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Abstract

A comprehensive set of estimates of long memory in the volatility of three intra-
day foreign exchange data series is presented. Robust semiparametric methods
are used. Deseasonalizing procedures are proposed and permit the use of fully
parametric methods which provide efficient tests of long memory. The hypoth-
esis of long range dependence in the raw returns is rejected. In the volatil-
ity series, however, there is evidence of a long range dependent component,
a finding which is significant and consistent across currencies. Furthermore,
the hypothesis of I(1) volatility is strongly rejected in favour of a covariance
stationary alternative, with evidence that previous findings of near-integrated

volatility are due to the omission of long-range dependent components.
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1 Introduction

In recent years a vast amount of empirical work has been devoted to the characterisa-
tion of the temporal dependence in financial time series. Many authors have examined
the time-series structure in asset returns, trading volumes and, perhaps most exten-
sively, return volatility. Such studies are valuable in that they yield insights into
issues such as the discrimination between regular and irregular market activity, the
nature of information flows into financial markets, the way in which this information
is assimilated into asset prices and the manner in which information is transmitted
between markets. The current study extends the research in this area. We examine
the relative performance of two classes of econometric models, ARMA-type represen-
tations and long range dependent specifications, in explaining the time-variation in
financial time-series. Our empirical analysis concentrates on modelling the volatility

process associated with a year long intra-daily sample of three major exchange rates.

The standard methodologies used to assess the degree of temporal dependence in
a given time-series are the ARIMA class of models for series such as returns and
volumes and GARCH or Stochastic Volatility specifications for modelling conditional
heteroskedasticity.! Both of the above classes of models imply similar restrictions on
the nature of the temporal dependence in the series in question. Their covariance
stationary representations imply that the process is completely mean reverting and
that this mean reversion is exponential in nature. In terms of the properties of the
Wold representation, the series of Wold coefficients is hence both absolutely and
square summable. The usual alternative to covariance stationarity is to assume the
series is first order integrated i.e. an ARIMA(p,l,q) in the conditional mean or an
IGARCH conditional variance process. This representation implies vastly different
behaviour for the time-series in question. Shocks are completely persistent and hence

the series of Wold coefficients are neither absolutely nor square summable.

Clearly, then, there is a very large distinction between the behaviours implied by I(0)
and I(1) processes. On the one hand, one has a process which mean reverts at an
exponential rate whilst on the other hand, the process in completely persistent. A
far more general description of temporal dependence can be achieved by using more
recent models which allow for long range dependence or long memory. One such model
is the ARFIMA representation put forward by Granger and Joyeux (1980). Similar
to the ARIMA class they permit non-zero orders of integration but, importantly,
the order of integration is allowed to be non-integer. This generalisation allows one

to model covariance stationary processes which have non-summable autocovariances.

'Bollerslev, Chou, and Kroner (1992) and Ghysels, Harvey, and Renault (1996) give excellent
reviews of the GARCH and Stochastic Volatility modelling appraoches respectively.



Hence the effect of a shock on the process is completely mean reverting although
very long lasting (the rate of decay in the Wold coefficients in hyperbolic rather than
exponential as in the I(0) case.) The model also permits non-stationary processes
which also mean revert. Hence, the ARFIMA model can be viewed as a more flexible
alternative to the standard ARIMA, permitting a far a more general characterisation

of the temporal dependencies in a given time-series.

We propose a comprehensive methodology for assessing the nature of temporal de-
pendence. The methodology entails the following steps. The first step is to test
the order of integration in the process using the methodology presented in Robin-
son (1996). The test is based on an underlying ARFIMA structure for the series in
question and permits any degree of integration (integer or fraction) as a null hypoth-
esis. Next, we gain a precise estimate of the degree of integration using two robust
semiparametric long memory estimators. The first is the Log Periodogram regression
(due to Geweke and Porter-Hudak (1983)) and the second is the Gaussian estimate
proposed by Kiinsch (1987). Both of these estimates have been proven, in Robinson
(1995b) and Robinson (1995a), to have standard asymptotics and are robust to any
short range dependent features in the data. At this point, and analogous to the I(1)
case, one could filter the long range dependence from the series and fit a covariance
stationary ARMA to the residuals using traditional model selection procedures. We,
however, go on to fit a fully parametric model to the series. The model is an extended
version of the Long Memory in Stochastic Volatility (LMSV) model given in Harvey
(1993), allowing for both short and long range dependence, and is sensitive to any
mis-specification due to its fully parametric nature. The reason for fitting the fully
parametric model is to permit one to assess the contributions of the short and long
memory components to the overvall dependence in the series. This is accomplished
via a set of quasi-Likelihood Ratio statistics for the fully parametric model. Hence,
ultimately, we can discriminate between the long and short range dependent features

of the process.

The data we examine in this work are the volatilities associated with three intra-
day foreign exchange (FX) returns series (the exchange rates in question being the
DEM/USD, JPY/USD and JPY/DEM.) A pervasive result from previous work on
this type of data is that the volatility process can be characterised as non-stationary
(see, inter alia, Andersen and Bollerslev (1994), DeGennaro and Shrieves (1995) and
Guillaume (1995).) There are however, some indications that this result may be due
to mis-specification of the volatility models employed. First, the temporal aggregation
results for GARCH processes do not hold when applied to FX data. The degree of

persistence one identifies in daily data, for example, far exceeds that which would be



implied by the results of estimations from data sampled at 1 hour intervals.? Second,
other authors (e.g. Dacorogna, Miiller, Nagler, Olsen, and Pictet (1993)) have noted
that the correlograms of these intra-day volatility series decay far more slowly than
the exponential decay which is associated with conventional GARCH or SV models.
The combination of these two points serves as the motivation for our investigation of

long-memory in volatility.

