWtι0Σ
−1
t ι

+
Σ−1t μt

γWt
,

where Σt = V ar(eRt+1|It) and μt = E(eRt+1|It). Since (conditional) population moments are

unknown, in practice sample estimates of these moments, Σ̂ and μ̂, are typically plugged in to get

estimated weights as follows:

ω̂t = Σ̂
−1
t ι

γWt − ι0Σ̂−1t μ̂t

γWtι0Σ̂
−1
t ι

+
Σ̂−1t μ̂t

γWt
.

This of course ignores the sampling errors in the moment estimates. Furthermore, due to the

nonlinearity in the mapping from Σ̂ and μ̂ to ω̂t, it is not possible to identify which predictors

zt ∈ It are important to portfolio holdings by inspecting the predictability of the mean and variance

of returns.

Rather than adopting a two-stage approach that first estimates a model for the predictive

distribution of returns and then plugs in the resulting parameter estimates in the equation for the

optimal weight, one can directly model the portfolio weights as a function of the predictor (or state)

variables, zt. To this end let the portfolio policy function map zt into optimal asset holdings:

eωt = ω(zt). (64)

Of course, in general both the functional form of the optimal portfolio policy ω(zt) and the form

of the predictability of returns are unknown. One way to deal with this that avoids the curse of

dimensionality is to follow Ait-Sahalia and Brandt (2001) and assume that the portfolio policy only
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depends on the state variables through a single index, zt0β:

max
ωt

E[U(Wt(eω0t eRt+1))|z0tβ],eωt = ω(zt
0β;β)

This is a semiparametric approach that assumes a parametric (linear) index function but allows for

a flexible (non-parametric) policy function.

Differentiating the optimization problem with respect to eωt and using eωt = ω(X 0
tβ;β) gives the

conditional moment condition

E[Qt+1(β)|zt] = E[U 0(Wt(ω(z
0
tβ;β)

0 eRt+1))eRt+1|z0tβ] = 0.

This can be estimated by GMM, using instruments g(zt) and the associated unconditional moment

conditions arising from

min
β

E[Qt+1(β)⊗g(zt)]0WE[Qt+1(β)⊗g(zt)]

where W = Cov(Qt+1 ⊗ g(zt))
−1 is again some weighting matrix.

Alternatively, one can approximate the policy function, (64), using a series expansion such as

eωit = eω0i + nzX
j=1

eω1ijzjt + nzX
j=1

nzX
k=1

eω2ijkzjtzkt, (65)

where nz is the number of z−variables. Again the parameters of the policy function can be estimated

using GMM.

5 The Cross-Section of Managed Portfolio Returns

What makes the econometrics of performance measurement and its economic setting different from

that of conventional asset pricing? As we noted earlier, Jensen’s alpha is just mispricing in asset

pricing models and the two settings share many econometric issues. The answer we pointed to is the

difference in the nature of the asset menu: individual securities or particular portfolios chosen by

the econometrician in the asset pricing case and managed portfolios in performance measurement

and attribution. These pages have been literally littered with examples of ways in which the direct

impact of investment choices of portfolio managers makes concerns like stochastic betas and the

measurement of biases in alphas first order concerns.
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The other main difference is in the interpretation of rejections of the null hypothesis: researchers

often interpret rejections of the null for managed portfolios as a reflection of managerial skill while

rejections of the null in asset pricing theory tests are typically attributed to failures of the model.

Most papers that evaluate the performance of managed portfolios simply do not treat the finding

of economically and statistically significant alphas as an indication that the benchmark is not

conditionally mean-variance efficient. Most papers that evaluate the performance of asset pricing

models simply do not treat the finding of economically and statistically significant alphas as an

indication that the test assets are underpriced or overpriced.

What makes the stochastic properties of this universe of test assets different from the passive

− that is, unmanaged − portfolios typically employed in asset pricing theory tests? The answer

probably lies in the commonalities among portfolio managers arising from the comparatively small

range of investment styles and asset classes into which the universe of securities is partitioned.

The portfolios used in asset pricing theory tests are formed according to different principles. In

some cases, researchers seek dispersion across population conditional betas to facilitate more precise

estimation of any risk premiums, which reflects a concern for inferences about the implications of

the model under the null hypothesis that it is true. Many tests are based on portfolios formed on

the basis of security characteristics that proved to be correlated with the alphas from earlier asset

pricing models, reflecting a concern for inference when the null hypothesis is false. Others are

based on portfolios chosen because the underlying test assets were thought to have low correlation

conditional on the benchmark in question: industry and commodity portfolios have been chosen

for this reason at different times.

The commonalities among the trading strategies of portfolio managers make for potential dif-

ferences in each of these dimensions. The dispersion of conditional betas across funds is quite

small, probably because performance is typically measured relative to similar explicit or implicit

benchmarks which gives the managers strong incentives to maintain betas that are close to one.

Management styles are often highly correlated with security attributes as well and so managers have

to take bets that are different from the characteristics portfolios used by financial econometricians

in order to justify management fees. Finally, the very commonalities among trading strategies

suggest that residual correlations are likely to be higher in the managed portfolio setting than in

asset pricing theory tests. Of these, the second observation is likely to be second order but the

first and third are of first order importance.
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5.1 Inference in the Absence of Performance Ability

Consider first the setting in which it is known a priori that the excess returns of N securities are

independently and identically distributed over time from the perspective of uninformed investors.

As before, let portfolio δ be the mean variance efficient portfolio based on these N assets. Portfolio

δ has constant weights under these assumptions and its excess returns are given by:

Rt+1 − ιRft+1 = βδ(Rδt+1 − ιRft+1) + εδt+1

where E[εδt+1|It] = 0.

Managers, however, need not have portfolio weights that are constant and the extent and

manner in which their weights vary over time depend on whether they believe they have skill at

market timing or security selection. Managers who do not believe they have market timing ability

but who think they possess skill at selection will tend to choose fixed weight portfolios if they

believe there are constant expected returns to selection but will have portfolios with time-varying

weights if they believe that the returns to selection varies across stocks over time.15 In terms of

the conditional Jensen regression, these managers will choose time-invariant betas and will believe

they have time-varying Jensen alphas. Managers who believe they have market timing ability will

also generically vary their weights over time so that their betas and, if they have skill at selection,

their alphas will vary over time as well.

Only tests of the skill of managers of the first kind – those with no timing ability and who know

it but who falsely think they possess skill at security selection with constant expected returns –

are completely straightforward in these circumstances. Such managers believe that their portfolios

satisfy the Jensen regression with constant conditional betas:

Rpt+1 −Rft+1 = αp + βp(Rδt+1 −Rft+1) + �pt+1 (66)

where the manager believes that αp = E[ω0pεδt+1|Ipt] = ω0pE[εδt+1|Ipt] and the residual �pt+1 =

ω0pεδt+1 is homoskedastic. Hence, the null hypothesis that the manager of portfolio p does not have

skill at selection can be tested with the simple t-test, which goes by the name of the Treynor-Black

appraisal ratio in the performance evaluation literature as was noted earlier.
15As stated, this is somewhat of an oversimplification: constant expected returns to selection is not the same as

constant alphas security by security which is implicitly assumed by the statement. Moreover, constant expected

returns to selection will not lead to fixed weight portfolios if managers have implicit hedging demands, such as those

that can arise from different compensation schemes.
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Similarly, a joint test that P such funds have skill at selection involves the P regressions:

Rpt+1 − ιRft+1 = αp + βp(Rδt+1 − ιRft+1) + ²pt+1

where the natural null hypothesis is:

H0 : αp = 0. (67)

If returns are normally distributed, this hypothesis can be tested via:

T (T − P − 1)
P (T − 2)

α̂0pŜ
−1
�p α̂p

1 + φ̂
2
δ

∼ F (P, T − P − 1).

where α̂p, Ŝ�p is the sample covariance matrix of the residuals, and φ̂
2
δ is the sample squared Sharpe

ratio of the benchmark portfolio that is given by φ̂δ =
Rδ−Rf

sδ
where Rδ −Rf =

PT
t=1(Rδt+1 −

Rft+1)/T and s2δ =
PT

t=1(Rδt+1−Rft+1)
2/(T −1)−

¡
Rδ −Rf

¢2
are the sample mean and variance

of benchmark returns, respectively. Jobson and Korkie (1982) and Gibbons, Ross and Shanken

(1989) showed that this statistic follows an exact F-distribution with P numerator and T − P − 1

denominator degrees of freedom. In large samples, we can dispense with normality since the

statistic:

T
α̂0pŜ

−1
�p α̂p

1 + φ̂
2
δ

∼ χ2(P ), (68)

is distributed as χ2 with P degrees of freedom asymptotically, although it is common to use the

associated F-statistic formulation as a sort of ad hoc small sample correction. This is a conventional

mean variance efficiency test where the test assets are managed portfolios.

