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Abstract

Accurate prediction of extreme events are of primary importance in many financial ap-
plications. The properties of historical simulation and RiskMetrics techniques for com-
puting Value-at-Risk (VaR) are compared with a method which involves modelling the
tails of financial returns explicitly with a tail estimator. The methods are compared us-
ing a sample of U. S. stock returns. For predictions of low probability worst outcomes,
RiskMetrics type analysis underpredicts while historical simulation overpredicts. How-
ever, the estimates obtained from applying the tail estimator are more accurate in the
VaR prediction. This implies that capital requirements can be lower by doing VaR with
the tail estimator.
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1. INTRODUCTION

1 Introduction

A major concern for regulators and owners of financial institutions is catastrophic mar-
ket risk and the adequacy of capital to meet such risk. Well publicized losses incurred
by several institutions such as Orange County, Proctor and Gamble, and NatWest,
through inappropriate derivatives pricing and management, as well as fraudulent cases
such as Barings Bank, and Sumitomo, have brought risk management and regulation
of financial institutions to the forefront of policy making and public discussion.

A primary tool for financial risk assessment is the Value-at-Risk (VaR) methodology
where VaR is defined as an amount lost on a portfolio with a given small probability
over a fixed number of days. The major challenge in implementing VaR analysis is the
specification of the probability distribution of extreme returns used in the calculation
of the VaR estimate.

By the very nature of the problem, VaR estimation is highly dependent on good predic-
tions of uncommon events, or catastrophic risk. The VaR estimate is calculated from
the lowest values of the distribution for returns on a portfolio, and in most cases, the
lowest portfolio returns are obtained from the most extreme returns on individual as-
sets. The main exception would be certain types of derivatives. Therefore, the primary
component in VaR estimates is the prediction of extreme outcomes for the individual
assets. As a result, any statistical method used for VaR estimation has to have the pre-
diction of tail events as its primary goal. Statistical techniques and rules of thumb that
have been proven useful in analysis and prediction of day-to-day risk, are not neces-
sarily appropriate for VaR analysis. This is discussed in a VaR context by e.g. Duffie
and Pan (1997). Jorion (1997) surveys VaR.

The development of techniques to evaluate and forecast the risk of uncommon events
has moved at a rapid rate, and specialized methods for VaR prediction are now avail-
able. These methods fall into two main classes: parametric prediction of conditional
volatilities, of which the J. P. Morgan RiskMetrics package is the best known, and
non-parametric prediction of unconditional volatilities such as techniques based on
historical simulation, also known as sampling without replacement from the empirical
distribution.

In this paper we propose a new semi-parametric method for VaR estimation which
is a mixture of these two approaches, where we combine non-parametric historical
simulation with parametric estimation of the tails. These methods build upon recent
research in extreme value theory, which enable us to accurately estimate the tails of a
distribution. Danielsson and de Vries (12 proposed an efficient, semi-parametric
method for estimating tails of financial returns, and this method is expanded here to the
efficient estimation of portfolio tails. This method is based on using a number of the
highest/lowest realizations of the data to predict the thickness of the tails. Hill (1975)
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proposed a moments based estimator of the tail thickness, or the tail index, conditional
on the highest realizations. The primary problem in implementing Hill's procedure is
the determination of the number of tail events to use in the estimation. Hall (1990)
proposed under very restrictive assumptions a bootstrap procedure for estimation of
the tail index. His method is too restrictive to be of use for financial data. Recently
Danielsson and de Vries (1987and Danielsson, de Haan, Peng and de Vries (1997)
have proposed a general method for estimation of the tail index which solves the prob-
lem of the determination of the number of extremes that have to be used. Furthermore,
they develop an estimator of the tail distribution, which was applied by Danielsson and
de Vries (199D) to very high frequency return data. We extend and apply this method
here to the problem of VaR prediction, where we propose a combination of historical
simulation and fitted tail distribution.