A theoretical motivation for the presence of long memory in asset price volatility
can be generated by combining the simple mixture of distributions model in Tauchen
and Pitts (1983) and the results on aggregation in Granger (1980). The former
demonstrate, in a highly stylized framework, that both the volume and volatility in
asset markets inherit the temporal dependencies associated with the latent flow of
information into the market. Now assume that information flows are heterogeneous.
Specifically, assume that there are an infinity of information arrival processes, each of
which follows a stationary autoregression. The heterogeneity is modelled by variation
in the AR parameters, which we assume follow a beta distribution. As Granger
(1980) demonstrates, the aggregate information flow process will then exhibit long

range dependence and, hence, so will volatility.

The paper is set out as follows. In Section 2 we present a more detailed account of
our empirical methodology. Section 3 introduces the data employed in our study.
As previously mentioned we focus on intra-daily FX volatilities, which are sampled
at a ten minute calendar interval. Section 4 presents our estimation and testing
results. We find that the FX returns process is well characterised by an I(0) process,
in line with the efficient markets hypothesis. Results for the three volatility series
demonstrate that all are covariance stationary and exhibit significant long memory.
Further, estimation and testing of the fully parametric model demonstrates that the
finding of non-stationarity in intra-day volatility is due to mis-specification. When
one permits the possibility of long memory in volatility all specifications strongly
indicate covariance stationarity. Section 5 concludes the paper and points to some

directions for further work.

2See Andersen and Bollerslev (1994), for example.



2 Methodology

2.1 Semiparametric initial estimate

Let {r;}1 be our time series of raw returns and define y; = logr? as an estimate
of the volatility of the process.> Assume y; to be covariance stationary with lag-j
autocovariance ;. We require the autocovariances to satisfy the basic long range
dependent specification

-1

v; ~cj* T as § — 0o (2.1)

where ¢ i1s a finite positive constant and d is the slope parameter. Processes fol-
lowing 2.1 are generally labelled I(d) processes. An I(d) process is invertible when
d > —1/2, in which case it can be reparametrized in an infinite moving average or
Wold representation. 1(0) denotes the short range dependent processes (including
covariance stationary ARMA). In that case, the autocovariances and the weights in
the Wold decomposition decay exponentially and are absolutely summable. When
0 < d < 1/2, the process is still covariance stationary but autocorrelations decay
hyperbolically and so slowly as to be non summable, even though they remain square
summable. The Wold innovations share the same properties which imply mean re-
version of the process. When 1/2 < d < 1, the process becomes nonstationary while
retaining its mean reverting characteristic. 1(1) denotes the standard unit root case
and implies complete persistence. The main feature of specification 2.1 is the smooth
description of temporal dependence from the short range dependent 1(0) case through
the boundary of stationarity 1(1/2) to the unit root I(1) case. The parameter d pro-
vides a measure of temporal dependence in the process. The focus of our attention is
the range d € (0,1/2) within which the process is termed covariance stationary, long

range dependent.

Specification 2.1 translates to a related specification in the frequency domain.* We

assume that y; has spectral density f(\) satisfying

2= [ ) cos(jA)A.

—T

The basic long range dependent specification in the frequency domain is

F) ~gr ™ as A —0F (2.2)

3The use of this proxy for volatility is motivated by the assumption that returns follow the
following process, r; = ge¥/%¢; where ¢; ~ N(0,1). This follows Harvey (1993) and Harvey, Ruiz,
and Shephard (1994).

4See Robinson (1994) for details on the correspondence between the frequency domain specifica-

tion 2.2 and the time domain specification 2.1.



where ¢ is a finite positive constant and d is the slope parameter.

The two leading estimates of the long memory parameter d in the specification 2.2
are the Gaussian semiparametric estimate proposed by Kiinsch (1987) and the log-
periodogram estimate proposed by Geweke and Porter-Hudak (1983). The asymp-
totic properties of both these estimates were derived in Robinson (1995a) and Robin-

son (1995b) respectively. Both estimation procedures are based on the periodogram

1 2

T T
computed at the harmonic frequencies A\; = 2r3/T for 7 € [1,T/2). Although the

periodogram is not a consistent estimate of the spectral density and is highly volatile,

T
Z yr exp(itA)

t=1

I(\)

it is nevertheless an excellent tool in consistent frequency domain estimation.

The log-periodogram estimate is often preferred for its intuitive appeal. The long
memory property is characterized, as mentioned above, by the slow hyperbolic decay
of the autocorrelations. In the frequency domain, this property translates approxi-
mately to the existence of a hyperbolic pole around zero frequency as in 2.2. The
idea of the log-periodogram is to linearize this local functional relation and obtain d
as a least squares estimate of the slope parameter from the regression of a spectral
estimate (in this case the periodogram) against a simple function of frequency. d is

obtained from the regression
log (I(X;)) =c¢—2dlog(A;)+U; forj=1....m (2.3)

where m is the bandwidth and [ is a trimming parameter such that % + % + % — 0 as
T — 0o. A major drawback of the log-periodogram estimate for the type of data in-
vestigated in the current paper is the assumption of unconditional Gaussianity of the
regression errors (U;) which is difficult to relax due to the high degree of nonlinearity
involved (the issue of consistency when Gaussianity is relaxed has been recently ad-
dressed by Velasco (1995)). Another drawback is the pathological behaviour of the
very low periodogram ordinates (see Comte and Hardouin (1995)) which need to be
trimmed out thereby adding another user-chosen parameter to the estimation when

no automatic selection procedure has yet been proposed for the bandwidth itself.