Managers might believe they do not have timing ability but that they possess time varying

selection skill. Such managers will generically choose portfolios with time varying weights and

they will believe that their returns satisfy:

Rpt+1 −Rft+1 = ω0pt(Rt+1 − ιRft+1) = ω0ptβδ(Rδt+1 − ιRft+1) + ω
0
ptεδt+1

= αp + βp(Rδt+1 − ιRft+1) + αpt − αp + εpt+1

≡ αp + βp(Rδt+1 − ιRft+1) + �pt+1

where the manager believes αpt = E[ω
0
ptεδt+1|Ipt] = ω0ptE[εδt+1|Ipt] 6= 0. If the manager is right,

αpt > 0, αp = E[αpt] > 0, and �pt+1 = ω
0
ptεδt+1 is a heteroskedastic and serially correlated error

term. If the manager is wrong, αpt = αp = 0 and �pt+1 = ω
0
ptεδt+1 is generically a heteroskedastic

and serially dependent, but not serially correlated, error term.
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The principles governing hypothesis testing is a bit different under the null hypothesis of no

skill at security selection. The least squares estimate α̂p is given by:

α̂p = αp +
1 + φ̂

2
δ

T

TX
t=1

�pt+1 −
Rδ −Rf

T

TX
t=1

(Rδt+1 −Rft+1)�pt+1 (69)

and, since εδt+1 is independently and identically distributed, its variance converges to:

V ar(α̂p) →
1

T
{(1 + φ2δ)

2E[�2pt+1]− 2(1 + φ2δ)Rδ −RfE[(Rδt+1 −Rft+1)�
2
pt+1]

+Rδ −Rf
2
E[(Rδt+1 −Rft+1)

2�2pt+1]} (70)

which obviously depends on the extent to which �2pt+1 = (ω
0
ptεδt+1)

2 is related to Rδt+1 − Rft+1

and (Rδt+1−Rft+1)
2. This is, of course, the familiar heteroskedasticity consistent estimator of the

variance of V ar(α̂p). If the portfolio weights are independent of market conditions, the variance

simplifies to:

V ar(α̂p)→
(1 + φ2δ)

2σ2�p
T

just as it did in the conditionally homoskedastic case and so inference can be based on the large

sample χ2−statistic (68), since normality of asset returns does not deliver normally distributed

managed portfolio returns when weights are time-varying.

As it happens, the case in which managers believe they have time-varying security selection

skill is identical to that in which they believe they have market timing ability when they do not

possess skill in either dimension. That is, the Jensen residual when managers feel they have both

market timing and stock picking ability is given by:

�pt+1 = αpt − αp + (βpt − βp)(Rδt+1 −Rft+1) + εpt+1

where E[αpt−αp] = E[(βpt−βp)(Rδt+1−Rft+1)] = 0 under the null hypothesis. Hence, irrespective

of whether conditional heteroskedasticity arises from attempts at selection that are dependent on

market conditions or attempts at market timing, the joint hypothesis that P alphas are zero can

be tested χ2 statistic:

T
α̂0pŜ

∗
�pα̂p

1 + φ̂
2
δ

∼ χ2(P ) (71)

where Ŝ∗�p is given by:

Ŝ∗�p =
1

T

h
(1 + φ2δ)

2Ŝ�p − 2(1 + φ2δ)Rδ −Rf ŜRδ�p +Rδ −Rf
2
ŜR2δ�p

i
ŜRδ�p =

1

T

TX
t=1

(Rδt+1 −Rft+1)�̂pt+1�̂
0
pt+1; ŜR2δ�p

=
1

T

TX
t=1

(Rδt+1 −Rft+1)
2²̂pt+1²̂

0
pt+1
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which makes Ŝ∗�p the heteroskedasticity consistent equivalent of Ŝ�p .

Little is changed if we dispense with the assumption that returns are identically distributed

over time while maintaining the assumption of serial independence. From the perspective of the

Jensen regression, there is one more potential source of conditional heteroskedasticity related to

market conditions if returns are not identically distributed unconditionally. For this reason, too,

it would appear that conservative inference suggests the use of the heteroskedastic consistent χ2

statistic (71).

Serial dependence in returns from the perspective of uninformed investors can create additional

complexities. It need not do so: changes in betas due to time-variation in expected returns do

not bias Jensen alphas unless Cov[βpt, Rδt+1−Rft+1] = E[ςβptμδt] 6= 0 where βpt = βp+ ςβpt is the

conditional beta based on public information, not on market timing ability. Unfortunately, any

beta change of the form ςβpt = k(μδt − μδ) will cause this assumption to fail, biasing the Jensen

alpha upward on the natural hypothesis k > 0.

One general strategy for dealing with this problem is to attempt to measure ςβpt or, more

precisely, that portion of ςβpt that is correlated with expected benchmark returns μδt. To this end,

Ferson and Schadt (1996) propose modeling time variation in mutual fund betas as projections

onto observed conditioning information as in:

βpt = βp + π0
β
(zpt − μz) + eβt

where the identifying assumption is that:

E[eβt(Rδt+1 −Rft+1)] = E[eβt(Rδt+1 −Rft+1)] = 0

and so the alpha from the revised Jensen regression:

E[Rpt+1 −Rft+1 = αp + βp(Rδt+1 −Rft+1) + π0
β
(zpt − μz)(Rδt+1 −Rft+1) + �pt+1

is purged of the effects of time variation in conditional benchmark betas related to public informa-

tion under these assumptions. Hence, this model can be estimated by ordinary least squares and

the inference procedures identified above can be applied to them without modification.

The Treynor-Mazuy regression coupled with the same sorts of simplifying assumptions provides

another avenue for dealing with serial dependence. As is obvious, this resolution can work here
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because there is no timing ability under the null hypothesis. Accordingly, consider the Treynor-

Mazuy quadratic regression:

Rpt+1 −Rft+1 = ap + b0p(Rδt+1 −Rft+1) + b1p(Rδt+1 −Rft+1)
2 + ζpt+1

along with the unconditional population projection:

Rδt+1 −Rft+1 = μδ + πςςβpt + υςδt+1 (72)

where the residual υςδt+1 is purged of the correlation of ςβpt with expected excess benchmark returns.

Now assume that excess benchmark returns Rδt+1−Rft+1 and beta innovations ςβpt are jointly nor-

mally distributed and strengthen the lack of correlation between υςδt+1 and ςβpt to independence.
16

Substitution of (72) into the normal equations of this variant of the quadratic regression reveals

that the unconditional projection coefficients b0p and b1p are given by:⎛⎝ b0p

b1p

⎞⎠ =

⎡⎣V ar
⎛⎝ Rδt+1 −Rft+1

(Rδt+1 −Rft+1)
2

⎞⎠⎤⎦−1Cov
⎡⎣Rpt+1 −Rft+1,

⎛⎝ Rδt+1 −Rft+1

(Rδt+1 −Rft+1)
2

⎞⎠⎤⎦
=

⎛⎝ σ2δ 0

0 3σ4δ

⎞⎠−1Cov
⎡⎣(βp + ςβpt)(Rδt+1 −Rft+1) + �pt+1,

⎛⎝ Rδt+1 −Rft+1

(Rδt+1 −Rft+1)
2

⎞⎠⎤⎦
=

⎛⎝ βp

0

⎞⎠+E

⎛⎝ ςβpt(μδ + πςςβpt + υςδt+1)(πςςβpt + υςδt+1)

ςβpt(μδ + πςςβpt + υςδt+1)[(πςςβpt + υςδt+1)
2 − σ2δ ]

⎞⎠
=

⎛⎝ βp

0

⎞⎠+ πςσ
2
ξ

σ2δ

⎛⎝ μδ
2
3

⎞⎠ ≡
⎛⎝ βp

0

⎞⎠+
⎛⎝ γς0p

γς1p

⎞⎠ (73)

and the corresponding intercept ap is, under the null hypothesis, given by:

ap = Cov[ξβpt , Rδt+1 −Rft+1]− γς0pE[Rδt+1 −Rft+1]− γς1pE[(Rδt+1 −Rft+1)
2]

= πςσ
2
ξ − πςσ

2
ξ

μ2δ
σ2δ
− πςσ

2
ξ

2

3

μ2δ + σ2δ
σ2δ

= πςσ
2
ξ

∙
1

3
− 5
3
φ2δ

¸
.

