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Abstract

In this paper we present a model of the development of the term

structure of defaultable interest rates that is based on a multiple-

defaults model. Instead of modelling a cash payo� in default we as-

sume that defaulted debt is restructured and continues to be traded.

The model allows for loss quotas that are not predictable while main-

taining a very close link to the modelling of default-free interest rate

modelling.

We use the Heath-Jarrow-Morton (HJM) [21] approach to represent

the terms structure of defaultable bond prices in terms of forward rates

and concentrate on modelling the development of the term structure

of the defaultable bonds and give conditions under which these dy-

namics are arbitrage-free. These conditions are a drift restriction that

is closely related to the HJM drift restriction for risk-free bonds, and

the restriction that the defaultable short rate must always be not be-

low the risk-free short rate. By keeping the mechanism that triggers

the defaults as general as possible, it is shown that the HJM-drift con-

ditions must also be satis�ed by bond prices derived from �rm's value

models with predictable times of default, and not only by bond prices

derived from intensity based models.

In its most general version the model is set in a marked point pro-

cess framework, to allow for jumps in the defaultable rates at times of

default.

JEL Classi�cation: G 13
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1 Introduction

Most bankrupcy codes provide several alternative procedures to deal with

defaulted debt and the debtors. The most obvious option is to liquidate the

debtor's remaining assets and distribute the proceeds amongst the creditors,

but a often more popular alternative is to reorganize the defaulted issuer

and keep the issuer in operation. The latter alternative has the advantage

of preserving the value of the debtor's business as a going concern and it

avoids ine�cient liquidation sales. Frequently there is no alternative to re-

organisation, either because a liquidation of an issuer is impossible (e.g. for

souvereign debtors) or because it is undesirable (if a liquidation would have

a large macroeconomic e�ect).

In their empirical study Franks and Torous [19] found the following:

A default of a bond does not mean that this bond becomes worthless, usually

there is a positive recovery rate between 40 and 80 percent. This recovery

rate varies signi�cantly between �rms.

The majority of �rms in �nancial distress are reorganized and re-
oated, they
are not liquidated.
On average, most of the compensation payments (about two thirds) are in

terms of securities of the reorganized �rm, not in cash.
If a �rm is reorganized, and the debtors are paid in terms of newly issued
debt, then a second default of this �rm on its (newly issued) debt is possible.

In principle there could be a sequence of any number of defaults each with a
subsequent restructuring of the defaulted �rm's debt.

In this paper we present a model of defaultable bond prices in which a de-

faulted issuer is not liquidated but reorganized at default. Multiple defaults
can occur and the magnitude of the losses in default is not predictable.

We use the Heath-Jarrow-Morton (HJM) [21] framework to represent the

term structure of defaultable bond prices in terms of forward rates and con-
centrate on modelling the development of the term structure of the default-

able bonds and give conditions under which these dynamics are arbitrage-
free. These conditions are a drift restriction that is closely related to the HJM

drift restriction for risk-free bonds, and the restriction that the defaultable

short rate must always be not below the risk-free short rate. By keeping the
mechanism that triggers the defaults as general as possible, it is shown that

the HJM-drift conditions must also be satis�ed by bond prices derived from
�rm's value models with predictable times of default, and not only by bond

prices derived from intensity based models.

In its most general version the model is set in a marked point process frame-

work, to allow for jumps in the defaultable rates at times of default.

The valuation of defaultable securities with methods of continuous time �-
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nance goes back to the initial proposal of Black and Scholes [8], where a credit

risky security is regarded as a contingent claim on the value of the issuing

�rm's assets and is valuated according to option pricing theory. In these

models the �rm's value is assumed to follow a di�usion process and default

is modeled as the �rst time the �rm's value hits a pre-speci�ed boundary.

Because of the continuity of the processes used the time of default is a pre-

dictable stopping time in these models. The payo� in default is usually a

constant cash payment representing the proceeds from liquidating the �rm

(possibly after bankrupcy costs). The models of Merton [35], Black and Cox

[6] Longsta� and Schwartz [31], Das [12] and Geske [20] are representatives

of this approach.

In a second approach, the direct reference to the �rm's value is abandoned,

and the time of default is modeled directly as the time of the �rst jump of a

Poisson process with random intensity (a Cox process), or { more generally

{ as a totally inaccessible stopping time with an intensity. In this group of

models (the intensity models) a striking similarity to risk-free interest rate

modelling is found. This approach is followed by Madan and Unal [32], a

group around Du�e (Du�e and Singleton [16], Du�e, Schroder and Skiadas
[15], Du�e and Huang [14] and Du�e [13]), Lando [27] [28], Flesaker et.al.

[18], Artzner and Delbaen [2] [3] and Jarrow and Turnbull [26]. Again, in
these models a cash payo� is speci�ed in default. Therefore only one default
is allowed, and after default the �rm that had issued the debt is liquidated.

This excludes reorganisation of defaulted debt as well as multiple defaults.
Usually (except Madan and Unal [32]) the magnitude of the payo� in default
is predictable, too.

A recent group of papers initiated by Leland [29] builds on the �rm's value
approach but incorporates bargaining and renegotiations between debtors
and creditors in a continuous time framework. These models endogenise the

default barrier for the �rm's value and can explain low recovery rates with
bankrupcy costs that are not too large. Important papers in this �eld are

Leland [29], Leland and Toft [30], Mella-Barral and Perraudin [34], Mella-
Barral [33], Anderson and Sundaresan [1] and Fan and Sundaresan [17].

We start with a model in which the value of a defaultable bond drops to

zero upon default. While this case has already been extensively studied in
the literature | e.g. most of the intensity models contain the short rate

spread result and the drift restrictions are special cases of Du�e [13] | it

is a good introduction to more general models and this special speci�cation
allows us to treat predictable default times (�rm's value models) in the same

framework with minor modi�cations. After deriving the interconnections
between the dynamics of the risky interest rates and the defaultable bond

prices, we derive the key relationship that under the martingale measure the

di�erence between the defaultable short rate and the default-free short rate

is the intensity of the default process with an argument using the savings
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accounts. This result drives the conditions for the absence of arbitrage that

are derived subsequently, and the arbitrage-free dynamics of the defaultable

bond prices. We �nd a very strong similarity between the defaultable and

the default free interest rate dynamics and drift restrictions, as both have

to satisfy the HJM drift restrictions. (This has �rst been shown by Du�e

in [13].) We show, that the HJM drift-restrictions also have to be satisi�ed

for bond prices derived from �rm's value models with predictable times of

default and investigate the nature of the defaultable interest-rate dynamics

implied by these models.

Next we explore how a model of the spread of the defaultable interest rates

over the default-free interest rates may be used to add a default-risk module

to an existing model of default-free interest rates. Suprisingly, for forward

rates this spread can be negative although there has to be a positive spread

for the short rates.

In the following sections we propose a model that includes positive recovery

rates, reorganisations of the defaulted �rms with the possibility of multiple

defaults and uncertainty about the magnitude of the default. Even though it

may seem that this will make the model far more complicated the restrictions
for absence of arbitrage and the price dynamics remain unchanged. This

model is closely related to the fractional recovery model proposed by Du�e
and Singleton [16],[13].
The connection to the modelling of the short rates (instead of the forward

rates) is shown in the next section. Instead of modelling the forward rates
one can model the defaultable short rate alone. Here the only restriction is
to ensure a positive spread between risk-free and defaultable short rate.

In the following section the paper is concluded by allowing the defaultable
forward rates (and thus the bond prices) to change discontinously at default
times if there are multiple defaults. Here we use the methods of Bj�ork,

Kabanov and Runggaldier (BKR) [5] and give the drift- and no-arbitrage
conditions for this most general version of the model presented.

In the conclusion we mention some of the many potential extensions of this
model.

2 Setup and Notation

For ease of exposition we �rst introduce the simplest setup which will be gen-
eralised in the following sections to include positive recovery rates, multiple

defaults and jumps in the defaultable term structure.