In finance, it is natural to assume normality in daily conditional and unconditional
volatility predictions, in applications such as derivatives pricing. As the volatility smile
effect demonstrates, however, for infrequent events the normal model is less useful.
Since returns are known to be fat tailed, the conditional normality assumption leads to
a large underprediction of tail events. The popular RiskMetrics technique, in essence
an IGARCH model, is based on conditional normal analysis with frequent parameter
updates. The price one has to pay for the normality assumption and frequent parameter
updating is that such model is not well suited for analyzing large risks. The normal-
ity assumption implies that one underestimates the chances of heavy losses, and the
frequent updating implies that one cannot go deeply into the tails. For this reason,
RiskMetrics focuses on the 5% quantile, or the probability of losses that occur once
every 20 days. But these losses are so small that they can be handled by any financial
institution. We show below that RiskMetrics is ill suited for lower probability losses.

Furthermore, conditional parametric methods typically depend on conditional normal-
ity for the derivation of multi period VaR estimates. Relaxation of the normality as-
sumption leads to difficulties due to the ‘square-root-of-time’ method. The ‘square-
root-of-time’ method, i.e. the practice of obtaining multi-period volatility predictions
by multiplying the one day prediction by the square root of the length of the time
horizon, is an overly strong assumption. If there are volatility clusters, as in the case
of the generalized autoregressive conditional heteroskedastic (GARCH) process pro-
posed by Bollerslev (1986), the ‘square-root-of-time’ does not hold except in the long
run. Moreover, as Christoffersen and Diebold (1997) argue, conditional volatility pre-
dictions are not very useful for multi period predictions.

By definition, extreme returns occur infrequently, and appear not to be related to a par-
ticular level of volatility or exhibit dependence or clustering. Therefore, an uncondi-
tional approach is better suited for VaR estimation than conditional volatility forecasts,
because it permits one to use all observations over a long span of time. One can either
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use the historical returns as a sampling distribution for future returns as in Historical
simulation (HS), or use a form of kernel estimation to smooth the sampling distribu-
tion as in Butler and Schachter (1996). The advantages of historical simulation have
been well documented by e.g. Jackson, Maude and Perrudin (1997), Mahoney (1996),
and Hendricks (1996). A disadvantage is that the low frequency and inaccuracy of tail
returns leads to predictions which exhibit a very high variance, i.e. the variance of the
highest order statistics is very high, and in some cases even infinite. As a result, the
highest realizations lead to a poor estimates of the tails. In addition, it is not possible to
do out-of-sample prediction with HS, i.e. predict volatilities that occur less frequently
than the HS sample period.

We evaluate various methods for VaR analysis, and compare the traditional methods
with our tail distribution estimator. For that purpose we use a selection of U. S. stocks
to construct a number of random portfolios over several time periods, and compare the
results of one step ahead VaR predictions. In addition, we discuss the practical imple-
mentations of these methods for real portfolio management, with special emphasis on
the ease of implementation and computational issues.

2  Properties of Extreme Returns

Value-at-Risk analysis is highly dependent on extreme returns or spikes. The empirical
properties of the spikes, are not the same as the properties of the entire return process.
A major result from empirical research of returns, is the almost zero autocorrelation
and significant positive serial correlation in volatility of returns. As a result volatilities
can be relatively well predicted with a parametric model such as GARCH. If, however,
one focuses only on spikes, the dependency seems to be reduced.

Table 1 lists the number of trading days between the daily extremes for the SP-500
along with the rank of the corresponding observation. Figure 1 shows the 1% highest
and lowest returns on the daily SP-500 index in the 1990’s along with the 7 stocks
used below in testing the VaR estimation techniques. No clear pattern emerges for
these return series. In some cases we see clustering, but typically the extreme events
are randomly scattered. Furthermore, there does not appear to be strong correlation in
the tail events. There were two days when 5 assets had tail events, no days with 4 tail
events, 5 days with 3 events, 21 days with two events, 185 days with one event, and
1558 days with no tail events. For the SP-500, two of the upper tail observations are
on adjacent days but none of the lower tailed observations, and in most cases there
are a number of days between the extreme observations. There are indications of some
clustering of the tail events over time. However, the measurement of a spike on a given
day, is not indicative of a high probability of a spike the following few days. The mod-
elling of the dependence structure of spikes would therefore be different than in e.g.

4
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Figure 1: 1% largest and smallest daily returns on stocks in portfolio.