Now b1p can be used to solve for πςσ2ξ which can, in turn, be used to solve for βp and the null

hypothesis:

H0 : ap = πςσ
2
ξ

16This assumption is not entirely innocuous because both υςδt+1 and ςβpt would typically be serially dependent in

this setting. The role of this assumption is to eliminate any role for dependence between the possibly time-varying

higher co-moments of υςδt+1 and ςβpt .
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can be tested using the delta method to calculate the standard error for âp− π̂ς σ̂
2
ξ . The extension

to P funds is straightforward.

We have taken the benchmark portfolio as known when it is, in fact, a construct based on

stochastic discount factors.17 We can adopt one of two variants of the stochastic discount factor

approach, one based on the moment condition (1) and the other based on the moment condition

(4) defining portfolio δ. We describe these methods in turn.

The first approach treats the identification of the stochastic discount factor as a modeling

problem. That is, we can model the stochastic discount factor as being given by some functional

form:

mt+1 = g(xt+1,θm) + εgmt+1

where xt+1 is a set of state variables that help determine the realization of the family of stochastic

discount factors defined by E[εgmt+1Rt+1|It] = 0 and θm is a set of unknown parameters. These

parameters can be estimated by exploiting the conditional moment conditions:

ι = E[mt+1Rt+1|It] = E[[g(xt+1,θm) + εgmt+1]Rt+1|It] = E[g(xt+1,θm)Rt+1|It] (74)

by multiplying both sides of (74) by zt ∈ It and taking unconditional expectations yields:

ιz0t = E[g(xt+1,θm)Rt+1|It]z0t = E[g(xt+1,θm)Rt+1z
0
t|It]

⇒ E[ιz0t] = E[g(xt+1,θm)Rt+1z
0
t]

and so the sample analogue of this moment condition can be used to estimate θm. The null

hypothesis that the manager of portfolio p has no skill at security selection or market timing

implies that:

E[zt] = E[g(xt+1, θ̂m)ztRpt+1] (75)

and this hypothesis can be tested using the delta method to calculate the standard error of the

difference. Alternatively, the vector of asset returns can be augmented with Rpt+1 viaR∗t+1 = (R
0
t+1

17The case in which the stochastic discount factor is a portfolio of given portfolios can be handled by replacing the

single index Jensen and Treynor-Mazuy regressions with multifactor ones in which there are separate betas on each

given portfolio. The main complications are notational complexity coupled with the potential for the benchmark

portfolio so constructed to have realizations that are not strictly positive.
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Rpt+1)
0 and the model can be estimated via the unconditional moment condition:

E[ιz0t] = E[g(xt+1,θm)R
∗
t+1z

0
t] (76)

and the null hypothesis can be tested by examining the difference:

E[zt] = E[g(xt+1, θ̂
∗
m)Rpt+1zt] (77)

using the delta method once again. Other GMM tests can be constructed in a similar fashion.

Alternatively, we can construct the empirical analogue of portfolio δ by using the sample ana-

logues of the moment conditions (4). This approach seems more natural: one usually thinks of

mt+1 as being the stochastic discount factor implied by some asset pricing model whereas perfor-

mance evaluation requires only the portfolio of these assets that is the best hedge for any mt+1,

which is portfolio δ. Since it is convenient to use the variant of the moment conditions for portfolio

δ that works with mt+1 as opposed to mt+1 − E[mt+1|It] = mt+1 − R−1ft+1, the defining moment

conditions are given by:

ι = E[Rt+1(R
0
t+1δt + εmt+1)|It] = E[Rt+1R

0
t+1|It]δt

where δt is the vector of weights defining portfolio δ prior to normalizing them to sum to one.

Here, too, we require a model for the time-varying weight vector δt of the form:

δt = h(zt,θδ)

where θδ is a set of unknown parameters. Once again, the parameters of this model can be

estimated via the unconditional moment conditions:

E[ι] = E[Rt+1R
0
t+1h(zt,θδ)]

using GMM. For example, Chen and Knez (1996) examine the natural model:

δt = h(zt,θδ)= ω∗zt, (78)

where ω∗ is a suitably conformable matrix of constants. Tests of the null hypothesis can be based

on (75) and (76) by substituting R0t+1h(zt,θδ) for g(xt+1,θm).
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5.2 Power of Statistical Tests for Individual Funds

There are good reasons to be concerned about power in performance evaluation. Economic rea-

soning suggests that superior performance should not be pervasive across the universe of fund

managers. Statistical reasoning suggests that the substantial noise in long-lived asset returns

makes it difficult to reliably measure performance in the best of circumstances. We discuss these

issues in turn.

Long-lived asset returns can typically be decomposed into systematic risk that cannot be elim-

inated via diversification and unsystematic risk that can be diversified away. The decomposition

of stock returns into common factors and idiosyncratic disturbances is the basis of the Arbitrage

Pricing Theory of Ross (1976, 1977). Two or three factors account for the bulk of time series

and cross-sectional variation in bonds of different maturities. Similarly, currencies are essentially

uncorrelated conditional on two or three currencies. Thus it is not an accident that market timing

ability is distinguished from skill at security selection among practitioners, the former corresponds

to systematic risk and the latter to diversifiable risk.

Security selection cannot pervade the asset universe. If a manager could successfully identify

many assets with positive or negative alphas, a well-diversified portfolio which tilted toward the

former and away from the latter (or sell them short if feasible) would systematically outperform

the benchmark. Any manager with such ability would be able to charge a fee roughly equal to the

amount of outperformance and we would routinely observe consistent positive differences between

gross and net returns. We do not observe such behavior in the universe of managed portfolios.

Skill at security selection across segments of the asset universe cannot pervade the manager

universe either. If there were many managers who could consistently identify assets with positive or

negative alphas in different securities, investors would systematically outperform the benchmark by

holding diversified portfolios of funds. That is, diversification across funds can replace diversification

across assets in these circumstances. Once again, it would be easy to identify portfolios of managed

portfolios with consistent positive differences between gross and net returns. We do not observe

such behavior in the universe of portfolio managers.

Market timing ability cannot be pervasive because of the number of opportunities to time the

market. Market volatility provides managers with many opportunities to profit by buying on

average before the relevant benchmark portfolio appreciates and selling on average before its value
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declines. Even if managerial skill were only slightly better than a coin toss, the sheer number

of coin tosses would result in consistently positive performance on a quarterly or annual basis.

Once again, we would observe consistently positive performance among market timers if this were

the case. Managers might have ”infrequent” market timing success but this would be hard to

distinguish from good luck unless, of course, it was ”frequent,” which this argument says it cannot

be.

What do we actually observe? Studies based on managed portfolios for which there is infor-

mation on asset allocations along the lines of (48) consistently reveal two facts: measured market

timing almost never contributes positively to portfolio performance and the distribution of measured

security selection skill across portfolios appears to be roughly symmetric and centered around zero.

That is, we seldom observe successful market timers and we cannot tell if the good performance of

successful stock pickers represents good luck or good policy.

The appropriate null hypothesis may be “no abnormal performance” but this observation im-

plies that “abnormal performance” is not the appropriate alternative hypothesis. Rather the

natural alternative hypothesis is that K out of P funds can outperform the benchmark in a given

fund universe with K small relative to P . Devising powerful tests against such an alternative

is challenging. By the same token, it is hard for investors to identify reliable decision rules that

identify such managers as well.

The volatility of long-lived asset returns figure prominently in this reasoning. Covariances are

measured well in high volatility environments but means are measured poorly. Market timing

ability involves covariances and security selection skill is measured by means. The inability to

find the former suggests that it is not a widespread skill and observed standard errors of alphas

reflect the imprecision with which they are estimated. We can learn more about the latter through

simulation.