The model is set in a �ltered probability space (
; (Ft)(t�0); P ) where P

is some subjective probability measure. We assume the �ltration (Ft)(t�0)
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satis�es the usual conditions1.

The time of default is de�ned as follows:

Definition 1 The time of default is a stopping time � . We denote with

N(t) := 1f��tg the default indicator function and A(t) the predictable com-

pensator of N(t), thus

M(t) := N(t)� A(t)

is a (purely discontinuous) martingale. A is nondecreasing (because N is),

predictable and of �nite variation. Frequently we will assume that A has an

intensity, i.e.

A(t) =
Z t

0
h(s) ds: (1)

The �ltration (Ft)(t�0) is generated
2 by n Brownian motionsW i; i = 1; : : : ; n

and the default indicator N(t).

For the default risk-free bond markets we use the HJM setup:

Definition 2 1. At any time t there are default-risk free zero coupon

bonds of all maturities T > t. The time-t price of the bond with matu-

rity T is denoted by B(t; T ).

2. The risk-free forward rate over the period [T1; T2] contracted at time t

is de�ned (for t � T1 < T2)

f(t; T1; T2) =
1

T2 � T1
(lnB(t; T1)� lnB(t; T2)) : (2)

3. If the T -derivative of B(t; T ) exists, the instantaneous risk-free forward

rate at time t for date T > t is de�ned as

f(t; T ) = �
@

@T
lnB(t; T ): (3)

4. The instantaneous risk-free short rate r(t),
the risk-free discount factor �(t)

and the risk-free bank account b(t) are de�ned by

r(t) := f(t; t); �(t) := expf�
Z t

0
r(s)dsg; b(t) := 1=�(t): (4)

We use similar notation to describe the term structure of the defaultable

bonds:

1See Jacod and Shiryaev [24]. We also assume a large but �nite time horizon.
2This assumption will be relaxed later on to include a marked point process in the case

of multiple defaults.
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Definition 3 1. At any time t there are defaultable zero coupon bonds

of all maturities T > t. The time-t price of the bond with maturity T

is denoted by C(t; T ). The payo� at time T of this bond is 1f�>Tg =

1 � N(t): one unit of account if the default has not occurred until T ,

and nothing otherwise.

2. The defaultable forward rate over the period [T1; T2] contracted at time

t is de�ned (for t � T1 < T2)

g(t; T1; T2) =
1

T2 � T1
(lnC(t; T1)� lnC(t; T2)) : (5)

3. If the T -derivative of C(t; T ) exists, the instantaneous defaultable for-

ward rate at time t for date T > t is de�ned as

g(t; T ) = �
@

@T
lnC(t; T ): (6)

4. The instantaneous defaultable short rate rd(t),
the defaultable discount factor 
(t)

and the defaultable bank account c(t) are de�ned by

rd(t) := g(t; t); 
(t) := expf�
Z t

0
rd(s)dsg; c(t) := 1ft<�g

1


(t)
: (7)

All de�nitions of defaultable interest rates are only valid for times t < �

before default.

The defaultable forward rate g(t; T1; T2) as it is de�ned above is not the
value of a T1-forward contract on a defaultable bond with maturity T2, but
the promised yield of the following portfolio:

short one defaultable bond C(t; T1)
long C(t; T1)=C(t; T2) defaultable bonds C(t; T2).

A forward contract on the defaultable bond T2 would involve a short position

in the default free bond B(t; T1). See also section 4.2 for some consequences

of this de�nition.

The defaultable bank account c(t) is the value of $ 1 invested at t = 0 in
a defaultable zero coupon bond of very short maturity and rolled over until

t, given there has been no default until t. It will play a similar role to the

default-free bank account b(t) in default-free interest rate modelling.

In the de�nition of the defaultable forward rates | to avoid taking logarithms

of defaultable bond prices that are zero | we assume that a future default
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cannot be predicted with certainty. At any time t < � strictly before default,

and for every �nite predicition-horizon T (t < T < 1) the probability of

a default until T is not one: P [� � T j Ft] < 1. This can be achieved by

setting the default time to be the �rst time at which a future default can be

predicted with certainty: � 0 := infft � 0j 9 T <1 s.t. P [� � T j Ft] = 1g.

We assume � has been de�ned as above. This assumption is in keeping with

the real-world legal provisions that a bankruptcy must be �led as soon as

the fact of the bankruptcy is known. Furthermore it does not change any

of the qualitative features of the model. In addition to this we assume that

all (forward) interest rates have continuous paths and that the instantaneous

forward rates are well-de�ned.

3 Pricing with Zero Recovery

3.1 Dynamics: The Risky Forward Rates

Given the above de�nitions we can start to explore the connections between

the dynamics of the risky bond prices and the risky forward rates. We assume
the following representation as stochastic integrals for the dynamics of the
risky forward rates g(t; T ) and the risky bonds C(t; T ):

Assumption 1 1. The dynamics of the risky forward rates are given by

dg(t; T ) = �(t; T ) dt+
nX
i=1

�i(t; T ) dW
i(t): (8)

2. The dynamics of the risky bond prices are 3

dC(t; T )

C(t�; T )
= �(t; T )dt+

nX
i=1

�i(t; T ) dW
i(t)� dN(t): (9)

3. The integrands �(t; T ); �i(t; T ); �(t; T ) and �i(t; T ) are predictable pro-

cesses that are regular enough to allow

{ di�erentiation under the integral sign

{ interchange of the order of integration

{ partial derivatives with respect to the T -variable

{ bounded prices C(t; �) for almost all ! 2 
.

3The notation dY (t)=Y (t�) = dX(t) is a shorthand for dY (t)=Y (t�) = dX(t) for

Y (t�) > 0 and dY (t) = 0 for Y (t�) = 0.
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We start by analysing the consequences of the speci�cation (8) of the risky

forward rates. The dynamics of the risky spot rate process are 4

rd(t) = g(t; t) = g(0; t) +
Z t

0
�(s; t)ds

+
nX
i=1

Z t

0
�i(s; t)dW

i(s): (10)

From de�nition (6) of the defaultable forward rates and de�nition 3 of the

defaultable bonds the price of a risky zero coupon bond is given by

C(t; T ) = (1�N(t)) exp

(
�
Z T

t
g(t; s) ds

)
: (11)

The factor of (1 � N(t)) follows from the default condition C(t; T ) = 0 for

t � � . WritingG(t; T ) :=
R T
t g(t; s) ds this yields for t � � using Itô's lemma

dC(t; T )=C(t�; T ) = �dG(t; T ) + d < G;G > �dN; (12)

where we have used that G is continuous. For the process G(t; T ) we have

(see HJM [21])

G(t; T )�G(0; T ) =
Z T

t
[g(t; s)� g(0; s)] ds�

Z t

0
g(0; s) ds

=
Z T

t

Z t

0
�(u; s) du ds+

nX
i=1

Z T

t

Z t

0
�i(u; s) dW

i(u) ds

�
Z t

0
g(0; s) ds

=
Z t

0

Z T

t
�(u; s) ds du+

nX
i=1

Z t

0

Z T

t
�i(u; s) ds dW

i(u)

�
Z t

0
g(0; s) ds

=
Z t

0

Z T

u
�(u; s) ds du+

nX
i=1

Z t

0

Z T

u
�i(u; s) ds dW

i(u)

�
Z t

0
g(0; s) ds�

Z t

0

Z t

u
�(u; s) ds du

�
nX
i=1

Z t

0

Z t

u
�i(u; s) ds dW

i(u)

=
Z t

0
b̂(u; T ) du+

nX
i=1

Z t

0
ai(u; T ) dW

i(u)

�
Z t

0
g(0; s) ds�

Z t

0

Z s

0
�(u; s) du ds

4It is understood that dynamics of defaultable interest rates are always the dynamics

before default t < � .
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2. Given the dynamics (9) of the risky bond prices the dynamics of the risky

forward rates are (for t � �) given by (8) with

�(t; T ) =
nX
i=1

�i(t; T )
@

@T
�i(t; T )�

@

@T
�(t; T ) (18)

�i(t; T ) = �
@

@T
�i(t; T ): (19)

Proof: 1.) has been derived above, 2.) follows from Itô's lemma on lnC(t; T )

and taking the partial derivative w.r.t. T .