The Gaussian semiparametric estimate is preferred here for its efficiency and robust-
ness properties.® Like the log-periodogram, it is semiparametric in the sense that it
relies on the low harmonics of the periodogram, but in this case, the lowest harmon-
ics need not be trimmed out, so that it is consistent under the minimal bandwidth
requirement

1

——|—@—>0 as T — oo, (2.4)
m T

’Log-periodogram estimation results will be reported for comparison.



and an automatic bandwidth selection procedure is available in Henry and Robinson

(1996). Estimation is based on the maximization of a local form of frequency domain

log-likelihood

L& 2, A

— > qloggAi" + —=1()))

m i g
for 0 < m < [T/2] which, after concentrating out the constant ¢, is equivalent to
minimizing

R(d) = log {E 3 A?dmj)} ~ =3 log .
=1 7=1

The most appealing features of this estimate are its asymptotic normality (under a
slightly stronger requirement than 2.4) with asymptotic variance 1/4m independent
of d and ¢ (see Robinson (1995a)) and the robustness of this asymptotic normality
result to conditional heteroskedasticity of general form in the Wold innovations of the
process under investigation (including long memory GARCH and other specifications
introduced in Robinson (1991b)) . This robustness property, proved in Henry and
Robinson (1997), does not include the case when the estimate is applied to the squares
of a conditionally heteroskedastic martingale difference process but it is conjectured
by the authors that it may continue to hold possibly with a different asymptotic

variance.

2.2 Fully parametric specification

The semiparametric techniques advocated above rely only on the specification of the
spectral density on a degenerate band of frequencies. They are therefore based on
the concentration of the variance of the process in a neighbourhood of frequency zero
and are insensitive to any short memory behaviour of the series. Such short range
dependent behaviour in the series, if misspecified in a fully parametric model, will bias
the estimation of the long range dependent parameter itself. Thus, the robust method
advocated above could serve as a pre-estimation technique and enable us to create
a fractionally differenced series Aczyt which, as noted in Henry and Robinson (1997)
is an asymptotically valid approximation to an 1(0) series without any parametric
assumption on the autocorrelations of the underlying 1(0) process Ady,. On this
differenced series, traditional model selection methods (using the AIC for instance)
may be carried out to identify the order of a covariance stationary ARMA model for

instance.

Our purpose, however, in using the semiparametric estimates is to yield robust pre-
estimates of d which can be compared with those obtained from a fully parametric

model which permits both long and short range dependence. If then there are no



signs of systematic bias in the estimates obtained from the fully parametric model,
we can proceed to compare the contributions made to overall temporal dependence

by each of the long and short memory components.

The parametric model we adopt is an extension of the LMSV model of Harvey (1993):

yr=c+ h 4+ &
(2.5)

(1= L)1 = @L)h = n,

where ¢ is a constant, ¢ has mean zero and variance 72/2, n ~ N(0,07) and d
lies within the stationarity and invertibility range (—1/2,1/2).5 This framework
is consistent with the semiparametric specification described above insofar as the

spectral density of a process thus specified follows 2.2.

The estimation procedure is a frequency domain log likelihood maximization’. Exact
maximum likelihood is proven (Fox and Taqqu (1986)) to be asymptotically most
efficient in the case of a correctly specified normal error distribution 7;. The estimates

of the fractional differencing parameter d and of the autoregressive parameter ¢

maximize

L) == 3 Iog(a) - > [fjj) (2.6)

where .
(1= g sint ()
95 27(1 — 2¢cos A; + ¢?)

2
—|—U£.

The first order autoregressive short range dependent specification in volatility is cho-
sen for comparison with the traditional stochastic variance specification. Both spec-
ifications naturally suffer from the ignored nonlinearity in the & which is likely to
affect h;. But this new framework allows us to discriminate long memory and strong
autoregressive effects with a simple quasi-likelihood ratio test. The AR(1)-LMSV

5This specification for the log squared returns is derived from the formulation in footnote 3,
hence & = log(e?) is distributed as a log x? variate.

"Note that in this case, the maximization is performed over the whole range of harmonic frequen-
cies. In the semiparametric case, only a degenerate band of harmonic frequencies was used. The
present estimate is therefore sensitive to any short range dependent misspecification. It is likely to
be sensitive to the seasonal component in the series discussed in Section 2.4, but it is nonetheless

reported before as well as after deseasonalization for completeness.



model (equation(2.5)) is compared to two nested alternatives

yi = c+ hi + & yi = c+ hi + &
(LM) and (AR)
(1= L) h, = n, (1= ¢L)hy =m
obtained for ¢ = 0 and d = 0 respectively. The frequency domain likelihood is com-

puted as in 2.6 for each of these nested models and the following tests are performed

using the likelihood ratio principle:

Hy:d=0 against H,:d>0.

Ho:9=0 against H,:0<|¢p| < 1.

If the subscript ., denotes the unconstrained estimates, the likelihood ratio statistic

is 2 {,C(a?u, qAbu) — ,C(cz, qAb)} where L is the concentrated form of the quasi-likelihood in
2.6.

2.3 Testing for persistence, long range dependence and stationarity

Bearing in mind that the Gaussian semiparametric estimate is justified for all values

11
202
of the log squared returns y; is required. The testing procedure presented here is fully

of d in a compact subset of ( ), a preliminary test of stationary and invertibility
parametric, and sensitive, as indicated above, to mispecified short range dynamics.
The conclusions of the test need therefore to be confirmed after the model selec-
tion stage. This testing procedure relies on efficients tests of long range dependence
(Robinson (1996) and Gil-Alana and Robinson (1995)) which permit a wide class of
null hypotheses. The object is the test of the hypothesis of persistence in foreign ex-
change volatility. As was mentioned above, most of the available methods for testing
for unit roots (see Diebold and Nerlove (1989) for a review on the subject) have non
standard limiting distributions and lack Pitman efficiency.® Unit root tests against
autoregressive alternatives, in particular, are based on the Wald, Likelihood ratio
and Lagrange multiplier principles, but they lack the sufficient degree of smoothness
across the parameter of interest that would yield null y? limiting distributions and
Pitman efficiency. A process following the autoregression x; = px;_1 + € 1s weakly
dependent for |p| < 1, non-stationary for p = 1 (the unit root case) and explosive for
| > 1.