Two features of long-lived asset returns have special relevance for the question at hand: their

extraordinary volatility and the fact that they can be decomposed into systematic and unsystematic

risk. We can assess the comparative difficulty of this problem by answering the following question:

Suppose we are given the population Treynor-Black appraisal ratio of a managed portfolio along

with the population Sharpe ratio of the benchmark. How long would we have to observe the fund

in order to have a given probability of rejecting the null hypothesis that the fund exhibits abnormal

performance? That is, what is the power of the t-test for the Jensen alpha evaluated at different
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sample sizes?

To answer this question, we follow the analysis of Blake and Timmermann (2002). As was noted

earlier, the t-statistic for the Jensen alpha is given by:

t(α̂p) =

√
T α̂p

(1 + φ2δ)σ�p

which is normally distributed when the returns are normally distributed and φ2δ and σ�p are known.

If we are trying to assess the impact of volatility on tests for abnormal performance (i.e., that αp 6= 0

as would be appropriate if we were concerned with the prospect of significant underperformance,

corruption of alpha due to market timing ability, or benchmark error), we would consider two-sided

tests with critical values of c/2 and we would want to assess the probability of detection:

Pr

"
√
T

α̂p

(1 + φ2δ)σ�p
> z1−c/2

#
= Φ

£
t(α̂p)− z1−c/2

¤
+Φ

£
−t(α̂p)− z1−c/2

¤
(79)

as a function of the sample size T . Alternatively, we would seek a one-sided interval with critical

value c if we thought Jensen’s alpha is measured without bias and we were not concerned with

underperformance, for which:

Pr

"
√
T

α̂p

(1 + φ2δ)σ�p
> z1−c

#
= Φ [t(α̂p)− z1−c]

is the probability of detection.

To be concrete, suppose we are given a managed portfolio with a Treynor-Black appraisal ratio

of 0.1 − which corresponds to an appraisal ratio of 0.1 or -0.1 for the two-sided test − and a

benchmark Sharpe ratio of zero. These numbers could be generated by a growth stock fund with a

beta of one on a passive growth stock index with a volatility of 4.5 percent per month, which, when

coupled with an R2 of 0.9, would imply that the portfolio has a residual standard deviation of 1.5

percent. Hence, this fund would have an alpha of 0.15 percent per month and or an annualized

alpha of 1.8 percent. In this environment, a one-sided test is associated with the following trade-off

between statistical power and sample size:

Power required sample size (T )

10% 13 (1.085 years)

25% 94 (7.83 years)

50% 270 (22.5 years)
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while the corresponding two-sided test yields a trade-off of:

Power required sample size (T )

10% 43 (3.6 years)

25% 165 (13.8 years)

50% 385 (30.1 years)

between sample size and power. As these numbers clearly indicate, it takes many months to be

able to detect positive or abnormal performance with any reliability.

Similarly, we can examine the somewhat higher signal-to-noise ratio environment with an ap-

praisal ratio of 0.2 (and -0.2 for the two-sided test) which corresponds to an alpha of 3.6 per cent

per year in the numerical example given above. In this case, the trade-off between power and

sample size is given by:

Power required sample size (T )

10% 4 (0.3 years)

25% 24 (2.0 years)

50% 68 (5.7 years)

while the corresponding two-sided test yields a trade-off of:

Power required sample size (T )

10% 12 (1.0 year)

25% 42 (3.5 years)

50% 96 (8.0 years)

While the probability of detection is considerably higher in this case, it remains the case that it is

remarkably difficult to be confident that a managed portfolio has a Treynor-Black appraisal ratio

of 0.2, a number that most managers would be thrilled to attain. This problem is exacerbated if

ability lies with the manager, not with the fund, since reliable detection of ability would likely occur

late in the job tenure of a successful manager. This difficulty in detecting abnormal performance

with any statistical precision is why we emphasized the significant benefits associated with the

acquisition of other information such as portfolio weight data to supplement return data.
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5.3 Inference for Multiple Funds

The presence of literally thousands of actively managed funds raises the natural question whether

individual funds or (sub-) groups of funds can outperform their benchmarks. Given this large

number of funds, whether outperformance is the result of skill or luck can be very difficult to

detect. The Bonferroni bound can be used to establish an upper bound on the probability of

superior performance of the very best fund among a large set of P funds. If we are examining the

t-statistics of the Jensen measures of P funds, the Bonferroni bound computes the probability that

at least one of these exceeds some critical value, tmax (in practice the largest value observed in the

cross-section):

Pr(at least one ti > tmax) = 1− Pr(
P
∩
i=1
(ti < tmax))

≤ 1− (1−
PX
i=1

Pr(ti ≥ tmax))

=
PX
i=1

Pr(ti ≥ tmax)

= PΦ(tmax), or

Pr(at least one ti ≥ tmax) ≤ min(1, PΦ(tmax))

where Φ(.) is the complementary cumulative distribution function of the individual student-t sta-

tistics (i.e. one minus the cumulative distribution function). Unfortunately, the Bonferroni bound

is quite conservative and thus may fail in detecting genuine abnormal performance. The reason is

that it is robust to any correlation patterns across the P performance statistics, including patterns

for which inference is extremely difficult.

An alternative semi-parametric approach that accounts for the correlation structure in fund

returns through their exposure to a set of common benchmark portfolios factors but does not

require explicitly modeling the covariance structure in fund-specific residuals has been proposed by

Kosowski et al. (2006). They argue that the skill versus luck question can be addressed in many

different ways, depending on how large a fraction of funds one tests for abnormal performance.

The hypothesis that the manager of the very best fund among a larger universe of P funds cannot

59



produce a positive alpha takes the form

H0 : max
p=1,...,P

αp ≤ 0 , and

HA : max
p=1,...,P

αp > 0.

More broadly, one may want to rank a group of funds by their alpha estimates and ask whether

the top 5%, say, of funds outperform. Let i∗ be the rank of the fund corresponding to this percentile.

When testing whether this fund manager can pick stocks, the null and alternative hypotheses are

H0 : α
p∗ ≤ 0 , and

HA : α
p∗ > 0.

Since the alpha measure is not pivotal whereas the estimated t-statistic of bα, btα is, a bootstrap test
based on this statistic is likely to have lower coverage errors. btα has another attractive statistical
property: Funds with a shorter history of monthly net returns will have an alpha estimated with less

precision, and will tend to generate alphas that are outliers. The t-statistic provides a correction for

these spurious outliers by normalizing the estimated alpha by the estimated precision of the alpha

estimate − it is related to the well-known “information ratio” performance measure of Treynor and

Black (1973).

Using this performance measure, the null and alternative hypotheses for the highest ranked

fund are:

H0 : max
p=1,...,P

tp ≤ 0, and

HA : max
p=1,...,P

tp > 0.

The joint distribution of the alphas is difficult to characterize and compute. Even if it is known

that returns are joint Gaussian, the above test statistics will still depend on the P × P covariance

matrix which is difficult to estimate with any degree of precision when − as is typically the case

− P is large relative to the sample size, T . Furthermore, many funds do not have overlapping

return histories which renders estimation of the covariance matrix infeasible by means of standard

methods. Kosowski et al. (2006) propose to use the following bootstrap procedure to test for

abnormal performance of a group of funds. In the first step the individual funds’ alphas are

estimated via OLS using a performance model of the form

Rpt −Rft = bαp + bβ0p(Rδt −Rft) +b�p,t.
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This generates coefficient estimates, {bαp, bβp}Pp=1, time-series of residuals, {b�p,t , t = 1, Tp, p =

1, ....., P} as well as the t-statistic of alpha, btα. Bootstrapped residuals can be resampled by drawing
a sample with replacement from the fund i residuals, thus creating a new time-series, {b�bp,t, t =
sb1, s

b
2, ..., s

b
Tp
}. Each bootstrap sample has the same number of residuals (e.g., the same number of

time periods, Tp) as the original sample for each fund p. This resampling procedure is repeated for

all bootstrap iterations, b = 1, ..., B.