These relationships are well-known in the case of the default-risk free term

structure. Assume the following dynamics of the risk-free forward rates

f(t; T ) and the risk-free bond prices B(t; T ) (the risk-free dynamics are

marked with a dash ' ):

Assumption 2 1. The dynamics of the default risk free forward rates are

given by

df(t; T ) = �0(t; T ) dt+
nX
i=1

�0i(t; T ) dW
i(t): (20)

2. The dynamics of the default risk free bond prices are

dB(t; T )

B(t�; T )
= �0(t; T )dt+

nX
i=1

�0i(t; T ) dW
i(t): (21)

3. The integrands �0(t; T ); �0i(t; T ); �
0(t; T ) and �0i(t; T ) are predictable pro-

cesses that are regular enough to allow

{ di�erentiation under the integral sign

{ interchange of the order of integration

{ partial derivatives with respect to the T -variable

{ bounded prices B(t; �) for almost all ! 2 
.

The dynamics of the risk-free term structure do not contain any jumps at � .
Volatilities and drifts may change at � but the direct impact of the default

is only on the risky bonds.

Given these dynamics the following proposition is a well-known result by
Heath, Jarrow and Morton [21].

Proposition 2 1. Given the dynamics of the risk free forward rates (20)

(i) the dynamics of the risk free bond prices are given by

dB(t; T )

B(t�; T )
=

"
�b̂0(t; T ) + r(t) + 1

2

nX
i=1

a0i
2(t; T )

#
dt

+
nX
i=1

a0i(t; T ) dW
i(t): (22)

9



where a0i(t; T ) and b̂0(t; T ) are de�ned by

a0i(t; T ) :=
Z T

t
�0i(t; v) dv (23)

b̂0(t; T ) :=
Z T

t
�0(t; v) dv: (24)

(ii) the dynamics of the risk free short rate are given by

r(t) = f(t; t) = f(0; t) +
Z t

0
�0(s; t)ds

+
nX
i=1

Z t

0
�0i(s; t)dW

i(s): (25)

2. Given the dynamics (21) of the risk free bond prices the dynamics of the

risky forward rates are given by (20) with

�0(t; T ) =
nX
i=1

�0i(t; T )
@

@T
�0i(t; T )�

@

@T
�0(t; T ) (26)

�0i(t; T ) = �
@

@T
�0i(t; T ): (27)

3.2 Change of Measure

Now that the connections between the dynamics of the risky zero coupon
bonds and the forward rates are clari�ed, we can start analysing the con-

ditions for absence of arbitrage opportunities in this model. We use the
following standard de�nition:

Definition 4 There are no arbitrage opportunities if and only if there is a

probability measure Q equivalent to P under which the discounted security

price processes become local martingales. This measure Q is called the mar-
tingale measure, and for any security price process X(t) the discounted price

process is de�ned as X(t)=b(t).

The main tool to classify all to P equivalent probability measures is the

following version of Girsanov's Theorem (see Jacod and Shiryaev [24] III.3
and III.5 and BKR [5]):

Theorem 1 Assume that the default process has an intensity. Let � be a n-

dimensional predictable processes �1(t); : : : ; �n(t) and �(t) a strictly positive

predictable process with

Z t

0
k�(s)k2ds <1;

Z t

0
j�(s)� 1jh(s)ds <1

10



for �nite t. De�ne the process L by L(0) = 1 and

dL(t)

L(t�)
=

nX
i=1

�i(t)dW
i(t) + (�(t)� 1)dM(t):

Assume that E [ L(t) ] <1 for �nite t.

Then there is a probability measure Q equivalent to P with

dQt = LtdPt (28)

such that

dW (t)� �(t)dt = d ~W (t) (29)

de�nes ~W as Q-Brownian motion and

hQ(t) = �(t)h(t) (30)

is the intensity of the default indicator process under Q.

Furthermore every probability measure that is equivalent to P can be repre-

sented in the way given above.

In the �nancial context here the processes �i are themarket prices of di�usion

risk, and the process � represents the market price of jump risk (per unit of

jump intensity). To ensure absence of arbitrage the �nancial requirement of a
well-de�ned set of market prices of risk with validity for all securities trans-
lates into the mathematical requirement of having a well-de�ned intensity

process for the change of measure.

Given the risky bond price dynamics (9) the change of measure to the mar-
tingale measure leaves the volatilities of the risky bond prices una�ected,

the same is true of the integral with respect to dN (the compensator of this
integral has changed, though), the only e�ect is a change of drift in the

defaultable bond price process.

From now on we will assume that the change of measure to the martingale
measure has already been performed. The results of the preceding section

on the dynamics remain valid if the underlying measure is the martingale
measure. Therefore we simplify notation such that all speci�cations in section

3.1 are already with respect to Q. 5

3.3 Absence of Arbitrage

By Itô's lemma we require under the martingale measure for absence of ar-

bitrage that for all t > T

E
h

dC(t;T )
C(t�;T )

i
= r(t) dt: (31)

5If P = Q then � � 0 and � � 1.
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This means using (16)

r(t) dt = E
h

dC(t;T )
C(t�;T )

i
= E

h h
�b̂(t; T ) + rd(t) + 1

2

Pn
i=1 a

2
i (t; T )

i
dt
i

+E [
Pn

i=1 ai(t; T ) dW
i(t)� dN(t) ]

r(t) = �b̂(t; T ) + rd(t) + 1
2

nX
i=1

a2i (t; T )� h(t) (32)

Now we have to take a closer look at the compensator A(t) of the default

indicator process N(t). We assumed that A is continuous and therefore has

an intensity dA(t) = h(t)dt. Then

�M(t) = �N(t) + A(t) = �N(t) +
Z t

0
h(s) ds (33)

is a martingale by the de�nition of the predictable compensator. Now con-

sider the value process of the risky bank account c(t), i.e. the development

of $ 1 invested at time 0 at the risky short rate and rolled over from then on.
By de�nition its value at time t is

c(t) = 1f�>tg expf
Z t

0
rd(s)dsg: (34)

Under the martingale measure the discounted (discounting with the risk-free

interest rate) value process of c

�c(t) :=
c(t)

b(t)
= 1f�>tg expf

Z t

0
rd(s)� r(s) dsg (35)

must be a martingale. This is the Doleans-Dade exponential of

M̂(t) := �N(t) +
Z t^�

0
rd(s)� r(s) ds; (36)

which in turn must also be a martingale. (The martingale property can also

be seen from M̂(t) =
R t
0

1
�c(s�)

d�c(s) and the uniqueness of the Doleans-Dade

exponential up to � .) We use the freedom we had in the speci�cation of rd(t)

for t � � and set rd(t) := r(t) for t � � .

Taking the di�erence of (33) and (36)

M(t)� M̂(t) =
Z t

0
h(s)� rd(s) + r(s) ds (37)

one sees that { while the l.h.s. is a martingale { the r.h.s. is predictable, the

only predictable martingales are constant, thus we have for all s

h(s) = rd(s)� r(s): (38)
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The hazard rate h(s) of the default is exactly the short interest rate spread.

Note that this relationship can also be inverted to de�ne the risky short rate

as rd(s) := r(s) + h(s).

Equation (38) is the key relation that yields, substituted in (32), as necessary

condition for the absence of arbitrage:

b̂(t; T ) = 1
2

nX
i=1

a2i (t; T ): (39)

Substituting the de�nition of b̂ in this condition yields the results of the

following theorem.

Theorem 2 The following are equivalent:

1. The measure under which the dynamics are speci�ed is a martingale mea-

sure.