8% ‘ ‘ ‘ ‘ ‘ ‘ 10% ‘ ;

il %) |
b | | S I 1] ]
4% T T 7] el T T

8% 97 92 93 94 95 96  10% 97 93 93 91 95 96

(a) J. P. Morgan (b) 3mM
10% ‘ ‘ ‘ ‘ ‘ ‘ 15% ‘ ‘
ol \*7%\\\\\ |
8 e ot R \HH 1] 1]
506 | { 1] T g0l Tl

-10% 9199 93 94 95 96  1°%° 97 92 93 94 95 96

(c) McDonalds (d) Intel
15% ‘ ‘ ‘ ‘ ‘ ‘ 20%
7% ‘ ||| 1%
0% ‘ | ‘ | ‘ | O%\ H‘HH“\ \‘\“ H‘\ H\‘ \H
-7% ¢t ’ ‘ ‘ 1 -10% | ‘ '

5% g1 92 93 94 95 96 29% 91 92 93 94 95 96

(e) IBM (f) Xerox
6% A%
%) | | 20 ||| ||
o) || 2l
LT I ]
6% 91 g2 93 94 95 96 4% 97 92 93 94 95 96
(9) Exxon (h) SP-500



2. PROPERTIES OF EXTREME RETURNS

Table 1: Daily SP 1990-96. Time Between Extreme Returns.

Upper Talil Lower Tail
date days rank date days rank

90-08-27 74 2 90-01-23 6 6
90-10-01 24 4  90-08-07 136 3
90-10-18 13 8 90-08-17 8 12
90-10-19 1 10 90-08-22 3 15
90-11-09 15 14 90-08-24 2 4
91-01-17 46 1 90-09-25 21 14
91-02-06 14 16 90-10-10 11 5
91-02-11 3 5 91-05-13 148 17
91-03-05 15 13 91-08-20 69 10
91-04-02 19 9 91-11-18 63 1
91-08-21 99 3 93-02-17 315 9
91-12-23 86 6 93-04-05 33 16
91-12-30 4 11  94-02-07 214 11
93-03-08 300 17 96-03-11 527 2
94-04-05 273 12 96-07-08 82 13
96-12-19 686 15 96-07-16 6 7

GARCH models. If the threshold level, indicating the beginning of the tails, rises as
the sample size increases, the spikes eventually behave like a Poisson process. In other
words, for certain dependent processes, like ARCH, volatility clustering vanishes at
the level of the extreme realizations. This is demonstrated by Haan, Resnick, Rootzen,
and de Vries (1989). Therefore, for computing the VaR, which is necessarily concerned
with the most extreme returns, the ARCH effect is of little importance. Hence it suf-
fices to assume that the highest and lowest realizations are i.i.d. This is corroborated by
the evidence from Christoffersen and Diebold (1997) that when the forecast horizon
is several days, conditional prediction performs no better than using the unconditional
distribution as predictive distribution. The reason is that most current history contains
little information on the likelihood that a spike will occur (cf. the exponential weight-

ing of recent history by RiskMetrics)

Another important issue is pointed out by Dimson and Marsh (1996) who analyze
spikes in 20 years of the British FTSE-A All Share Index, where they define spikes
as fluctuations of 5% or more. They find 6 daily spikes, however they also search
for non-overlapping multi day spikes, and find 4 2-day spikes, 3 3-day, 3 4-day, 8
weekly, and up to 7 biweekly. Apparently, the number of spikes is insensitive to the
time span over which the returns are defined. This is an example of the fractal property
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in a sample of returns. Danielsson and de Vries (1987discuss the following esti-
mator for the tail probabilities, given an estimated value: @ihd the threshold:

. M (X
F(x)=p=—< —

) o> Xarm @)
T

whereT" is the number of observations, apdhe probability. This applies equally to
the lower tails. By taking the inverse &f () we obtain an extreme quantile estimator:

&= P (2) = Xarot (%)E 3)

Note thatF’ (x) is always conditional on a given sample. In order to use the distribution
F (x) we need to specify the parametersand the random variable®¥ and X,
before we can obtain a quantile estimate for a probability. The empirical and estimated
distribution functions of the SP-500 index are presented in Figure 3. Danielsson and
de Vries (1993 propose methods for estimatidg. Some practical issues of the tail
estimation are discussed below.

2.2 Monte Carlo Evidence

In order to evaluate the performance of the estimated tail distribution in (2), Danielsson
and de Vries (1993 do extensive Monte Carlo experiments to evaluate the properties
of the estimator. In Table 2 a small subset of the results is presented. We generate
repeated samples of size 2000 from a Student-t with 4 degrees of freedom and compare
the average maxima, denoted here as the sample maxima by historical simulation (HS),
from the samples with the average predicted valué%y) , denoted as tail estimator

(TE). The specific distribution was chosen since its tail behavior is similar to typical
return series. The Monte Carlo results are reported in Table 2.