Moreover, these tests give only one possible persistence null hypothesis. The testing

procedure used here, on the other hand, allows one to postulate any value of d

8These tests are improved in Elliot, Stock, and Rothenberg (1994)



(integer or fraction) as a null hypothesis and possesses efficiency and a null x? limiting
distribution. In the fully parametric LMSV model, the volatility satisfies (1 — L)¥(1—
éL)h: = n; which can be rewritten as (1 — L)%h; = u; where u; is a stationary AR(1),
therefore 1(0), process. u; has spectral density

% ¢ ey = 0 1—¢
%fu()\’qb)_%r [1—2¢Cos)\—|—¢2]'

Suppose we want to test the hypothesis Hy : d = dy. Let I,(A) be the periodogram
of the residuals @; = (1 — L)%h;. The frequency domain quasi-likelihood is

T-1 T-1 [u )\]
£t ) == X log () - - 24 (2.7

where f,; = fu(Aj; ¢). Concentration of this likelihood yields y/n-consistent estimates

¢ = argming o2(¢) and UA% = az(gb) where 02(¢) = 2% sz_ll qu(ig)_,

The test statistic is constructed on the score principle. Let w be the (T'—1) x 1 vector
with j-th element log |4 sin® (%ﬂ)|, let f, be the (T'— 1) x 1 vector with j-th element
fu(Aj; @), and let M be the projector on the space orthogonal to the (7" — 1) x 1
vector with j-th element 8% log fu(A;; qAb) The test statistic is

T w’fu

SZ_T .
o2 [|Muw]

Under suitable regularity conditions (Robinson (1996)), S2 N(0,1) as T" — oc.

The resulting testing rules for Hy are summarized in the table below:

Alternative Hypothesis Reject Hy when

H1§d>d0 $>Za
H,:d<dy $<_Zoz
Hlid%do $>Zoz/2

Note: Rules for a-level tests of Hy : d = dy against various alternatives. z, i1s the quantile of a

standard normal variate.

This testing procedure provides us with two efficient tests of persistence: the null
Hy : d = 1 against the alternative Hy : d < 1, which is the unit root test, and the
null Hy : d = 1/2 against the alternative H; : d < 1/2, which is a non-stationarity

test.?

°I(d) processes can be seen as increasingly nonstationary as d increases from 1/2 to 1.



2.4 Deseasonalization

A salient feature of the intra-day volatility data considered in this work is the sea-
sonality in volatility described in more detail in Andersen and Bollerslev (1994) and
Payne (1996). Seasonal components appear in the periodogram as peaks at certain
harmonic frequencies. These peaks affect all periodogram based estimation and the

parametric estimation becomes invalid.

If one thinks of the spectrum of the process with strong seasonal components as
a mixed spectrum, there is a need for spectral estimation methods which remove
the Dirac mass points at the seasonal frequencies and smooth out the leakage from
these peaks into the neighbouring frequencies.!® The spectral estimate used here is a
Double-Window smoother proposed by Priestley (1981) which is designed to remove
seasonal components and the leakage around the seasonal frequency. Suppose the
volatility series is decomposed into two uncorrelated components y; = z, 4+ ¢ where z;
has a continuous spectral density and ¢; = % | A, cos (w,t + ¢, ). The examination of
this mixed spectrum is greatly simplified by the knowledge of the seasonal harmonics
w,, which correspond to the weekly frequency and multiples of the daily frequency.!
The amplitudes of the seasonal harmonics can be estimated through a regression of
Y against (cos (w,t + qb,,))f;l, and the spectrum of z; is consistently estimated with

a Double-Window smoother. The spectral window adopted is the Bartlett-Priestley
2
sy (u)*h, ol <

0, 0] >

window

<

W(o; M) =

e

where M is the bandwidth.!? Call fM(w) = [T I(OW(w — 0; M)df the spectral
estimate using W(0; M). The Double Window spectral estimate is constructed as

0yon Sachs (1994) proposes a peak insensitive non-parametric procedure to estimate the contin-
uous part of the spectrum, treating the periodic components as outliers (so that it does not permit
the estimation of the discrete component in the spectral density). Kooperberg, Stone, and Truong
(1995a) propose a fully integrated estimation procedure for both the continuous and the discrete
parts of the spectrum. Only related asymptotic results are proposed (see Kooperberg, Stone, and
Truong (1995b)), the method is computationally very expensive and there is no indication that it
deals with leakage efficiently.

"Hence we can avoid employing tests to detect harmonic components (Whittle, Bartlett, Hannan
or Priestley, in Priestley (1981)).

12This spectral window is a smoothed version of the Daniell (or rectangular) window and it is
chosen for its compact support.

10



follows: )

fN(w)v |w_wr’| > %7

Fow(w) =

(fm(w) —cfu(w))/(1 = ¢), |w—w][<T,
where n > m, ¢ = W(0;m)/W(0;n) and the w,’s are the harmonics of the seasonal
components defined above. A cross-validated likelihood maximizing procedure for the
determination of both bandwidths (see Hurvich (1985), Beltrao and Bloomfield (1987)
and Robinson (1991a) for the asymptotics) proved computationally too expensive
and gave poor results. An ad hoc choice of bandwidths n = /T and m = n/10 was

preferred.