2. (i) The short interest rate spread is the intensity of the default process. It

is positive.

h(t) = rd(t)� r(t) > 0: (40)

(ii) The drift coe�cients of the defaultable forward rates satisfy for all t � T ,

t < � Z T

t
�(t; v)dv = 1

2

nX
i=1

 Z T

t
�i(t; v)dv

!2

(41)

or, di�erentiated,

�(t; T ) =
nX
i=1

�i(t; T )
Z T

t
�i(t; v)dv: (42)

(iii) The drift coe�cients of the risk-free forward rates satisfy for all t � T

�0(t; T ) =
nX
i=1

�0i(t; T )
Z T

t
�0i(t; v)dv: (43)

3. (i) rd(t)� r(t) = h(t) > 0.

(ii) The dynamics of the risky bond prices are given by

dC(t; T )

C(t�; T )
= rd(t)dt+

nX
i=1

ai(t; T )dW
i(t)� dN(t) (44)

or, solving the s.d.e.

C(t; T ) = 1f�>tgC(0; T ) exp

(Z t

0
rd(s) ds� 1

2

nX
i=1

Z t

0
a2i (s; T ) ds

+
nX
i=1

Z t

0
ai(s; T ) dW

i(s)

)
: (45)

(iii) The dynamics of the risk-free bonds satisfy under the martingale measure

dB(t; T )

B(t�; T )
= r(t)dt+

nX
i=1

a0i(t; T )dW
i(t): (46)

13



Proof:

1:)) 2:) : (i) and (ii) have been derived above, (iii) has been shown in HJM

[21].

2:)) 3:) : 2.(i) and 3.(i) coincide, 3.(ii) follows from 2.(ii) and (i) by substi-

tuting in proposition 1, again (iii) is by HJM [21].

3:)) 1:): follows from the de�nition of the martingale measure.

q.e.d.

The most important result of this section is equation (42), the defaultable-

bond equivalent of the well-known Heath-Jarrow-Morton drift-restriction.

This restriction has been derived for default risk-free bonds in HJM [21],

and, as we see here, it is also an important part of the modelling of the

defaultable bonds' dynamics. This was �rst noted by Du�e [13].

Another important insight is that precise knowledge of the nature of the

default process N and its compensator A is not necessary for setting up an

arbitrage-free model of the term structure of defaultable bonds. With the
restricitions 2.) of theorem 2 one can set up a model of defaultable bonds
that uses readily observable market data (the term structure of the risky

forward rates) as input, without having to try and �nd out about the precise
nature of N .

We assumed that the default process has an intensity: dA(t) = h(t)dt. This

implies that the time of default is a totally inaccessible stopping time. Drop-
ping this assumption (to allow discontinuities in A) one sees readily from

the derivation of equation (38) that the risky spot rate rd cannot be �nite at
jumps of A. One would have to specify the risky term structure in a more gen-
eral way by de�ning a process Rd(t) :=

R t
0 r

d(s)ds which will be well-de�ned

and can account for the jumps in A. Similar de�nitions will be needed for the
forward rates. Then (38) translates into dRd(t) = r(t)dt+ dA(t). With this
speci�cation we can also drop the initial assumption that a default cannot

be predicted with certainty. In the following section we will treat the case of
predictable � in more detail.

It is important to note that the default risk-free term structure and the
defaultable term structure must satisfy the conditions simultaneously. This

will become clearer in the following version of theorem 2 that is set under

the subjective measure P :

Theorem 3 If the dynamics are given under a subjective probability measure

P the following are equivalent:

1.) The dynamics are arbitrage-free.

2.) There are predictable processes �1(t); : : : ; �n(t) and a strictly positive

predictable process �(t) that satisfy the regularity conditions of theorem 1

such that for all t < T :

14



(i) The di�erence between risk-free and defaultable short rate is � times the

hazard rate:

rd(t)� r(t) = �(t)h(t): (47)

(ii) The defaultable and the default-free forward rates satisfy

��(t; T ) +
nX
i=1

�i(t; T )
Z T

t
�i(t; v) dv =

nX
i=1

�i(t; T )�i(t) (48)

��0(t; T ) +
nX
i=1

�0i(t; T )
Z T

t
�0i(t; v) dv =

nX
i=1

�0i(t; T )�i(t) (49)

a.s. for all t < T .

Proof:

1.) , There is an equivalent martingale measure Q

, (Theorem 1) There are predictable processes �1(t); : : : ; �n(t) and a strictly

positive predictable process �(t) that satisfy the regularity conditions of the-

orem 1 such that (using theorem 2):

(i) hQ = �h and hQ(t) = rd(t)� r(t) = �(t)h(t).
(ii) dWQ

i = dWi � �idt and

dg(t; T ) =
nX
i=1

 
�i(t; T )

Z T

t
�i(t; v) dv

!
dt+

nX
i=1

�i(t; T )dW
Q
i (t)

df(t; T ) =
nX
i=1

 
�0i(t; T )

Z T

t
�0i(t; v) dv

!
dt+

nX
i=1

�0i(t; T )dW
Q
i (t):

By substituting the P -dynamics of g(t; T ) and f(t; T ) and equating coe�-
cients the proof is concluded.

q.e.d.

From theorem 3 one sees directly that there is only one set of market prices
of risk for both the defaultable and the risk-free term structure. This follows
from the fact that there is only one set of underlying Brownian motions that

drive the market. The market price of jump risk � is uniquely determined
by equation (47) which can be used as de�ning relationship for �. Even with

defaultable zero coupon bonds one can set up portfolios that are hedged
against default risk (by making sure that the sum of the portfolio weights

is zero). These portfolios must be related to the risk-free term structure in

their dynamics, and this relation is given in the two theorems above.

3.4 Forward Rates in Firm's Value Models

For zero recovery these results carry through to the �rm's value models. In
these models the time of default is predictable and therefore dA� = 1 and
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A = N and M � 0. Most �rm's value models specify a positive payo� to

a bond in default, which is often expressed as some number x of equivalent

but default-free bonds. Given this payo� in default one can decompose the

defaultable bond into x default-free bonds plus (1 � x) defaultable bonds

with zero recovery.

We still assume the speci�cation of the forward rates and the bond price

dynamics are as in assumption 1. Considering rd dt = r dt+ h dt we expect

the defaultable short rate to show some discontinuity at � where dA = 1

which is the equivalent of hdt. Therefore de�ne the defaultable short rate by

dRd(t) := dc(t)=c(t�)

for � < t. Because � is predictable, the investment decisions can be con-

ditioned on whether there is a default in the next instance or not. First

consider times t < � : there is no default in the next instant. Therefore the

investment in the defaultable bank account is locally risk-free and

dc(t)

c(t�)
= r dt = dRd: (50)

Equation (16) is still valid for times before � , substituting (50) into it and
requiring dC=C = r dt+ dm (here m is a martingale) yields

b̂(t; T ) + rd(t) = 1
2

nX
i=1

a2i (t; T ) (51)

which in turn yields the HJM-conditions. Thus for times before default the

defaultable bond prices and forward rates for �rm's value models still have
to satisfy the HJM drift-conditions.

At time t = � we encounter a singularity in Rd: Rd is the return that

a investor has to be promised to invest in the defaultable bank account.
Because the time of default is predictable default is certain and the required

return becomes in�nite. If default would only occur with probability �A < 1
then the required return would be

dRd = rdt+
�A

1��A
:

Thus as �A ! 1 (i.e. the stopping time approaches a predictable stopping
time) the defaultable short rate will approache in�nity.

This has some implications for the qualitative shape of the forward rates in

�rm's value models:

In �rm's value models one can expect the interest rate spreads to be very

low for short times to maturity, because the defaultable short rate equals

the default-free short rate. On the other hand, for t = � the classical short
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rate rd is not even de�ned but in�nity. Very shortly before � the forward

rates g(t; T ) will therefore start from zero at g(t; t) and then be very sharply

peaked for T close to t.

Thus it its not suprising that �rm's value models generate humped term

structures of credit spreads that are zero at the short end.