Out-of-sample predictions were obtained by using the estimated tail distribution to
predict the value of the maxima of a sample of size 4000 and 6000, the true values are
reported as well. We can see that the tail estimator performs quite well in predicting
the maxima while the sample averages yield much lower quality results. Note that the
variance of HS approach is much higher than the variance by TE method. Moreover,
HS is necessarily silent on the out of sample sizes 4000 to 6000, where TE provides
an accurate estimate. Obviously, if one used the normal to predict the maximas, the
result would be grossly inaccurate. See also Figures 3 and 4 in Section 4 below for a
graphical illustration of this claim.
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Table 2: Predicted and Expected Maxima of Student-t(4)

In Sample Prediction, 2000 observations Theoretical  Average Values
Sample Maxima by HS 8.610 10.67 (4.45) [4.90]
Forecast Maximas by TE 8.610  8.90 (1.64) [1.66]

Out of Sample Prediction

Forecast Maximas by TE for Sample of Size 4000 10.306 10.92 (2.43) [2.50]
Forecast Maximas by TE for Sample of Size 6000 11.438 12.32 (3.02) [3.14]

Delta estimator, sample size = 2000, simulations 1000, bootstrap iterations = 2000. Standard errors in
parenthesis, RMSE in brackets. HS denotes estimation by historical simulation and TE estimation by

the tail estimator.

3  Value-at-Risk and Common Methods

The formal definition of Value-at-Risk (VaR) is easily given implicitly:
Pr[APAt < VaR] = «, 4)

whereAPAt is a change in the market value of portfolfoover time horizomA¢ with
probability o. Equation (4) states that a loss equal to, or larger than the specific VaR
occurs with probabilityv. Or conversely, for a given probability, losses, equal to or
larger than the VaR, happen. In this latter interpretation the VaR is written as a function
of the probabilitya. Let F' (AP At) be the probability distribution oA PA¢, then

F~'(a)=VaR; (5)

whereF'~! () denotes the inverse @f () . The major problem in implementing VaR
analysis is the specification of the probability distributiBri-) which is used in the
calculation in (4).

Two methods are commonly used to evaluate VaR:

1. Historical Simulation (Non Parametric, Unconditional Volatility)
2. Parametric Methods (Fully Parametric, Conditional Volatility)

Both these methods are discussed in this section. The tail estimator (TE) falls in be-
tween these two methodologies.

3.1 Historical Simulation

A popular method for VaR assessment is historical simulation (HS). Instead of making
distributional assumptions about returns, past returns are used to predict future returns.
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The advantage of historical simulation is that few assumptions are required, and the
method is easy to implement. The primary assumption is that the distribution of the
returns in the portfolio is constant over the sample period. Historical simulation has
been shown to compare well with other methods, by e.g. Mahoney (1996), however
past extreme returns can be a poor predictor of extreme events, and as a result historical
simulation should be used with care. The reason for this is easy to see. By its very
nature HS has nothing to say about the probability outcomes which are worse than the
sample minimum return. But HS also does not give very accurate probability estimates
for the in sample extreme as demonstrated below. Furthermore, the choice of sample
size can have a large impact on the value predicted by historical simulation. In addition
the very simplicity of HS, makes it difficult to conduct sensitivity experiments, where
VaR is evaluated under a number of scenarios.

A major problem with HS is the discreteness of extreme returns. In the interior, the
empirical sampling distribution is very dense, with adjacent observations very close
to each other. As a result the sampling distribution is very smooth in the interior. The
closer one gets to the extremes, the longer the interval between adjacent returns be-
comes. This can be seen in Table 3 where the 7 largest and smallest returns on the
stocks in the sample portfolio and SP-500 Index for 10 years are listed.

These extreme observations are typically the most important for VaR analysis, however
since these values are clearly discrete, the VaR will also be discrete, and hence be either
underpredicted or overpredicted. We see that this effect is somewhat more pronounced
for the individual assets, than for the market portfolio SP-500, due to diversification.
Furthermore, the variance of the extreme order statistics is very high, and in some cases
infinite. As a result, VaR estimates that are dependent on the tails, will be measured
discretely, with a high variance, making HS in many cases a poor predictor of the VaR.
Results from a small Monte Carlo (MC) experiment demonstrating this are presented
in Section 4.