11



3 The Data

As indicated in the Introduction, the focus of this work is the behaviour of volatility
in the intra-day Foreign Exchange (FX) market. We study three sets of FX returns,
on the DEM/USD, JPY/USD and JPY/DEM, covering the period from the begin-
ning of October 1992 to the end of September 1993.'% These return series are filtered
transcriptions of the tick-by-tick quotation series which appear on the Reuters FXFX
page. Fach quote encompasses a timestamp, bid and ask quotation pair, plus identi-
fiers which allow one to determine the inputting bank and its location. In this study
we ignore the identification of the inputting institution, using the tick-by-tick data

solely to construct a homogenous time-series in calendar time.

The basic horizon over which we calculate returns is 10 minutes.!* This yields, for
each currency, a time-series with 37583 observations. The basic summary statistics

of the returns are shown in Table 1.

TABLE 1: Summary Statistics for Exchange Rate Returns.

H Rate H Mean ‘ s.d. ‘ Skew ‘ Kurtosis H 1 ‘ P2 ‘ 03 H Q(10) H
DEM/USD || 6 x 10=% | 0.001 | 0.16 9.61 -0.076 | -0.040 | -0.005 || 306.8
JPY/USD || —4 x 10=* | 0.074 | -0.06 13.85 -0.09 | -0.015 | 0.0035 || 334.8
JPY/DEM || —5 x 10=* | 0.045 | -0.25 7.93 0.0066 | -0.0004 | 0.0009 || 13.5

Notes: the coefficients p1, ps and ps represent the first through third sample autocorrelations re-
spectively. The @Q(10) statistic is the Box-Ljung test statistic for up to tenth order serial correlation.
The Box-Ljung statistic is distributed y7, and has critical value 23.2 at 1%.

The above table illustrates the following facts. First, all three return series have a
mean which is insignificantly different from zero. A point which conforms with many
earlier studies is that there is pronounced excess kurtosis in the returns distribution.
This, as pointed out by Bollerslev and Domowitz (1993), is a natural feature of time-
series which display conditional heteroskedasticity, although their analysis shows that

after correcting for the conditional heteroskedasticity much of the kurtosis remains.

13These data were supplied by Olsen and Associates (Zurich), to whom both authors are most

grateful.

!“Returns are determined as follows: at each 10-minute observation point the last mid-quote
entered into the system 1s taken as the market price. We then first difference this quote series to
obtain returns. At points when no quote is entered in a 10 minute interval, an artificial quote is
calculated by linear interpolation between the nearest preceding and succeeding quotes. Finally,
all weekend quotes are eliminated from the analysis due to the lack of FX market activity at these
times. We define weekends as 21:00 GMT Friday to 21:00 GMT Sunday. Note also that the results
presented in this paper carry over to the analysis of percentage returns.

12



Finally, the autocorrelation coefficients show that there is some temporal depen-
dence in the return series, the DEM/USD and JPY/USD demonstrating negative
autocorrelation whilst the JPY/DEM displays positive first-order autocorrelation.
The significance of these autocorrelation coefficients is confirmed in the Box-Ljung
statistics, which demonstrate that one cannot reject the hypothesis of up to tenth

order serial correlation.

TABLE 2: Summary Statistics for the Logarithm of Squared Returns.

H Rate H Mean ‘ s.d. ‘ Skew ‘ Kurtosis H m ‘ P2 ‘ p3 H Q(10) H
DEM/USD || -14.67 | 1.28 | 0.828 0.072 0.281 | 0.244 | 0.220 || 15948.03
JPY/USD || -7.68 | 3.36 | -1.313 1.24 0.24 | 0.183 | 0.166 || 8433.88
JPY/DEM || -8.66 | 3.16 | -0.99 0.45 0.353 | 0.29 | 0.264 || 20463.21

Notes: the coefficients p1, ps and ps represent the first through third sample autocorrelations re-
spectively. The @Q(10) statistic is the Box-Ljung test statistic for up to tenth order serial correlation.
The Box-Ljung statistic is distributed x%, and has critical value 23.2 at 1%.

In Table 2 we present identical sets of statistics for our volatility proxy. We employ
the logarithm of squared returns as our volatility measure, a choice which is motivated
by the Long Memory in Stochastic Volatility model which was presented in Section
2. The main feature of these results lies in the correlation structure of volatility. As
is visible from comparing Tables 1 and 2, there is far larger dependence in volatility
than in returns. The first-order autocorrelations are between 3 and 5 times greater
for volatility than for returns, whilst the Box-Ljung statistics are, at least an order
of magnitude greater. The characterisation of this temporal dependence is the focus
of this work.

In order to clarify the nature of the dependencies in volatility in Figures 1 to 3
we present the first 1000 periodogram and logged periodogram ordinates for the
YEN/USD volatility plus the first 1000 sample autocorrelations.'®

Examining first the correlogram, one feature which is immediately apparent is the
existence of a pronounced daily seasonal in volatility. This seasonal has recently
been the subject of many papers, including Dacorogna, Miiller, Nagler, Olsen, and
Pictet (1993), Andersen and Bollerslev (1994) and Payne (1996). It is generated by
the 24 hour activity in the foreign exchange market and the alterations in market
activity which occur as trading shifts from the Far East to Furope to North America

and so on. There is also evidence of seasonality at the weekly frequency. In the

15Throughout the work we present graphical examples for this currency only as those for the other
two currencies are qualitatively similar.
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current context, however, this component is of no intrinsic interest and simply masks
the underlying temporal structure of volatility. Hence, when estimating our long

memory specifications we filter this component.