4 Modelling the Spread between the Forward

Rates

When trying to connect the dynamics of the defaultable term structure and

the default-free term-structure the most important relationship is (40):

0 < h(t) = rd(t)� r(t):

In many cases a model of the risk-free interest rates and forward rates will

already be in place and the task is to �nd a speci�cation of a model of
the defaultable term structure that does not violate (40). If one directly
estimated and implemented a model for the defaultable term structure g(t; T )

without reference to the existing model of the default-free term structure,
situations where rd < r are bound to arise and the (combined) model will
not be arbitrage-free.

A way around this problem is not to model the forward rates but the di�er-
ence between these as proposed in Du�e [13]:

Definition 5 The forward rate spread h(t; T ) is de�ned as the di�erence

between the defaultable forward rate and the default-free forward rate:

h(t; T ) = g(t; T )� f(t; T ): (52)

Under the martingale measure we have

h(t) = h(t; t)

which justi�es the slight abuse of notation by doubly de�ning h.

Now one has to �nd a model for h(t; T ) which is compatible with theorem 2.

The advantage of modelling h(t; T ) instead of g(t; T ) is that (40) reduces to

the well known problem of ensuring that h(t; t) > 0. and we can hope to use

some of the extensive literature on interest rate models with positive short

rates. We use the following dynamics for h:

Assumption 3 The dynamics of h are given by

h(t; T )� h(0; T ) =
Z t

0
�h(v; T ) dv +

nX
i=1

�hi (v; T )dW
i(v): (53)
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Then

�(v; t) = �0(v; t) + �h(v; t) (54)

�i(v; t) = �0i(v; t) + �hi (v; t): (55)

In place of the drift restriction (42) we reach:

Corollary 1 Let the risk-free interest rates satisfy the HJM drift restric-

tion (43). A model for the risky forward rates based on the forward rate

spread h(t; T ) must imply under the martingale measure

�h(t; T ) =
nX
i=1

"
�0i(t; T )

Z T

t
�hi (t; v) dv

+�hi (t; T )
Z T

t
�0i(t; v) dv

+ �hi (t; T )
Z T

t
�hi (t; v) dv

#
: (56)

Proof: Substitute (54) and (55) in (42).

Again { as in the original HJM model { the drift of the spread is given in

terms of the volatilities of the interest rates and spreads. Given these drift
speci�cations one has to require that the process h(t; t) is nonnegative. This
will enable us to add a defaultable interest rate model to a given model of

the default-free interest rate in a modular fashion.

If one chooses a speci�cation of the dynamics of h that has nonnegative
h(t; t) a.s. under the subjective measure, this will ensure that h(t; t) will be

nonnegative a.s. under the martingale measure, too.

It will be interesting to analyse some possible speci�cations and the problems
that may arise when modeling the spread structure.

4.1 Independence of Spreads and Risk-Free Rates

The easiest way to specify the spreads is to avoid the cross-variation terms
with the risk-free term-structure in (56). Assume that every factor Wi either

in
uences f or h but never both. Then 8 i = 1; : : : ; n

�hi (t; T ) 6= 0 )
Z T

t
�0i(t; v) dv = 0

�0i(t; T ) 6= 0 )
Z T

t
�hi (t; v) dv = 0 (57)

and the drift restriction for the spreads becomes the usual HJM restriction:
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Corollary 2 (i) If �hi and �0i satisfy (57) then (under the martingale mea-

sure)

�h(t; T ) =
nX
i=1

�hi (t; T )
Z T

t
�hi (t; v)dv (58)

and h(t; t) > 0 a.s. are necessary and su�cient for absence of arbitrage.

(ii) Equation (57) is satis�ed if h(t; T1) and g(t; T2) are independent for all

t � T1; t � T2, i.e. the term structure of the spreads and the term structure

of the risk-free forward rates are independent.

Proof: The �rst part follows directly by substituting the assumptions (57) in

(56). For the last part observe that independence of the term structures of

spreads and risk-free rates implies that

�0i(t; T1)�
h
i (t; T2) = 0

for (almost) all t � T1; T2 which in turn implies (57) directly. q.e.d.

Note that strict stochastic independence of h and g is not needed. One

might imagine a model where the term structure of the spreads is driven by
an additional Brownian motion alone (this will ensure (57)), but the volatility
of the spread might still depend on the level of the interest rates.

Satisfying the positivity requirement (40) on h(t; t) becomes very easy in the
setup of corollary 2: One can use any interest rate model for h(t; T ) that is
known to generate positive short rates, e.g. the square root model of Cox,

Ingersoll and Ross [10][11] or the model with lognormal interest rates by
Sandmann and Sondermann [38].

4.2 Negative Forward Spreads

There is one additional caveat when using the nonnegative rate model for

the forward rate spreads: Even though we require that the `short' spread
h(t; t) > 0 is greater than zero, a `forward' spread h(t; T ) (T > t) might still

become negative.

As an example how this can arise we consider the two-period economy with

points in time t = 0; 1; 2 from �gure 1. There are three states !1; !2; !3

and the �ltration is F0 = ff!1; !2; !3g; ;g; F1 = �(f!1; !2g; !3); F2 =

�(!1; !2; !3). The states have risk-neutral probabilites P (!1) = pq; P (!2) =

p(1 � q); P (!3) = (1 � p). There are risk-free bonds B(0; 1); B(0; 2) and

risky bonds C(0; 1); C(0; 2). In state !1 both risky bonds survive, in !2 only

the risky bond with maturity 2 defaults and in !3 both bonds default (with

zero recovery).
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Figure 1: Example for negative forward spreads

The initial risk-free term structure is given by B(0; 1) = �0 and B(0; 2) =
�0(p�u + (1� p)�d). Thus the bond prices are

B(0; 1) = �0

B(0; 2) = �0(p�u + (1� p)�d)

C(0; 1) = p �0

C(0; 2) = p q �0�u

The forward rates are

f(0; 1; 2) = � ln(p �u + (1� p) �d)

g(0; 1; 2) = � ln(q �u):

We have a negative forward spread h(0; 1; 2) < 0 or g(0; 1; 2) < f(0; 1; 2) if

p �u + (1� p) �d < q �u (59)

holds. This is equivalent to

q > p+ (1� p)
�d

�u
; (60)
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so a necessary condition for negative forward spreads is that �d < �u. Choose

for instance p = 0:9; �d=�u = 0:9; q = 0:995.

This example can be regarded as a `snapshot' from a continuous-time model

in which the relevant prices and probabilities have been aggregated to the

two-period example.

The condition �d < �u means that rd > ru. For negative forward spreads to

arise we need

{ either q and p are of the same order of magnitude, then the ratio �d=�u
must be very small, ru << rd,

{ or q is much larger than p, then �u can be of the same order as �d. In

practice q >> p only occurs if T1 >> T2 � T1. But then �d=�u � 1 because

of the short horizon T2 � T1 which is very far in the future, as well.

The occurrence of negative forward spreads is due to the special way in which

we de�ned the risky forward rates. It is not possible to exploit the negative

forward spread as an arbitrage-opportunity because the portfolio one would

typically use for that will be destroyed by an early default:

In the risk-free bonds one can set up a portfolio that replicates the payo� of
a default free forward contract, but set up in defaultable bonds this portfolio

disappears in the case of an early default. If one had gone long a risk-free
forward contract and short a replicating portfolio of a defaultable forward

contract, an early default (which eliminates the replicating portfolio for the
risky forward contract) leaves one with the default-risk free half of the port-
folio, which now is exposed to changes in the risk-free term structure. If the

subsequent risk-free interest rates are high the remainder of the portfolio will
generate a loss.

Summarizing, negative forward spreads can only occur if there is a strong

correlation between early default (event !3) and high interest rates (�d small),
and a strong correlation between early survivial (events u) and low interest
rates (�u large). spreads actually occur in the markets.

5 Positive Recovery and Restructuring

In the preceding sections we assumed that a defaultable zero coupon bond

has a payo� of zero upon default. This assumption is unnecessarily restrictive

and does not agree with market experience.