In Figure (2) we plot the 99th percentile of the S&P for the past 500 and 1000 days,
i.e. we plot the 5th and 10th largest and smallest observations for the past 500 and
1000 days respectively. It is clear from the figure that the window length in accessing
the probability of spikes is very important, and this creates a serious problem. Note
how rapidly the percentile changes when new data enter and exit the window. In VaR
prediction with HS, the inclusion or exclusion of one or two days at the beginning of
the sample can cause large swings in the VaR estimate, while no guidelines exist for
assessing which estimate is the better.

Butler and Schachter (1996) propose a variation of HS by use of a kernel smoother
to estimate the distribution of returns, which is in essence an estimation of the distri-

bution of returns. This type of methodology has both advantages and drawbacks. The
advantage is that a properly constructed kernel distribution provides a smooth sampling

10
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Table 3: Extreme daily returns 1987 - 1996
JPM 25% 12% 8.8% 6.7% 6.5% 6.4% 6.3%
—41% —-6.7% —-6.3% —-6.1% —-6.0% —-58% —-5.7%

MMM 11% 7.1% 5.9% 5.7% 5.7% 5.0% 4.8%
-30% —-10% —-10% -9.0% —-6.2% —-6.1% —5.6%

MCD 10% 7.9% 6.3% 6.2% 5.4% 5.0% 5.0%
—18% —-10% —-8.7% —-85% —-83% —-73% —-6.9%

INTC 24% 11% 9.9% 9.0% 8.9% 8.6% 8.6%
—21% -21% —-16% —-15% —-14% —-12% —12%

IBM 12% 11% 11% 10% 9.4% 7.4% 6.5%
-26% —-11% -11% -93% —-79% -75% -71%

XRX 12% 8.0% 7.8% 7.5% 7.1% 6.8% 6.3%
-22% —-16% —-11% -84% -75% —-6.9% —6.2%

XON 17% 10% 6.0% 5.8% 5.8% 5.6% 5.4%
—27% -87% —-7.9% —-6.6% —-63% —-57% —5.4%

SP-500 8.7% 5.1% 4.8% 3.7% 3.5% 3.4% 3.3%
-23% —-8.6% —-7.0% -6.3% —-53% —-45% —-4.3%

distribution. Hence sensitivity experiments can be readily constructed, and valuable in-
sight can be gained about the return process. Furthermore such distribution may not be
as sensitive to the sample length as HS is. Note that these advantages are dependent on
a properly constructed kernel distribution. In kernel estimation, the specific choice of
a kernel and window length is extremely important. Almost all kernels are estimated
with the entire data set, with interior observations dominating the kernel estimation.
While even the most careful kernel estimation will provide good estimates for the inte-
rior, there is no reason to believe that the kernel will describe the tails adequately. Talil
bumpiness is a common problem in kernel estimation, but for returns, the perceived
tail bumpiness is simply an artifact of the specific methods used, and returns are in
general unimodal. Note especially that financial data are thick tailed with high excess
kurtosis. Therefore, a Gaussian kernel, which assumes that the estimated distribution
has the same shape as the normal, is unsuitable for financial data.

11
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Figure 2: 1% largest and smallest returns on SP-500 over 500 and 1000 Day Windows
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3.2 Parametric Forecasting

In parametric forecasting, the predicted future volatility of an asset is an explicit func-
tion of past returns, and the estimated model parameters. The most common models
are the unconditional normal with frequently updated variance estimate, or explicit
models for conditional heteroscedasticity like the GARCH model, with normal inno-
vations. The popular RiskMetrics approach which uses the frequently updated normal
model is asymptotically equivalent to an IGARCH model. This implies a counterfac-
tual hypothesis of an unconditional infinite variance. However since in most cases only
short horizon conditional forecasts are made, this does not affect the results signifi-
cantly. GARCH models with normal innovations have proved valuable in forecasting
common volatilities, however they perform poorly in predicting extreme observations,
or spikes, in returns. The normality assumption is primarily a matter of convenience,
and a GARCH model with non-normal innovations can easily be estimated, with the
most common specification being Student-t. The advantage of Student-t innovations is
that they are thick tailed and hence will in general provide better predictive densities;
note that the Student-t contains Gaussian errors as a special case. The disadvantages
of non-normal innovations are several, e.g. multivariate versions of such models are
typically hard to estimate and recursive forecasts of future volatilities are difficult for
most distributions.