In the periodogram of the data this seasonal component is represented by peaks at in-
teger multiples of the fundamental seasonal frequency.'® A feature of the periodogram
which is more relevant to the current study is the behaviour of the periodogram in a
neighbourhood of zero frequency, where the peak (visible on Figures 1 and 2) can be

viewed as tentative evidence for the presence of long memory in our volatility series.

16As there are 144 ten minute intervals in one day, the seasonal frequency is %, corresponding,

approximately, to harmonic 228.
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4 Results

Our results are presented in two stages. In the first sub-section we document the
results of pre-testing for long range dependence, using the procedure developed in
Robinson (1996). We then go on to present the estimations of the fractional dif-
ferencing parameter, for both returns and volatility, using the two semiparametric
procedures described in Section 2 and the fully parametric AR(1)-LMSV model. Fi-
nally, a set of specification tests of the AR(1)-LMSV model is presented.

4.1 Testing for Long Range Dependence

In Table 3 we present the test results for raw exchange rate returns for the DEM/USD,
JPY/USD and JPY/DEM. As indicated in Section 2 the test statistic proposed by
Robinson (1996) (S’) has a limiting standard normal distribution under the speci-
fied null hypothesis, implying a one-sided rejection region of 2.32 at 1%. Our null
hypotheses are formulated as follows. First, standard efficient markets theory indi-
cates that asset prices should follow a random walk, implying that returns should be
[(0). This defines one hypothesis as Hy : d = 0. Second, we employ the theoretical
bounds for stationarity and invertibility of the fractionally integrated representation
for returns as hypotheses, yielding Hy : d = —% and Hy : d = %

TABLE 3: Tests of the significance of the Fractional Differencing Parameter for Raw Exchange Rate
Returns

| Rate [ d=05] d=0 | d=05 |
DEM/USD || 113.48 | -5.02 | -18.51
JPY/USD || 112.55 | -4.68 | -19.71
JPY/DEM || 122.09 | 0.46 | -18.02

Note: Testing of the value of the fractional differencing parameter is carried out via the test proce-

dure developed in Robinson (1996).

Results yield the following observations. For all three currencies one can strongly
reject the hypothesis that d = 0.5 in favour of d < 0.5 implying that returns are
covariance-stationary. Similarly one can conclude that the return processes are in-
vertible given the sign and magnitude of the test statistics corresponding to the
hypothesis that d = —0.5. A more interesting result appears when examining the
second column of Table 3. Whereas for the JPY/DEM the test statistic indicates
that one cannot reject the hypothesis of FX quotations following an 1(1) process, for
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the DEM/USD and JPY/USD there is evidence that the degree of fractional inte-
gration in returns is negative. This then implies that the degree of integration for
the quotation series of these two currencies is between one half and unity, such that

these rates are non-stationary but not I(1).

TABLE 4: Tests of the significance of the Fractional Differencing Parameter for Exchange Rate
Volatility (log(r?)).

| Rate | d=0 |d=05] d=1 |
DEM,/USD || 33.23 | -13.15 | -20.53

JPY/USD || 21.12 | -14.05 | -20.70
JPY/DEM || 31.06 | -12.40 | -20.38

Note: Testing of the value of the fractional differencing parameter is carried out via the test proce-

dure developed in Robinson (1996).

Tables 4 and 5 present the results from the same testing framework on raw and
deseasonalised FX volatility (computed, as indicated in Sections 2 and 3 as log(r}).)
As an indication of the efficacy of our deseasonalisation procedure, in Figure 4 we
present the periodogram of our deseasonalised volatility. Comparison with Figure
1 demonstrates that the amplitudes at the seasonal frequencies are greatly reduced,

although not completely eliminated.!”

TABLE 5: Tests of the significance of the Fractional Differencing Parameter for Deseasonalised
Exchange Rate Volatility.

| Rate | d=0 |d=05] d=1 |
DEM/USD || 22.38 | -14.26 | -20.62
JPY/USD || 18.54 | -14.63 | -20.28
JPY/DEM || 24.26 | -13.65 | -20.55

Note: Testing of the value of the fractional differencing parameter is carried out via the test proce-

dure developed in Robinson (1996).

The hypotheses of interest in our examination of volatility are as follows. First, given
the many previous studies which have demonstrated that intra-day FX volatility

has an IGARCH or almost-integrated SV representation, is there a random walk in

17As an alternative to our deseasonalisation procedure, we also computed all estimations for the
volatility of a time-scale transformed series of midquotes. We used the theta-time scale proposed
by Dacorogna, Miller, Nagler, Olsen, and Pictet (1993). Results from these estimations were very
similar to those for deseasonalised volatility and are available upon request from the authors.
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volatility? Second, can one characterise volatility as being long range dependent?
The former dictates examination of Hy : d = 1 whilst the hypotheses pertinent to the
latter are Hy : d =0 and Hy : d = %

The final column of Tables 4 and 5 presents the evidence pertinent to the hypothesis
of a random walk in volatility. There is strong evidence that, for all currencies, this
hypothesis can be strongly refuted in favour of a degree of integration in volatility of
less than unity. Further, this conclusion is stable across both raw and deseasonalised
volatility. There is still, however, the possibility of non-stationarity in volatility if
d € [0.5,1]. Column 2 of the tables indicates that the non-stationarity hypothesis
can be rejected also, with the test statistics indicating that d < 0.5 for all three
currencies. Finally, evidence on the long range dependence of volatility is shown in
column 1. From both tables one can draw the conclusion that the true value of d lies

between zero and one half, evidence of long memory in the volatility of all currencies.

Hence, the testing procedure indicates the following. Returns can be characterised
as short range dependent, covariance stationary processes, with some indication of
negative degrees of fractional integration for the DEM/USD and JPY/USD. The
volatility results indicate covariance-stationarity also, with the non-stationarity and
I(1) hypotheses convincingly refuted, although there is consistent evidence of long
range dependence. The volatility processes are therefore completely mean reverting,
a result which is more comfortable than that of I(1) volatility from a theoretical point

of view.