In actual markets a default of a bonds does not mean that this bond becomes
worthless. Usually there is a positive recovery; in their empirical study Franks

and Torous [19] �nd recovery rates between 40 and 80 percent for distressed
exchanges and Chapter 11 reorganisations.
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A second observation from actual bankruptcy procedures is that the major-

ity of �rms in �nancial distress are reorganised and re-
oated, they are not

liquidated.

Thirdly, even though on average about one third of the compensation to the

holders of defaulted bonds is in cash , most of the compensation payments

(about two thirds) are in terms of new securities of the defaulted and re-

structured �rm.

Fourth, if a �rm is reorganized and the payo� to the defaulted debtors is

in terms of securities of the new �rm, a second default of this �rm on their

(new) debt is possible. We have the possibility of multiple defaults with in

principle any number of defaults (each with subsequent restructuring of the

defaulted �rm's debt).

The main results of the preceding sections are still valid if the recovery of

the bond is positive and not zero. We choose the following setup including

the possibility of multiple defaults:

If a default occurs a restructuring of the debts occurs. Holders of the old debt
loose a fraction of q of their claims, where q 2 [0; 1] is possibly unpredictable,

but known at default.

A pre-default claim of $ 1 face value becomes a claim of

$ (1� q) face value after the default. The maturity of the claim
remains unchanged.

This model mimicks the e�ect of a rescue plan as it is described in many
bankruptcy codes: The old claimants have to give up some of their claims
in order to allow for rescue capital to be invested in the defaulted �rm.

They are not paid out in cash 6 (this would drain the defaulted �rm of
valuable liquidity) but in `new' defaultable bonds of the same maturity. As
the vast majority of defaulted debtors continue to operate after default, a

representation of the loss of a defaulted bond in terms of a reduction in face
value is possible even if the actual payo� procedure is di�erent.

For ease of modelling we use the convention that the defaultable forward rates

are quoted with respect to a bond of face value 1 $.

The reduction in the face value of a bond in default is not re
ected in the

forward rates. This convention enables us to separate the e�ects of changes

in interest rates ( representing expectations on future defaults) and the direct
e�ect of the default.

Mathematically the setup is as follows:

Assumption 4 (i) Defaults occur at the stopping times �1 < �2 < : : :.

(ii) At each time �i of default a loss quota qi 2 E is drawn from a measurable

6The holder of a defaulted bond is free to sell this bond on the market, though.

22



space (E; E); E � IR, the mark space. (Usually E = [0; 1] with the Borel

sets.)

(iii) The double sequence (�i; qi); i 2 IN+ de�nes a marked point process 7

with de�ning measure

�(t; !; dq; dt) (61)

and predictable compensator

�(!; t)(dt; dq) = K(!; t)(dq) h(t) dt (62)

(iv) Consider the defaultable zero coupon bond C(0; T ). At time T , the ma-

turity of this bond, it pays out

Q(T ) :=
Y
�i�T

(1� qi); (63)

the remainders after all fractional default losses. 8 Q(t) can be represented

as a Doleans-Dade exponential: Q(0) = 1 and

dQ(t)

Q(t�)
= �

Z 1

0
q �(dq; dt): (64)

(v) The �ltration is generated by the Brownian motions W i and the marked

point process �.

(vi) We assume su�cient regularity on the marked point process � to justify

all subsequent manipulations.

{ The sequence of default times is nonexplosive.

{ � is a multivariate point process (see [24]).

{
R t
0

R
E K(dq)h(s) ds <1 for all t <1.

{ The processes introduced in de�nition 6 are square-integrable.

{ The resulting bond prices are bounded.

For the subsequent analysis we need to de�ne the following processes:

Definition 6 The default counter function N 0(t), the instantaneous ex-

pected loss rate q(t), the default compensator A0(t) and the default martingale

M 0(t) are de�ned as:

N 0(t) :=
Z t

0

Z 1

0
q �(dq; ds) (65)

q(t) :=
Z 1

0
q K(dq) (66)

A0(t) :=
Z t

0

Z 1

0
q K(dq)h(s)ds =

Z t

0
q(s)h(s) ds (67)

M 0(t) := N 0(t)� A0(t): (68)

7For a general reference on marked point processes see Jacod and Shiryaev [24] and

Bremaud [9].
8It will be clear from the context whether Q denotes the martingale measure or the

accumulated fractional default losses. The latter will usually be the case from now on.
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Note that A0 is the predictable compensator of N 0, and M 0 is a martingale,

and dQ(t)=Q(t�) = �dN 0(t).

This modelling approach has much in common with the fractional recovery

introduced by Du�e et.al. in [16] [13] [14] [15].

Du�e speci�es the payo� in default to be a predictable fraction (1�q) of the

value of a `non-defaulted but otherwise equivalent security'. This is inspired

by the default procedures in swap contracts. In Du�e's mathematical model

the value V� of the defaulted security directly after default (i.e. the payo� in

default) is speci�ed as V� := (1� q)V��, the fraction (1� q) times the value

of the same security directly before default. Unfortunately Du�e's model

does not work for times of default that are predictable:

Assume the time of default is predictable, i.e. � is F��-measurable. We

set r � 0 to keep the example simple. Then the price of the bond just

before � is given by V�� and the price of the bond just after � is (1� q)V��.

Under the martingale measure we need 0 = E [ dV ] = (1 � q)V�� � V�� =

qV��. This implies that V�� = 0, a zero recovery, if there is a positive loss
q > 0 in default. A similar argument shows that Du�e's approach implies

zero recovery whenever the time of default is not totally inaccessible (loosely
speaking if Q(� = tj Ft�) > 0 can arise). In many models (e.g. all models
based on the �rm's value approach) the time of default is predictable.

The model presented here can be extended to include the possibility of pre-
dictable times of default. (See the remarks at the end of section 5.) In
addition to this we avoid the backward recursive stochastic integral equa-

tions that are necessary in the Du�e model.

Furthermore we include magnitude risk in our setup. The magnitude of
the default is uncertain and the actual realisation of the loss qi need not be

predictable, it can be considered as a random draw at �i from the distribution
K(dq). This distribution may itself be stochastic. Except for the model

of Madan and Unal [32] all models of default risk assume a constant or
predictable recovery rate of the defaultable bond.

Assumption 5 In the presence of multiple defaults:

(i) The dynamics of the defaultable rates are given by assumption 1.1.

(ii) The dynamics of the defaultable bond prices are as in assumption 1.2.

but with N 0 replacing N :

dC(t; T )

C(t�; T )
= �(t; T )dt+

nX
i=1

�i(t; T )dW
i(t)� dN 0:

(iii) The defaultable bank account is c(t) = Q(t) expf
R t
0 r

d(s) dsg:
(iv) The dynamics of the default risk free rates and bond prices are given by

assumption 21. and 2.2.

(v) There is no total loss: qi < 1 a.s.
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Assumption 5 implies that all forward rates and the process G(t; T ) are

continuous at times of default.

For the risk-free rates this is justi�able in most cases (unless a large sou-

vereign debtor is concerned), but the risky rates should be modelled by ex-

plicitly allowing for dependence on the defaults �. A default will usually

discontinuously change the market's estimation of the future likelihood of

defaults and thus the risky forward rates. This e�ect will be included in a

later section, here we assume that the only direct e�ect of a default is the

reduction of the face value of the defaultable debt. Nevertheless we allow

the default to in
uence the di�usion parameters of the forward rates which

distinguishes this setup from the literature on Cox processes (see Lando [27]).

6 Pricing with Recovery

The analysis of the pricing of defaultable zero coupon bonds goes along the
lines of sections 3,4 and 5, where we increasingly have to introduce the the-

ory of marked point processes. Standard references are Jacod and Shiryaev
[24], and Bremaud [9] for the mathematical theory and Bj�ork, Kabanov and
Runggaldier [4] [5] for the application to interest rate theory9.