For each bootstrap iteration, b, a time-series of (bootstrapped) net returns is constructed for

each fund, imposing the null hypothesis of zero true performance (αp = 0, or, equivalently, btα =
0), letting sb1, s

b
2, ..., s

b
Tp
be the time reordering imposed by resampling the residuals in bootstrap

iteration b:

{Rb
pt −Rb

ft =
bβi(Rδt −Rft) +b�bp,t , t = sb1, s

b
2, ..., s

b
Tp}. (80)

By construction, these artificially generated returns have a true alpha of zero since we have imposed

alpha to be zero. Because a given bootstrap draw may have an unusually large number of positive

draws of the residual term, however, this can lead to an unusually large estimate of alpha in the

OLS regression of the returns in the bth bootstrap sample on an intercept and the benchmark

portfolio returns.

Repeating these steps across funds, p = 1, ..., P , and bootstrap iterations, b = 1, ..., B, gives

a cross-sectional distribution of the alpha estimates, bαbp, or their t-statistics, btbαp , due to sampling
variation, as we impose the null of no abnormal performance. Keeping b fixed and letting p vary

from 1 to P , we get one draw from the cross-sectional distribution of alpha estimates. These alpha

estimates {bαb1, bαb2, ..., bαbP} can be ranked to get an estimate of the maximum value of bα, bαbmax,
the cth quantile, bαb(c), and so forth. Repeating this across b = 1, ..., B, produces a distribution of
cross-sectional quantiles {bα1(c), ..., bαB(c)}. Comparing the corresponding quantile in the actual data
generates a test of whether the top 100c percentage of funds can outperform, based on a statistic

such as

B−1
BX
b=1

I{bαb(c) < bα(c)}.
5.4 Empirical Specifications of Alpha Measures

Following the above discussion of performance benchmarks, we briefly discuss some benchmarks

that have been used extensively in the empirical literature. The class of unconditional alpha
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measures includes specifications proposed by Jensen (1968), Fama and French (1993) and Carhart

(1997). The Carhart (1997) four-factor regression model is

Rpt −Rft = αp + bp(Rmt −Rft) + sp · SMBt + gp ·HMLt + hp · PR1Y Rt + εpt, (81)

where SMBt, HMLt, and PR1Y Rt equal the period-t returns on value-weighted, zero net in-

vestment factor-mimicking portfolios for size, book-to-market equity, and one-year momentum in

stock returns, respectively. The Fama and French alpha is computed using the Carhart model of

Equation (81), excluding the momentum factor (PR1Y Rt), while the Jensen alpha is computed

using the market excess return as the only benchmark:

Rpt −Rft = αp + bp · (Rmt −Rft) + εpt . (82)

Ferson and Schadt (1996) modify the Jensen regression of equation (82) to obtain a class of condi-

tional performance measures that control for time-varying factor loadings as follows:

Rpt −Rft = αp + bp · (Rmt −Rft) +
KX
j=1

Bp,j [zj,t−1 · (Rmt −Rft)] + εpt, (83)

where zj,t−1 is the de-meaned period-t − 1 public information variable j, and Bp,j is the fund’s

“beta response” to the value of zj,t−1.18 Hence the Ferson and Schadt measure computes the alpha

of a managed portfolio, controlling for investment strategies with weights that are linear functions

of publicly available economic information that dynamically modify portfolio betas in response to

predictable components of benchmark returns.

Christopherson, Ferson and Glassman (1998) expand this class of models by allowing fund

alphas to vary over time as well. For example, their variant of the Jensen model of equation (82) is

Rpt −Rft = αp +
KX
j=1

Ap,j · zj,t−1 + bp · (Rmt −Rft) +
KX
j=1

Bp,j [zj,t−1 · (Rmt −Rft)] + εpt. (84)

Most studies have found that the typical fund does not outperform on a risk- and expense-adjusted

basis, cf. Jensen (1968), Carhart (1997), Malkiel (1995), Gruber (1996) and Daniel et al. (1997).

18Farnsworth et al (2001) find that a range of stochastic discount factor models have a mild negative bias when

performance is neutral. See also Lynch et al. (2002) for an analysis of the relationship between performance measures

and stochastic discount factor models.
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5.4.1 Persistence in Performance

One of the implications of the absence of arbitrage is that we should not expect to find funds that

persistently outperform the relevant benchmarks. To see this, note that the no-arbitrage condition

E[(Rpt+1 −Rft+1)mt+1|It] = 0 implies

E[(Rpt+1 −Rft+1)(Rpt −Rft − (R̄p − R̄f ))mt+1] = 0,

so that, on a risk-adjusted basis, returns are serially uncorrelated.

Some studies − inter alia Lehmann and Modest (1987), Grinblatt and Titman (1992), Hen-

dricks et al. (1993), Brown and Goetzmann (1995), Elton, Gruber and Blake (1996), Carhart

(1997) and Kosowski et al. (2006) − have found evidence of persistence in fund performance. In

particular, there is little doubt empirically that there is persistence among the worst funds’ perfor-

mance. It is more disputed whether funds with superior performance can repeat their past success

after accounting for differences in risk exposures and the effects of survivorship bias, cf. Brown,

Goetzmann, Ibbotson and Ross (1992) and Carpenter and Lynch (1999).

One way to model time-variations in alpha and beta, pursued by Kosowski (2002), is to assume

that these depend on some underlying state (boom and bust, expansion and recession, volatile and

calm markets) and treat this state as unobserved. Suppose that the state follows a Markov chain

and the alpha, beta, and idiosyncratic risk are functions of a single, latent state variable (st):19

Rpt −Rft = αst + βst(Rδt −Rft) + �t, �t ∼ (0, σ2st).

Conditional on a vector of variables known at time t − 1, zt−1, the state transition probabilities

follow a first order Markov chain:

pt = P (st = 1|st−1 = 1, zt−1) = p(zt−1)

1− pt = P (st = 2|st−1 = 1, zt−1) = 1− p(zt−1)

qt = P (st = 2|st−1 = 2, zt−1) = q(zt−1)

1− qt = P (st = 1|st−1 = 2, zt−1) = 1− q(zt−1).

19This approach is the natural time series extension of the Henriksson-Merton analysis. Here the persistence in betas

arises because of persistence in state variables whereas the persistence in betas in the analogue of Henrikson-Merton

would arise from persistence in market timing signals.
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Hence, conditional on being in state st, portfolio returns have a normal distribution with mean

αst + βst(Rδt − Rft) and variance σ2st . We assume a constant relationship between the market

return and excess returns within each state, but allow this relation to vary between states. Hence,

in certain states, beta is high and the sensitivity to market movements very significant. At other

times beta is low and risk is smaller. Information about which state the portfolio is currently in is

therefore important for assessing risk and portfolio performance.

6 Bayesian Approaches

A meaningful decision theoretical framework must use information on the uncertainty surrounding

the parameters characterizing a funds’ abnormal performance. However, it can also use prior

information as a way to account for the noise often dominating parameter estimates. Use of such

prior information is akin to shrinkage, a technique that is known to be able to improve upon out-

of-sample forecasting performance in areas such as construction of covariance matrix estimators,

forecast combinations and portfolio formation.

As an example of this approach, Baks, Metrick and Wachter (2001) propose a Bayesian setting

where investors with mean-variance preference decide whether or not to hold any of their wealth in

a single actively managed mutual fund. Their setup is as follows. Suppose the common component

of asset returns is captured through K benchmark assets (passively managed index funds) with

period-t+ 1 returns Ft+1 and an actively managed fund with returns rt+1 that are assumed to be

generated by the model

rt+1 = α+F0t+1β + εt+1, (85)

where εt+1 ∼ N(0, σ2). The parameters α, β are viewed as fixed attributes associated with the fund

manager. The question is now how large a fraction of wealth, ω, the investor is willing to allocate to

the mutual fund. This question depends in part on the investor’s prior beliefs about the manager’s

ability to generate a positive α, in part on the fund manager’s track record. The latter is captured

through a T × 1 vector of excess returns, r, while F is a T × K matrix of factor returns and ε

is a T × 1 vector of residuals. Assuming that return shocks, ε, are independently and identically

distributed and normally distributed, we have

p(r|α, β, σ2,F) = N(αιT +Fβ, σ
2IT ),
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where again ιT is a T × 1 vector of ones and IT is the T × T identity matrix. Baks et al. (2001)

capture prior beliefs concerning α as follows. Let Z be a random indicator variable that captures

whether the manager is skilled (Z = 1) or unskilled (Z = 0), the former having a prior probability

of q. Both β and σ are assumed to be independent of whether or not the manager is skilled so that

any skills are defined with respect to security selection. This means that the prior for the joint

distribution of (α, β, σ2) can be factored out as follows:

p(α, β, σ2) = [p(α|Z = 0)P (Z = 0) + p(α|Z = 1)p(Z = 1)]p(β, σ2). (86)

To get analytical results, Baks et al. (2001) assume a diffuse prior on β, σ2, i.e. p(β, σ2) ∝ σ−2.