4.2 Semiparametric Estimations

We first present point estimates for the fractional differencing parameter for the three
returns series. The semiparametric procedures of Robinson (1995a) and Geweke and

Porter-Hudak (1983) are employed in estimation. Table 6 gives the results.

Examining first the GPH estimates it is quite clear that the negativity of d indicated
in the previous subsection is a very minor economic phenomenon, indicating that
returns display very small anti-persistent tendencies. For no currency does d exceed
0.05 in absolute value. This implies that the quotation series may be regarded as fol-
lowing I(1) processes to more-or-less any degree of precision, in line with the efficient

markets hypothesis.

This conclusion becomes less clear when one examines the Gaussian estimates. Whilst
the results for the JPY/USD and JPY/DEM are very similar to their GPH counter-
parts, the value of d derived for the DEM/USD is now greatly negative. This implies
a covariance-stationary and invertible representation for DEM/USD returns which

displays non-negligible anti-persistence. Given the confluence between the testing
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and GPH results, however, we are inclined to treat this feature as an anomaly and

describe the return generating process as approximately 1(0)

TABLE 6: Estimation of the Fractional Differencing Parameter (ci) for Exchange Rate Returns.

Rate d

Rob95 | GPH92
DEM/USD || -0.38 | -0.01
(0.02) | (0.05)
JPY/USD || -0.02 | -0.03
(0.02) | (0.05)
JPY/DEM | -0.01 | -0.01
(0.02) | (0.05)

Note: Estimation of the long memory models is carried out via the semiparametric procedures

of Robinson (1995) (Rob95) and Geweke and Porter-Hudak (1992) (GPH92). Standard errors in

parentheses.
The estimation results for the volatility series are presented (for raw and deseason-

alised volatility) in Tables 7 and 8. Here we complement the semiparametric proce-

dures used in the analysis of returns with the fully parametric AR(1)-LMSV model.

TABLE 7: Estimation of the Fractional Differencing Parameter (ci) for Exchange Rate Volatility.

Rate d

Rob95 | GPH92 | LMSV
DEM/USD || 029 | 021 | 037
(0.02) | (0.06) | (0.01)
JPY/USD || 027 | o019 | 0.24
(0.02) | (0.06) | (0.01)
JPY/DEM | 027 | 028 | 0.32
(0.02) | (0.06) | (0.01)

Note: Estimation of the long memory models is carried out via the semiparametric procedures
of Robinson (1995) (Rob95) and Geweke and Porter-Hudak (1992) (GPH92), plus the fully para-
metric Long Memory in Stochastic Volatility model of Harvey (1993) (LMSV). Standard errors in

parentheses.

The results of both tables demonstrate that the testing procedures contained in the
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previous subsection deliver the correct inferences. Across currencies and estimators
there is consistent evidence that the value of d for the volatility series is between (.2
and 0.3. This indicates that volatility can be characterised as covariance-stationary,
invertible and long range dependent. The only real difference in estimation results
for raw and deseasonalised volatility is that the AR(1)-LMSV estimates tend to be
slightly greater for the former and greater than the results delivered by the semi-
parametric estimators. This is likely to be due to mis-specfication of the short-range
dependence in the series i.e. omission of an explicit seasonal in the fully parametric
model. As one might expect, the difference in estimated d between the semi and fully

parametric procedures is far smaller for deseasonalised volatility.

TABLE 8: Estimation of the Fractional Differencing Parameter (ci) for Deseasonalised Exchange
Rate Volatility.

d
Rate Rob95 | GPH92 | LMSV

DEM/USD || 029 | 019 | 0.26
(0.02) | (0.04) | (0.01)
JPY/USD || 030 | 018 | 0.22
(0.02) | (0.04) | (0.01)
JPY/DEM || 030 | 025 | 0.26
(0.02) | (0.04) | (0.01)

Note: Estimation of the long memory models is carried out via the semiparametric procedures of
Robinson (1995) (Rob95) and Geweke and Porter-Hudak (1992) (GPH92), plus the fully parametric
Long Memory in Stochastic Volatility model of Harvey (1993) (LMSV). Deseasonalisation is carried

out via a frequency domain Double-Window Smoother (DWin.). Standard errors in parentheses.

4.3 Specification Tests on the Fully Parametric Model

The final step in our empirical methodology involves a series of estimations and
specification tests on the fully parametric model outlined in Section 2.2. These tests
allow us to examine the relative contributions of short memory and long memory
components to the temporal dependence in the volatility process. As indicated in
Section 2.2 our fully parametric model nests a pure LMSV model (obtained by setting
¢ = 0 in equation 2.5) and a standard AR(1)-SV model (obtained by restricting d = 0
in 2.5.) By estimating the unrestricted model and these two restricted alternatives
we can employ a frequency-domain Likelihood Ratio test to gauge the significance
of the long memory and AR(1) components. Results of these estimations and the

associated tests, for deseasonalised volatility only, are given in Table 9.
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Examining first the results which correspond to the simple AR(1)-SV models one can
note the appearance of the common result that the ‘underlying’ volatility process has
an autoregressive parameter very close to unity in all cases. This conforms with the
results of many earlier studies. Moving on to the pure LMSV models it is quite clear
that the conclusions of the previous estimations still hold and further that the long
memory specification gives a far better fit than does the autoregression (as evinced
by the lower minimised log likelihood.)