6.1 Change of Measure

First, Girsanov's theorem (theorem 1) becomes 10

Theorem 4 Let � be a n-dimensional predictable processes �1(t); : : : ; �n(t)

and �(t; q) a strictly positive predictable function 11 with

Z t

0
k�(s)k2ds <1;

Z t

0

Z
E
j�(s; q)jK(dq) h(s)ds <1

for �nite t. De�ne the process L by L(0) = 1 and

dL(t)

L(t�)
=

nX
i=1

�i(t)dW
i(t) +

Z
E
(�(t; q)� 1)(�(dt; dq)� �(dt; dq)):

Assume that E [ L(t) ] <1 for �nite t.

Then there is a probability measure Q equivalent to P with

dQt = LtdPt (69)

9For other �nancial applications see also Merton [36] and Jarrow and Madan [25].
10See Jacod and Shiryaev [24] and Bj�ork, Kabanov and Runggaldier [5].
11In functions of the marker q (like � here) predictability means measurable with respect

to the �-algebra ~P := P 
 E . Here P is the �-algebra of the predictable processes.
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such that

dW (t)� �(t)dt = d ~W (t) (70)

de�nes ~W as Q-Brownian motion and

�Q(dt; dq) = �(t; q)�(dt; dq) (71)

is the predictable compensator of � under Q.

Every probability measure that is equivalent to P can be represented in the

way given above.

Proof: BKR [5].

The only change to theorem 1 is the new predictable compensator �(t; q)�(dt; dq)

of the marked point process. Instead of a single market price of risk for the

jump risk we now have a market price of risk for each subset e 2 E of the

marker space. The market price of risk of a default with loss q 2 e is thenR
e�(q; t)K(dq)=

R
eK(dq) per unit of probability.

Note that now we have a much larger class of potential martingale measures,

as for every (t; !) a function �(t; q) has to be chosen and not just the value of
the process �(t). Typically we will have incomplete markets in this situation
which poses entirely new problems for the hedging of contingent claims. See

Bj�ork, Kabanov and Runggaldier [5] [4] for a detailed analysis of trading
strategies, hedging and completeness in bond markets with marked point
processes.

As before, to save notation, we will assume that all dynamics are already
speci�ed with respect to the martingale measure.

6.2 Dynamics and Absence of Arbitrage

We start from the representation of the defaultable bond prices as (using the
notation and results of the preceding sections)

C(t; T ) = exp f�G(t; T )gQt:

The dynamics of C(t; T ) are then

dC(t; T )

C(t�; T )
= �dG(t; T ) + d < G;G > �dN 0

=

"
�b̂(t; T ) + rd(t) + 1

2

nX
i=1

a2i (t; T )

#
dt

+
nX
i=1

ai(t; T )dW
i(t)� dN 0(t)

=

"
�b̂(t; T ) + rd(t)� q(t)h(t) + 1

2

nX
i=1

a2i (t; T )

#
dt

26



+
nX
i=1

ai(t; T )dW
i(t)� dM 0(t);

where we used that G is continuous. Absence of arbitrage is here equivalent

to

r(t) = �b̂(t; T ) + rd(t)� q(t)h(t) + 1
2

nX
i=1

a2i (t; T ): (72)

To show that the results of the preceding sections remain valid we only need

to show that

h(t)q(t) = rd(t)� r(t): (73)

The argument goes exactly as before: The Doleans-Dade exponential of the

martingale M 0(t) = N 0(t)�
R t
0 q(s)h(s) ds is

expf�
Z t

0
q(s)h(s)dsg

Y
Ti�t

(1� qi); (74)

while the discounted value of the risky bank account is the Q-martingale

�c(t) :=
c(t)

b(t)
= expf

Z t

0
rd(s)� r(s) dsg

Y
Ti�t

(1� qi): (75)

This is the Doleans-Dade exponential of

M̂(t) := �N 0(t) +
Z t

0
rd(s)� r(s) ds: (76)

Because qi < 1 a.s. we have that �c(t) > 0 a.s. and therefore M̂ is unique and

well-de�ned as M̂(t) =
R t
0

d�c(s)
�c(s�)

. Again, we see that

M 0(t) + M̂(t) =
Z t

0
rd(s)� r(s)� q(s)h(s) ds � 0 (77)

(being a predictable martingale with initial value zero) must be constant and
equal to zero. Therefore

h(t)q(t) = rd(t)� r(t) > 0: (78)

Equation (78) is the equivalent of equation (38), the key relationship which

allowed for the derivation of conditions for the absence of arbitrage. These
conditions are exactly the same as for zero recovery, the proof is the same as

for theorem 2.

Theorem 5 The following are equivalent:

1. The measure under which the dynamics are speci�ed is a martingale mea-

sure.

2. (i) The short interest rate spread is the intensity of the default process

multiplied with the locally expected loss quota. It is positive (for q(t) > 0).

q(t)h(t) = rd(t)� r(t) > 0: (79)
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(ii) The drift coe�cients of the defaultable forward rates satisfy for all t � T

equations (41) and (42).

(iii) The drift coe�cients of the risk-free forward rates satisfy for all t � T

equation (43).

3. (i) rd(t)� r(t) = h(t)q(t) > 0.

(ii) The dynamics of the risky bond prices are given by

dC(t; T )

C(t�; T )
= rd(t)dt+

nX
i=1

ai(t; T )dW
i(t)� dN 0(t) (80)

or, solving the s.d.e.

C(t; T ) = C(0; T )Q(t) exp

(Z t

0
rd(s) ds� 1

2

nX
i=1

Z t

0
a2i (s; T ) ds

+
nX
i=1

Z t

0
ai(s; T ) dW

i(s)

)
: (81)

(iii) The dynamics of the risk-free bonds satisfy (46).

All no-arbitrage restrictions on the dynamics of the interest rates are exactly

identical to the restrictions in theorem 2, although theorem 2 only concerned
the situation with zero recovery. Thus theorem 5 allows us to directly transfer

all results of sections 6 and 7 on the modelling of the spreads. The drift
restrictions of the corollaries 1 and 2 and of theorem 3 are also valid in the
present setup.

For the modelling of arbitrage-free dynamics of the risky interest rates g(t; T )
one need not be concerned with the speci�cation of the recovery rates, it is
su�cient to just model the interest rates subject to the positive spread re-

stricition (40) or (79) and the drift restrictions (42) and (43). Again we
see that the hard task of modelling an unobservable quantity (like the dis-

tribution of the loss quota q) can be replaced with a suitable model of the
defaultable forward rates which are much more easily observed.

If one allows q to take on negative values, negative spot spreads rd � r are

possible. A negative q means that the risky bond gains in value upon default.
Of course such an event is very rare but in some cases there might be an early
(and full) repayment of the debt which will result in q < 0, for instance if

the proceeds of a liquidation are greater than the outstanding debt or if the

default event is caused by a strategic default or a takeover. The advantage
of negative q is to allow a wider class of models to be used for h, e.g. the

Gaussian models of Vasicek [40] and Ho and Lee [22].
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6.3 Seniority

Bonds of di�erent senoirity have di�erent payo�s in default, the ones with

higher seniority have a higher payo� than the ones with lower seniority. Strict

seniority { junior debt has a positive payo� if and only if senior debt has full

payo� { is rather rare in practice which is due to the various legal bankruptcy

procedures, but in general senior debt has a higher payo� in default than

junior debt.

With a loss quota of junior debt qj that is higher than the loss of senior debt

qs, the risky instantaneous short rate of junior debt is greater than the short

rate for senior debt: rdj > rds.

For modelling junior and senior debt another stage is added to the usual

risky debt modelling. First model the risk-free term-structure. Then model

the spread to the senior bonds. Then (this is the new step) model the spread

between junior and senior debt using the senior debt as `risk-free' debt in the

drift restrictions. The modelling restricitions we derived above still hold in
this setup.