There are several reasons for the failure of RiskMetrics to adequately capture the tail

12
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probabilities. For example the normal likelihood function weights values close to zero
higher than large values so the contribution of the large values to the likelihood func-
tion is relatively small. Since most observations are in the interior, they dominate the
estimation, especially since tail events are maybe 1-2% of the observations. While a
GARCH model with normal innovations preforms poorly, it does not imply that para-
metric forecasting will in general provide biased VaR estimates, however such a model
would have to be constructed with the tails as the primary focus. See Jackson, Maude
and Perrudin (1997) for discussion on this issue.

There is yet another problem with the way RiskMetrics implements the GARCH method-
ology. Instead of going by the GARCH scheme for predicting future volatilities, Risk-
Metrics ignores GARCH and simply uses the square-root-of-time method which is
only appropriate under an i.i.d. normal assumption. If the predicted next day volatility
is 67,1, then the predicted” day ahead volatility i€'67,, in RiskMetrics analysis.

This implies that for the next’ days, returns are essentially assumed to be normally
distributed with varianc& 7. ;. The underlying assumption is that returns are i.i.d., in
which case there would be no reason to estimate a conditional volatility model. Note
that this problem can be bypassed by usidgy data to obtaihday ahead predictions

as suggested in the RiskMetrics manual.

in Table 4 we show the six highest and lowest returns on the daily SP-500 index from
19900 1996, or 1771 observations. We used the normal and Student-t GARCH models
to predict the conditional volatility, and show in the table the probability of an outcome
equal to or more extreme than the observed return, conditional on the predicted volatil-
ity for each observation. In addition we show the probability as predicted by the tail
estimator, and values of the empirical distribution function. We see from the table that
the normal GARCH model performs very poorly in predicting tail events, while the
Student-t GARCH model gives somewhat better results. Both methods are plagued by
high variability and inaccurate probability estimates, while the tail estimator method
provides much better estimates.

4  Extreme Value Theory and VaR

Accurate prediction of extreme realizations is of central importance to VaR analysis.
VaR estimates are calculated from the lower extreme of a portfolio forecast distribution
and therefore accurate estimation of the lower tail of portfolio returns is of primary

importance in any VaR application. Most available tools, such as GARCH, are however
designed to predict common volatilities, and therefore have poor tail properties. Even
historical simulation (HS) has less than desirable sampling properties out in the tails.
Therefore, a hybrid technique that combines sampling from the empirical distribution

13
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Table 4: Observed Extreme Returns daily SP-500, 1990-1996, and the Probability of
that Return as Predicted by the Normal and Student-t GARCH model, the Tail Estima-
tion Method, and the Empirical Distribution

Observed Probabilities
Return Normal Student-t Tail Estimator Empirical
—3.72%  0.0000 0.0002 0.0007 0.0006
—3.13%  0.0000 0.0010 0.0015 0.0011
—3.07%  0.0002 0.0021 0.0016 0.0017
—3.04% 0.0032 0.0071 0.0016 0.0023
—2.71%  0.0098 0.0146 0.0026 0.0028
—2.62%  0.0015 0.0073 0.0029 0.0034
3.66%  0.0000 0.0011 0.0004 0.0006
3.13%  0.0060 0.0096 0.0009 0.0011
2.89%  0.0002 0.0022 0.0013 0.0017
2.86%  0.0069 0.0117 0.0014 0.0023
2.53%  0.0059 0.0109 0.0025 0.0028
2.50%  0.0007 0.0038 0.0026 0.0034

for common observations with sampling from a fitted tail distribution has the potential
to perform better than either HS or fully parametric methods by themselves.

In Figure 3 the empirical distribution of the SP-500 index is plotted along with the
fitted tail estimator distributio” ().