The prior for the manager’s stock selection skills is determined from the following set of equations:

p(Z = 1) = q

p(Z = 0) = 1− q,

p(α|Z = 0, σ2) = δα, (87)

p(α|Z = 1, σ2) = 2N

µ
α, σ2α

µ
σ2

s2

¶¶
Iα>α,

where δα is the Dirac function that puts full mass at α = α, and no mass anywhere else, while

Iα>α is an indicator function that equals unity if α > α and is zero otherwise. α < 0 represents the

return expected from an unskilled fund manager, while s2 is a constant used in the elicitation of

priors. Baks et al. (2001) set α = −qσα
p
2/π − fee− cos t, where fee is the manager’s expected

fee and cos t is the fund’s expected transaction costs.

Under these assumptions the posterior distribution of α,E[α|r,F], denoted by α̃, can be com-

puted as the (posterior) expected value of α conditional on the manager being skilled times the

probability that the manager is skilled, plus the value of α if the fund manager is unskilled, α,

times the probability that he is unskilled:

α̃ = q̃E[α|Z = 1, r,F] + (1− q̃)α,

where q̃ = P (Z = 1|r,F) is the posterior probability that the fund manager is skilled. Both q̃ and

E[α|Z = 1, r,F] need to be computed to assess the value of fund management. Let X = (ιT F ) so

the least-squares estimates of (α̂ β̂) are given by

(α̂ β̂)0 = (X0X)−1X0r,
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while the variance of the maximum likelihood for α conditional on a known residual variance, σ2,

is

var(α̂) = e01(X
0X)−1e1σ

2,

where e1 = (1 0 · · · 0)0. For a skilled manager (Z = 1) the posterior distribution of α given the

data and σ2 is

P (α|Z = 1, r,F, σ2) ∝ N(α0, σ
02)1α>α, (88)

where the posterior parameters are

α0 = λα̃+ (1− λ)α,

σ02 =

Ã
1

var(α̃)
+

1

σ2α(
σ2

s2 )

!
,

λ2 =
σ
02

var(α̃)
.

Here α0 is the mode of the skilled manager’s posterior distribution. This differs from the mean due

to the truncation of the distribution of α at α. Under the assumed normality, the truncation causes

the mode to be a weighted average of the least squares estimate, α̂, and truncation point, α, with

weights that reflect the precision of the data relative to the precision of the prior, λ. Finally, the

posterior precision, σ0−2, is the sum of the precision of the prior and the precision of the data.

Integrating out β and σ2, the (marginal) posterior distribution for α is proportional to a trun-

cated student-t:

p(α|Z = 1, r,F) ∝ tv

Ã
α0,

λe01(X
0X)−1e1h

T −K

!
Iα>α,

where h = (r− r̂)0(r− r̂) + (1− λ)(α̂− α)2(e01(X
0X)−1e1) and r̂ = X(α̂ β̂) are the fitted returns.

This is all that is required to compute the posterior mean of α, obtained by integrating over

p(α|Z = 1, r,F) to the right of the truncation point, α :

E[α|Z = 1, r,F] = α0 +
λe01(X

0X)−1e1h

T −K − 2
tT−K(α;α0,

λe01(X
0X)−1e1h

T−K−2 )R∞
α tT−K(α;α0,

λe01(X
0X)−1e1h

T−K−2 )dα
.

The posterior probability that the manager is skilled given the data is obtained from Bayes’ rule:

q̃ = P (Z = 1|r,F) = qP (r|Z = 1,F)
qP (r|Z = 1,F) + (1− q)P (r|Z = 0,F)

=
q

q + 1−q
B

,
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where B = p(r|Z = 1,F)/p(r|Z = 0,F) is the odds ratio that a given return is generated by a

skilled versus an unskilled manager. The more likely it is that a given return data is generated by

a skilled manager than by an unskilled manager, the higher is B :

B =
tT−K−1(α; α̂,

λe01(X
0X)−1e1h(r−r̂)0(r−r̂)
(1−λ)(T−K−1) )

tT−K−1(α; α̂,
λe01(X

0X)−1e1h(r−r̂)0(r−r̂)
(T−K−1) )

Ã
2

Z ∞

α
tT−K(α;α

0,
λe01(X

0X)−1e1h

T −K
)dα

!
.

Hence beta is the likelihood ratio of two t−distributions multiplied by a term that accounts for the

effect of truncation.

To account for the possibility of investing in multiple actively managed funds, Baks et al. (2001)

assume that both the likelihood functions and the priors are independent across managers. In this

case the posterior distributions are independent across managers so the computations with multiple

active funds do not change.

Letting (rN F) be the return on N actively managed funds and the K passive index funds,

under the assumption that (rN F) ∼ N(Ẽ, Ṽ), Baks et al. (2001) show that the weights on the

actively managed and index funds, ω = (ωA ωF )
0 for an investor with mean-variance preferences

U = E[Rp] − (A/2)V ar(Rp) over the mean and variance of portfolio returns, E[Rp], V ar(Rp) are

given by ⎛⎝ ωA

ωF

⎞⎠ = (1/A)Ṽ−1Ẽ. (89)

Furthermore, holdings in the actively managed funds can be shown to be given by

ωA = (1/A)Ω
−1α̃, (90)

where Ω−1 is diagonal with exclusively positive elements. This means that an active fund is held

if and only if the posterior mean of its alpha estimate is strictly positive.

In their empirical analysis, Baks et al (2001) find that a frequentist analysis of the performance

of the best fund managers cannot reject the null that none of the fund managers is skilled (and

hence that nothing should be invested in their funds). In contrast, the Bayesian analysis finds

that even small prior probabilities of skill translate into some holdings in actively managed funds.

The reason for this seemingly contradictory result is related to the weak power of statistical tests

against small positive values of α, that are nevertheless economically important.20

20 It may also be a consequence of implicitly placing strong prior probabilities that some funds outperform the
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6.1 Asset Mispricing and Investment in Mutual Funds

Pastor and Stambaugh (2002a, 2002b) extend this analysis to allow for the possibility of mispricing

relative to a factor pricing benchmark such as a multifactor model. Hence investors view manager

skill not just in relation to a set of benchmark portfolio returns but also with respect to a set

of nonbenchmark assets’ returns that are tracked by a set of passive index funds. In this setting

investors also are endowed with priors about possible mispricing. In the following we describe the

Pastor-Stambaugh approach.

Common components in asset returns are captured through an m× 1 vector of excess returns,

rNt, on m nonbenchmark passive assets and k benchmark returns, rBt. Returns on the nonbench-

mark assets are given by

rNt = αN +BNrBt + εNt, (91)

where E[εNtε
0
Nt] = Σ.

Returns on any fund can now be regressed on the nonbenchmark and benchmark returns:

rAt = δA + c
0
ANrNt + c

0
ABrBt + uAt, (92)

where E[u2At] = σ2u and all innovations are assumed to be Gaussian.

The key difference between nonbenchmark and benchmark returns in Pastor and Stambaugh’s

analysis lies in the assumption that only the latter are included as priced factors in asset pricing

models. Hence, under the null that only the benchmark assets are priced, fund performance is

naturally measured only with regard to rBt :

rAt = αA + β0ArBt + εAt. (93)

Notice that a fund manager with a positive alpha need not be skilled if the positive alpha is due to

his holdings of passive assets with nonzero alphas. Thus, if there is a possibility that the benchmark

assets do not price the nonbenchmark assets exactly, αN 6= 0, then δA in (92) defined with regard

to the full set of passive assets becomes a better measure of skill than αA in (93). Using (91) in

benchmark. With many funds with parameters that are treated as independent a priori and a posteriori, it must be

the case that the prior probability that a small number of funds outperform is overwhelming when there are many

funds in the sample.
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(92) gives the decomposition

rAt = δA + c
0
ANαN| {z }

αA

+ (cANBN+c
0
AB)| {z }

β0A

rBt + cANεNt + uAt| {z }
εAt

,

so that

αA = δA + c0ANαN ,

βA = cANBN+c
0
AB.