TABLE 9: Extensions of various LMSV specifications and Likelihood Ratio Testing using Desea-
sonalised Volatility

Rate DEM/USD JPY/USD JPY/DEM
LM-AR| LM | AR || LM-AR| LM | AR |[LM-AR| LM | AR
d 026 | 0.25 ] 0.22 0.24 ] 0.26 0.24 ]
(0.01) | (0.01) (0.01) | (0.01) (0.01) | (0.01)
é 0.12 ] 0.96 0.15 _ 0.96 0.15 _ 0.93
(0.01) (0.01) || (0.01) (0.01) || (0.01) (0.01)
LogL || 3097.8 | 3098.2 | 3143.2 || 17228.9 | 17231.0 | 17304.8 || 15645.6 | 15646.1 | 15726.4

|t || - [ o085 [90.90~

\ - \4.10* \151.75**

| - | oss |161.50"

Note: Estimation of the long memory models is carried out via the the fully parametric Long
Memory in Stochastic Volatility model of Harvey (1993) (LMSV). Columns headed LM-AR present
results from the model presented in equation 2.5. Columns headed LM are estimated with the
restriction that the autoregressive parameter is zero and columns headed AR are estimates from the
model where the fractional differencing parameter is set to zero. The final row of the table gives
RN I O~ =¥\ wv. | IR W, L U e

significant at 5%, ** denotes significance at 1%. Deseasonalisation is carried out via a frequency

domain Double-Window Smoother . Standard errors in parentheses.

A comparison with the unrestricted model yields the following observations. First,
the improvement in fit of the combined model over the pure LMSV model is marginal,
as the comparison of Log Likelihoods displays. Second, and more importantly, the
value of the autoregressive parameter is far lower in the unrestricted model, in all
cases between 0.1 and 0.2. Given the pure AR(1)-SV results, this may be taken
as evidence that the previous findings of near unit-root behaviour in intra-day FX
volatility are caused by model mis-specification through the omission of long-range
M S e T e O T —— ey |1 7 9 U UL 7
in Baillie, Bollerslev, and Mikkelsen (1993). These conclusions are reinforced by

the quasi-LR test statstics. In the unrestricted model one can convincingly reject

the hypothesis that the degree of fractional integration in volatility is zero for all
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currencies, whereas the hypothesis that the autoregressive parameter is zero cannot

be rejected in two of the three cases and is only marginally rejected in the third.

A clear comparison of the AR-SV and LM-SV models, in terms of how well they fit the
data, is shown in Figure 5. The figure graphs the actual correlogram of the volatility
process for the DEM/USD alongside those implied by the estimated AR-SV and LM-
SV models. It is immediately apparent that the long memory specification gives a
far better approximation of the true volatility dynamics than does the autoregressive
model. The autoregressive model greatly overstates the low order autocorrelations
but dies out too quickly to mimic the persistently positive high-order autocorrelations
in the DEM/USD data. Intuitively, the estimated autoregressive parameter is driven
very close to unity in order to try to approximate the long memory in volatility, but
this only results in the low order autocorrelations being far too high whilst the ex-
ponential decay in the correlogram ensures that, even if the estimated autoregressive
parameter is arbitrarily close to unity, the autoregressive specification cannot match

the persistence in volatility exhibited by the data.

Hence, to restate the main findings; returns can be characterised as I(0) processes
to a great degree of precision; volatility, on the other hand, is best represented by a
covariance stationary, long range dependent process; furthermore, there is evidence
that the common finding of near-integrated volatility processes is driven by the mis-

specfication of traditional models which do not permit long range dependence.
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5 Conclusions

We have presented in this work a study of the long range dependent properties of
intra-day exchange rate returns for three major currencies. Evidence on the returns
series tends to imply that they are I(0) processes, a result which supports the I(1)
hypothesis for exchange rates. We however do not reject strongly the hypothesis of
antipersistence (I(d) characteristics with d < 0) in the returns, which would imply
mean reversion (however slow it may be) in the exchange rate series. In contrast,
testing and estimation results for volatility are consistent across currencies and give a
clear indication that the volatility of exchange rates series follows a covariance station-
ary long range dependent process. Further results suggest that the commonly found
near unit-root behaviour of intra-day FX volatility is driven by the mis-specification
of traditional models which do not allow for long range dependence. The existence
of long range dependence in intra-day volatility is in line with similar findings for
daily exchange rate volatility found in Baillie, Bollerslev, and Mikkelsen (1993) and
Harvey (1993). A point to note, however, is that whereas our results indicate a co-
variance stationary volatility process (0 < d < 0.5), those of both Baillie, Bollerslev,
and Mikkelsen (1993) and Harvey (1993) indicate that d exceeds 0.5 and, therefore,

volatility is non-stationary.

As far as methodology is concerned, the present paper has emphasized the perfor-
mance of several individual econometric methods in the treatment of a stationary
long memory component in a time series. It needs to be stressed that a practitioner
should also rely on the strength of the sequential methodology. The pretesting proce-
dure enabled us to identify the range in which the dependence parameter lies, in this
case 0 < d < 1/2, and therefore to identify the basic characteristics of the process
within the chosen framework, namely its long range dependence, covariance station-
arity and mean reversion. Robust estimation of d is then carried out to identify the
main feature of interest in the data, namely the degree of temporal dependence. One
may then proceed to a prefiltering of the volatility series y;, yielding the differenced
series Aczyt where d is the pre-estimate of the degree of persistence, prior to identifying
the short memory structure (as we have consistently identified seasonal components)
which leads to the selection of a fully parametric model on the basis of which one
may then test relevant hypotheses and perform a full estimation possibly including

posited volatility determinants.

For efficient forecasting purposes it would be desirable to perform this sequential
procedure in a multivariate framework, preferably with a parsimonious factor de-
composition for volatility . This entails a fractional cointegration analysis of our

vector of volatilities and is the focus of further study (in Henry and Payne (1997)).
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