7 Instantaneous Short Rate Modelling

Going back to the representation (81) of the dynamics of the risky bond
prices

C(t; T ) = C(0; T ) �
Y
�i�t

(1� qi) exp

�Z t

0
rd(s) ds

�

� exp

(
�1

2

nX
i=1

Z t

0
a2i (s; T ) ds+

nX
i=1

Z t

0
ai(s; T ) dW

i(s)

)
;

one can evaluate this expression at t = T and use the �nal conditionC(T; T ) =Q
�i�T

(1� qi) to reach

Y
�i�T

(1� qi) exp

(
�
Z T

0
rd(s) ds

)

= C(0; T ) exp

(
�1

2

nX
i=1

Z T

0
a2i (s; T ) ds+

nX
i=1

Z T

0
ai(s; T ) dW

i(s)

)

�
Y
�i�T

(1� qi): (82)

If q < 1 a.s. we may divide both sides by
Q

�i�T
(1�qi) and take expectations

of both sides to reach
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Corollary 3 If there is no total loss on the defaultable bond (i.e. qi < 1),

we have the following representation of the price of defaultable zero coupon

bonds:

C(0; T ) = E
h
exp

n
�
R T
0 rd(s) ds

o
j F0

i
: (83)

(Here we used that the second exponential is a stochastic exponential of the

martingale
P

i

R
ai(s; T )dW

i(s). Thus it is again a martingale with initial

value 1.)

In the �rst sections with zero recovery we weren't able to derive this rep-

resentation as rd was not de�ned for times after the default. Obviosly the

above representation of the prices of risky bonds is the exact analogue to the

representation of the prices of risk-free bonds as discounted expected value

of the �nal payo� 1. This representation is the starting point of all models

of the term-structure of interest rates that are based on a model of the short

rate12 So far a result of this type has only been proved by Du�e, Schroder

and Skiadas [15] (but in their valuation formula an additional jump term

occurs), and by Lando [27] for the special case of a default that is triggered
by the �rst jump of a Cox process. Here the Cox process assumption is not

needed, the default process can have an intensity that conditions on previous
defaults.

Alternatively to the modeling of defaultable interest rates in the HJM- frame-

work of assumption 1 one can model the short rates directly. With any
arbitrage-free short rate model for the risk-free short rate r and a positive
short rate model for the spread h one can specify an arbitrage-free model

framework. Because the model for the defaultable short rate will necessary
be at least a two-factor model, the calibration of this model might become
di�cult and the HJM approach may be preferrable. On the other hand the

short rate models need not worry about possibly negative forward spreads.

8 Jumps in the Defaultable Rates

In the presence of multiple defaults (with ensuing restructuration) it is more

realistic to allow the risky rates to change discontinuously at times of default,
the risky term structure must be allowed to change its shape at these events.

These jumps in the defaultable rates are not to be confused with the fractional

loss at default. There are two distinct e�ects at a time of default which both

cause a discrete change in the value process of the holders of risky bonds:

First there is the direct loss caused by the rescue plan and the reduction

12Models of the short rate are by (among others): Vasicek [40], Cox, Ingersoll and Ross

[11], Ho and Lee [22], Black, Derman, Toy [7], Hull and White [23] and Sandmann and

Sondermann [38].
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Proposition 3 Given the dynamics (84) of g(t; T )

(i) the dynamics of the defaultable short rate rd(t) are

drd(t) = [
@

@T
g(t; t) + �(t; t)]dt+

nX
i=1

�i(t; t)dW
i(t) (87)

+
Z
E
�(q; t; t)�(dq; dt): (88)

(ii) the dynamics of Ĉ(t; T ) are

m(t; T ) = rd(t)�
Z T

t
�(s; T ) ds+ 1

2

nX
i=1

(
Z T

t
�i(s; T ) ds)

2 (89)

ai(t; T ) = �
Z T

t
�i(s; T ) ds (90)

�(q; t; T ) = exp

(
�
Z T

t
�(x; s; T ) ds

)
� 1: (91)

(iii) The dynamics of the defaultable bond prices are given by assumption 6 (iii)

with the speci�cation of (ii) above.

Proof: see BKR [5] for (i) and (ii), point (iii) follows directly.

8.2 Absence of Arbitrage

The change of measure to the martingale measure is done according to the-
orem 4. The analysis leading to the key relation (79)

h(t)q(t) = rd(t)� r(t) > 0

in section 6.2 is still valid, because the only defaultable security needed there
is the defaultable bank account c(t) which has no jump component in its

development except the direct losses of qi at default.

As usual we need for absence of arbitrage

r(t) dt = E
h

dC(t;T )
C(t�;T )

i

= rd(t)dt� b̂(t; T ) dt+ 1
2

nX
i=1

a2i (t; T ) dt

+
Z
E
�(q; t; T )(1� q)K(dq)h(t) dt� q(t)h(t)dt:

Substituting (79) and (91) yields:

Proposition 4 Under the martingale measure

(i) The short rate spread is given by

rd(t)� r(t) = h(t)q(t): (92)
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(ii) The drift of the defaultable forward rates is restricted by

b̂(t; T ) = 1
2

nX
i=1

a2i (t; T )+
Z
E

 
exp

(
�
Z T

t
�(q; t; v) dv

)
� 1

!
(1� q)K(dq)h(t);

(93)

or, di�erentiated,

�(t; T ) =
nX
i=1

�i(t; T )
Z T

t
�i(t; v) dv

�
Z
E
�(q; t; T ) exp

(
�
Z T

t
�(q; t; v) dv

)
(1� q)K(dq)h(t): (94)

(iii) The dynamics of the risky bond prices under the martingale measure are

dC(t; T )

C(t�; T )
= rd(t; T ) dt+

nX
i=1

ai(t; T ) dW
i(t)

+
Z
E
(1� q)�(q; t; T ) (�(dq; dt)�K(dq) h(t) dt)

�dN 0(t) (95)

where �(q; t; T ) is de�ned as in (91).

Obviously the drift restriction (93) cannot be handled as easily as the other

restrictions in theorems 2 and 5 before because of the integral over the jumps
of the forward rates. As the defaults now have a jump-in
uence on the de-
faultable forward rates, the parameters of the default process do not disap-

pear any more.

BKR [5] reach a quite similar restriction to (94) for the modelling of default-
free interest rates in the presence of marked point processes. Their restriction

is

�0(t; T ) =
nX
i=1

�0i(t; T )
Z T

t
�0i(t; v) dv

�
Z
E
�0(q; t; T ) exp

(
�
Z T

t
�0(q; t; v) dv

)
K(dq)h(t);

and applies to the default-free interest rates. In this setup we assumed that
the default-free interest rates do not jump (i.e. �0 = 0) which reduces the

restriction to the usual HJM-restriction (43).

The s.d.e. of the defaultable bond prices is of the usual type: There is a drift

component of rd and the default in
uence �dN 0(t). The other parts of the
dynamics of the defaultable bond prices are local martingales.
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9 Conclusion

In this paper we presented a new approach to the modelling of the price

processes of defaultable bonds that was inspired by the Heath-Jarrow-Morton

[21] model of the term structure of interest rates. This model avoids a precise

speci�cation of the mechanism that leads to default but rather gives necessary

and su�cient conditions on the term structure of defaultable interest rates

to ensure absence of arbitrage.

These restrictions show a striking similarity to the restrictions that are al-

ready well known from default-free term structure models. Speci�cally, the

defaultable interest rates have to satisfy a drift restriction that is analogous

to the HJM drift restriction, and a positive short spread restriction. Given

these restrictions the model is arbitrage-free. In the implementation of the

model one can therefore use the extensive machinery of risk-free interest rate

modelling.

In the default mechanism the model presented here is the �rst to include
multiple defaults and reduction of face value of the debt in default, it also

recognises the magnitude risk in default.

As an alternative to the HJM-modelling approach it is shown that su�cient
for the absence of arbitrage in a short rate model is a positive spread between

the defaultable and the default-free short rate. Furthermore it is discussed
how a defaultable bond model can be added to an existing model of risk-free

bonds while keeping the combined model arbitrage-free.

There are several directions in which this approach can be extended. The
inclusion of predictable times of default is an issue, as are econometric ques-

tions of the implementation. The question of negative forward spreads is still
unresolved and a simple procedure for adding a spread model to an existing
model of the default-free term structure is needed.
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