The priors assumed by Pastor and Stambaugh are as follows. BN has a diffuse prior while the

prior for Σ is an inverted Wishart, Σ−1 ∼ W (H−1,v), the prior for σ2u is an inverted gamma, i.e.

σ2u ∼ v0s
2
0/χ

2
v0 , where χ

2
v0 is a chi-square variate with v0 degrees of freedom. Finally, given σ2u, the

prior for cA = (c0AN c0AB)
0 is Gaussian. The specific values of the parameters assumed for these

priors are derived using empirical Bayes methods.

Turning to the skill and mispricing priors, Pastor and Stambaugh assume that, conditional on

Σ, the prior for αN is

αN |Σ ∼ N

µ
0, σ2αN

Σ

s2

¶
,

where E[Σ] = s2Im is a diagonal matrix. Here σαN is the (marginal) prior standard deviation of

αN (assumed to be identical across all nonbenchmark assets). Clearly, if σαN = 0, αN = 0 and the

investor has full confidence in the benchmark assets’ ability to price the nonbenchmark assets. The

greater the value of σαN , the higher the chance of mispricing of these assets, although since the

prior distribution of αN is centered at zero, in expectation the investor always thinks that there is

no bias in the pricing model.

Pastor and Stambaugh assume that investors’ prior beliefs about managers’ skills follow a similar

distribution:

δA|σ2u ∼ N

µ
δ0,

σ2u
E[σ2u]

σ2δ

¶
.

The scaling by σ2u/E[σ
2
u] ensures that if σ

2
u is high, so little of the variation in a fund’s returns

is explained by the passive portfolios, then a larger value of abnormal performance, δA, becomes

more likely. δ0, the mean of the residual performance adjusted for risk exposure to the benchmark

and nonbenchmark assets, reflects the performance net of cost of a truly unskilled fund manager.

Hence it is given by the monthly equivalent to the fund’s expense ratio and its turnover times a
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round-trip cost of one percent:

δ0 =
−1
12
(expense+0.01× turnover).

Letting R = (RN RB) be the T × (n+k) matrix of sample data on the passive index portfolios

and rT+1 be the vector of fund returns in the following period, the posterior predictive distribution

is obtained as

p(rT+1|R) =
Z
θ
p(rT+1|R,θ)p(θ,R)dθ, (94)

where p(θ|R) is the posterior distribution of the parameters, θ.

In their empirical analysis, Pastor and Stambaugh (2002b) find that both prior beliefs about

managers’ skills and prior beliefs about pricing models are important to investors’ decision of

whether or not to invest in actively managed funds. An investor with complete confidence in the

benchmark asset pricing model (CAPM) who is ruling out the possibility of a non-zero value of αA

naturally only invests in market-index funds. If this investor admits the possibility that returns may

be explained by p passive funds, even when believing with full confidence that δA = 0, this investor

is willing to hold some money in actively managed funds provided that it is not possible to invest

directly in the passive funds. The logic is of course that when investors cannot directly hold the

benchmark or nonbenchmark assets, actively managed funds can track the benchmark portfolios

with smaller errors than passively managed funds. Hence even investors who are skeptical about

the possibility of managerial skill may choose to invest in actively managed mutual funds.

7 Conclusion

In fits and starts, the finance profession has come a long way since the pioneering work of Jensen

(1968, 1969, 1972), Sharpe (1966), and Treynor and Mazuy(1966). To be sure, many of the issues

discovered in this early work remain: in particular, the twin problems of the identification and

measurement of appropriate benchmarks and the biases in performance measures arising from

market timing. Yet we have learned much about the precise form these problems take and we

have developed new methods and new sources of information. And the markets have learned much

as well: the pervasive use of benchmark-based performance measurement and attribution in the

mutual fund and pension fund industries are a testament to the impact of academic research.
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We know that the theoretically appropriate benchmark is a portfolio, δ, which need not come

from some equilibrium asset pricing model. It can come from the theory of portfolio choice: portfolio

δ is the mean variance efficient portfolio that hedges the intertemporal marginal rates of substitution

of any investor who is on the margin with respect to each asset chosen by the performance evaluator

even if the investors invest in many other assets not included in the analysis. It can come from

the hypothesis that markets are arbitrage-free, which is a necessary but not a sufficient condition

for optimal portfolio choice: after all, nobody would be a marginal investor in an asset menu

that permitted investors to eliminate their budget constraints. We know this because the basic

question of performance measurement turns out to be quite simple: are the managed portfolios

under evaluation worth adding to the asset menu chosen by the evaluator? To be sure, the optimal

benchmark remains the Holy Grail, if only because the moments — in particular, the conditional and

unconditional first moments of asset returns — required for its identification are hard to measure

with any precision. However, much progress has been made on identifying the asset menus that

are hard for managed portfolios to beat.

We also know quite a bit about the problem of market timing, ignoring the benchmark identi-

fication issue. When asset returns are not predictable based on public information, market timing

efforts cause problems for performance evaluation based on Jensen-type measures only when it is

successful, modulo sampling error. Moreover, Treynor-Mazuy-type measures can detect the pres-

ence of successful market timing when present and, when returns and shifts in betas to exploit

market timing opportunities are jointly normally distributed, it is possible to measure both Jensen-

type alphas and the quality of market timing information. Matters are more complicated when

returns are predictable based on public information but the same basic results obtain when it is

possible to characterize the predictability of excess benchmark returns and betas from the perspec-

tive of an uninformed investor. To be sure, these developments are mostly of academic interest,

in part because of an important empirical development: the availability of data beyond managed

portfolio returns.

In particular, much recent research has exploited newly available data on asset allocations and

individual security holdings.21 Asset allocation data make it reasonably straightforward to see

whether managers are successful market timers by seeing whether they tilt toward an asset class

before it does well and away before it does poorly. The empirical record for pension funds is clear

21For a comprehensive study making use of data on mutual funds’ securities holdings, see Wermers (2000).
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on this score: successful market timers are rare, if not nonexistent. Individual portfolio holdings

make it reasonably straightforward to see whether managers tilt toward individual securities before

they go up in price and away before they decline, although there is no clear distinction between

market timing and security selection in this case. Most importantly, these observations make it

clear that the data are being overworked when managed portfolio returns are asked to reveal both

normal performance and abnormal performance of both the security selection and market timing

variety.

And it seems that the impact of academia on best practice in the industry would appear to

have largely solved the problem of market timing as well. Managers are typically measured against

explicit benchmarks, eliminating the problem of estimating betas when the target beta of a fund

is unity by contract. Moreover, the gap between the practitioner and academic communities has

narrowed considerably given the performance measurement and attribution procedures that now

pervade industry. Future analyses of managed portfolio performance may well be largely free of

the problem of market timing.

This suggests that future research will have more to say about the performance of managed

portfolios than about the tools we use to measure it. To be sure, methodology will continue to

be a focus of the academic literature as evidenced, for example, in the emergence of a Bayesian

literature on performance evaluation. The main point remains that research over the last four

decades has made it much easier to answer the central question of performance measurement: do

managed portfolios add to the investment opportunities implicit in sensible benchmark portfolios?

72



References

[1] Admati, A.R., S. Bhattacharya, P. Pfleiderer and S. A. Ross, 1986, On Timing and Selectivity.

Journal of Finance 41, 715-730.

[2] Admati, A. and S. Ross, 1985, Measuring investment performance in a rational expectations

equilibrium model. Journal of Business 58, 1-26.

[3] Ait-Sahalia, Y. and M. Brandt, 2001, Variable Selection for Portfolio Choice. Journal of Fi-

nance 56, 1297-1350.

[4] Baks, K.P., A. Metrick and J. Wachter, 2001, Should Investors Avoid All Actively Managed

Mutual Funds? A Study in Bayesian Performance Evaluation, Journal of Finance, 56, 45-85.

[5] Bhattacharya, S. and Pfleiderer, P., 1985, Delegated Portfolio Management, Journal of Eco-

nomic Theory 36, 1-25.

[6] Blake, D. and A. Timmermann, 2002, Performance Benchmarks for Institutional Investors:

Measuring, Monitoring and Modifying Investment Behaviour. Page 108-140 in Knight, J. and

S. Satchell (eds) Performance Measurement in Finance. Butterworth Heinemann. London.

[7] Blake, D., B. Lehmann and A. Timmermann, 1999, Asset Allocation Dynamics and Pension

Fund Performance. Journal of Business 72, 429-462.

[8] Brinson, G.P., L.R. Hood, and G.L. Beebover, 1986, Determinants of Portfolio Performance.

Financial Analysts Journal (July-August), 39-48.

[9] Brinson, G.P., B.D. Singer and G.L. Beebower, 1991, Determinants of Portfolio Performance

II: An Update. Financial Analysts Journal (May-June), 40-48.

[10] Britten-Jones, M., 1999, The Sampling Error in Estimates of Mean-Variance Efficient Portfolio

Weights. Journal of Finance 54, 655-671.

[11] Brown, S.J., W. Goetzmann, R.G. Ibbotson, and S.A. Ross, 1992, Survivorship bias in perfor-

mance studies, Review of Financial Studies 5, 553-580.

[12] Brown, S.J. and W.N. Goetzmann, 1995, Performance persistence. Journal of Finance 50,

679-698.

73



[13] Carhart, M., 1997, On Persistence in Mutual Fund Performance, Journal of Finance, 52, 57-82.

[14] Carpenter, J. and A.W. Lynch, 1999, Survivorship Bias and Attrition Effects in Measures of

Performance Persistence, Journal of Financial Economics 54, 337-374.

[15] Chen, H.L., N. Jegadesh and R. Wermers, 2000, An Examination of the Stockholdings and

Trades of Fund Managers, Journal of Financial and Quantitative Analysis 35, 343-368.

[16] Chen, Z. and P.J. Knez, 1996, Portfolio performance measurement: Theory and Applications.

Review of Financial Studies 9, 511-555.

[17] Christopherson, J.A., W.E. Ferson and D.A. Glassman, 1998, Conditioning Manager Alphas on

Economic Information: Another Look at the Persistence of Performance, Review of Financial

Studies11, 111-142.

[18] Connor, G. and R. Korajczyk, 1986, Performance measurement with the arbitrage pricing

theory: A new framework for analysis. Journal of Financial Economics 15, 373-394.

[19] Cumby, R.E. and D.M. Modest, 1987, Testing for Market Timing Ability. A Framework for

Forecast Evaluation. Journal of Financial Economics 19, 169-189.

[20] Cuthbertson, K., D. Nitzsche and N. O’Sullivan, 2007. Mutual Fund Performance. Mimeo Cass

Business School, City University .

[21] Daniel, K., M. Grinblatt, S. Titman and R. Wermers, 1997, Measuring mutual fund perfor-

mance with characteristic-based benchmarks. Journal of Finance 52, 1035-1058.

[22] Dybvig, P. and S. Ross, 1985, Differential information and performance measurement using a

security market line. Journal of Finance 40, 383-399.

[23] Elton, E.J., M.J. Gruber and C. Blake, 1996, The Persistence of Risk Adjusted Mutual Fund

Performance. Journal of Business 69, 133-157.

[24] Fama, E.F. and K.R. French, 1993, Common Risk Factors in the Returns on Stocks and Bonds,

Journal of Financial Economics 33, 3-56.

[25] Farnsworth, H., W. Ferson, D. Jackson, and S. Todd, 2001, Performance Evaluation with

Stochastic Discount Factors, Journal of Business 75, 473-583.

74



[26] Ferson, W.E. and R.W. Schadt, 1996, Measuring Fund Strategy and Performance in Changing

Economic Conditions, Journal of Finance 51, 425-461.

[27] Gibbons, Michael R., Stephen A. Ross, and Jay Shanken, 1989, A Test of the Efficiency of a

Given Portfolio. Econometrica 57, 1121-1152.

[28] Graham, J., and Harvey, C. 1996. Market timing ability and volatility implied in investment

newsletters’ asset allocation recommendations. Journal of Financial Economics 42, 397-421.

[29] Grinblatt, M. and S. Titman, 1989, Portfolio Performance Evaluation: Old Issues And New

Insights, Review of Financial Studies, 2, 393-422.

[30] Grinblatt, M. and S. Titman, 1992, The persistence of mutual fund performance. Journal of

Finance 47, 1977-1984.

[31] Grinblatt, M. and S. Titman, 1993, Performance Measurement without Benchmarks: An

Examination of Mutual Fund Returns, Journal of Business 66, 47-68.

[32] Gruber, M. J., 1996, Another puzzle: The growth of Actively Managed Mutual Funds, Journal

of Finance 51, 783-810.

[33] Hendricks, D., J. Patel and R. Zeckhauser, 1993, Hot hands in mutual funds: short-run per-

sistence of relative performance 1974-1988. Journal of Finance 48, 93-130.

[34] Henriksson, R.D. and R.C. Merton, 1981, On Market Timing and Investment Performance II:

Statistical Procedures for Evaluating Forecasting Skills, Journal of Business 54, 513—33.

[35] Jensen, M., 1968, The Performance of Mutual Funds in the Period 1945-1964, Journal of

Finance 23, 389-416.

[36] Jensen, M., 1969, Risk, the pricing of capital assets, and the evaluation of investment perfor-

mance. Journal of Business 42, 167-247.

[37] Jensen, M., 1972, Optimal utilization of market forecasts and the evaluation of investment

portfolio performance. in G. Szego and K. Shell (eds.) Mathematical methods in investment

and finance. North Holland, Amsterdam.

75



[38] Jobson, J.D. and B. Korkie, 1982, Potential performance and tests of portfolio efficiency.

Journal of Financial Economics 10, 433-456.

[39] Kosowski, R., 2002, Do Mutual Funds perform when it matters most to investors? US mutual

fund performance and risk in recessions and booms 1962-2000. Working paper, INSEAD.

[40] Kosowski, R., A. Timmermann, R. Wermers and H. White, 2006, Can Mutual Fund “Stars”

Really Pick Stocks? New Evidence from a Bootstrap Analysis. Journal of Finance 61, 2551-

2595.

[41] Lakonishok, J., A. Shleifer and R.W. Vishny, 1992, The Structure and Performance of the

Money Management Industry. Brooking Papers: Microeconomics 339-379.

[42] Lehmann, B. and D. Modest, 1987, Mutual fund performance evaluation: A comparison of

benchmarks and benchmark comparisons. Journal of Finance 42, 233-265.

[43] Lynch, A.W., J. Wachter and W. Boudry, 2002, Does Mutual Fund Performance Vary over

the Business Cycle? NBER Discussion paper.

[44] Malkiel, B.G., 1995, Returns from Investing in Equity Mutual Funds 1971 to 1991, Journal of

Finance 50, 549-572.

[45] Merton, R.C., 1981, On Market Timing and Investment Performance I: An Equilibrium Theory

of Value for Market Forecasts. Journal of Business 54, 363-406.

[46] Pastor, L. and R.F. Stambaugh, 2002(a), Mutual Fund Performance and Seemingly Unrelated

Assets, Journal of Financial Economics 63, 315—349.

[47] Pastor, L. and R.F. Stambaugh, 2002(b), Investing in Equity Mutual Funds, Journal of Fi-

nancial Economics 63, 351—380.

[48] Pesaran, M. H., and A. Timmermann, 1992, A Simple Nonparametric Test of Predictive

Performance. Journal of Business and Economic Statistics 10, 461-65.

[49] Ross, S.A., 1976, The arbitrage theory of capital asset pricing. Journal of Economic Theory

3, 343-362.

76



[50] Ross, S.A., 1977, Risk, Return, and Arbitrage, in I. Friend and J.L. Bicksler (ed.), Risk and

Return in Finance (Cambridge, Mass.: Ballinger).

[51] Sharpe, W. 1966, Mutual Fund Performance. Journal of Finance 39, 119-138.

[52] Treynor, J.L. and F. Black, 1973, How To Use Security Analysis To Improve Portfolio Selection,

Journal of Business 46, 66-86.

[53] Treynor, J., and K. Mazuy, 1966, Can mutual funds outguess the market?, Harvard Business

Review 44, 131-36.

[54] Wermers, R., 2000, Mutual Fund Performance: An Empirical Decomposition into Stock-

Picking Talent, Style, Transactions Costs, and Expenses. Journal of Finance 55, 1655-95.

77


	ADP212F.tmp
	DISCUSSION PAPER NO 604