We can see the problems with HS in the tails from Figure 3, e.g. discreteness of ob-
servations and the inability to provide out-of-sample low probability predictions. On
the other hand, the fitted distribution is a smooth function through the empirical dis-
tribution, both in and out of sample. For comparison, in figure 4 we plot the fitted
distribution along with the normal distribution with sample mean and variances, and
the distribution obtained from the GARCH process if one conditions on the maximum
observed past volatility. Since this conditional distribution is still normal, it under-
estimates the extreme tails. There are several advantages in using the estimated talil
distribution in VaR estimation. For example:

. In HS, the presence of an event like the '87 crash in the sample, will cause a
large VaR estimate. However, since a '87 magnitude crash only occurs rarely, say
once every 60 years, the presence of such an event in the sample will produce
downward biased VaR estimates. And hence imposes too conservative capital
provisions. By sampling from the tail distribution, the probability of a ‘87 type
event will be much smaller, leading to better VaR estimates.

. The empirical distribution is sampled discretely out in the tails, with the variance

14



4. EXTREME VALUE THEORY AND VAR

Figure 3: Disribution of SP-500 returns 1990-1996 with fitted upper tail.
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of the extreme order statistics being very high, and in some cases it is even
infinite. This implies that a VaR that relies on tail realizations will exhibit the
same properties, with the resulting estimates being highly variable. A Monte
Carlo example of this is given in Table 2.

. By sampling from the tail distribution, one can easily obtain the lowest return
that occurs with a given probability, say 0.1%, greatly facilitating sensitivity
experiments. This is typically not possible with HS by itself.

° The probability theory of tail observations, or extreme value theory, is known,
and the tail estimator therefore rests on firm statistical foundations. In contrast,
most traditional kernel estimators have bad properties in the tails.

4.1 Estimated Tails and Historical Simulation

We propose combining the HS for the interior with the fitted distribution from (1)
along the lines of Danielsson and de Vries (189Recall from above that the fitted
distribution, ¥ (x), is conditional on an order statisti,, ;. Therefore we can view

X 11 as the start of the tail, and u%%(x) as the sampling distribution for extreme
returns and the empirical distribution for interior returns. This can be implemented in
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4. EXTREME VALUE THEORY AND VAR

Figure 4: Disribution of SP-500 returns 1990-1996 and Highest GARCH Prediction.
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the following algorithm, whereX j uwrer, ; and X sover_; are the threshold indices for
the upper and lower tail respectively.

Drawe from a Uniform[0,T]
if ¢ < Xjpower_; then
drawz from F (z) for the lower tail
else
if e > XMupPer+1 then
drawz from F () for the uper tail
else
keepz
end if
end if

Note that this guarantees that the combined density integrates out to one. We can then
view = as one draw from the combined empirical and extreme tail distribution, and
denote the method as the combined tail estimator and historical simulation method.

4.2 Tails of Portfolios

In general, multiple assets are used to construct a portfolio. The distribution of the
estimated tails have the property that tail behavior is additive across assets, which is
an issue that we plan to investigate in later research. We can implement simulations
of portfolio returns with one of two methods, post fitting or pre-sampling. Results
from implementing both methods are presented in Table 5 and discussed below. Note
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4. EXTREME VALUE THEORY AND VAR

that while we would not necessarily expect correlation in the tails of stock returns,
tail correlation is often expected in exchange rates, e.g. in the EMS, large movements
happen often at the same time period for several countries.

4.2.1 Post Fitting

In post fitting, one proceeds along the lines of combined tail estimator and historical
simulation, initially applying the current portfolio weights to historical prices obtaining

a vector of simulated portfolio returns. Subsequently, the tails of the simulated returns
are fitted, and one can then read off any probability-VaR combination from the fitted
tails. This procedure has several advantages, no restrictive assumptions are needed,
the method can be applied to the largest of portfolios, and does not require significant
computation time. The primary disadvantage is that it carries with it the assumption
of constant correlation across returns, while in many cases one observes systematic
changes in correlation over time. However, in the results below this does not seem to
cause any significant problems.

4.2.2 Pre Sampling

In the pre sampling method, each asset is sampled independently from the hybrid tail
estimator and empirical distribution, and subsequently scaled to obtain properly corre-
lated returns. Then the value of the portfolio is calculated. This method is an approx-
imation to the post fitting method. The scaling is achieved as followsYl dte the
covariance matrix of the sample, ahgl; = 3, be the Cholesky transformation. The
number of assets in the portfolio 1§ and the number of simulations /§. We then

draw a KN matrix of simulated returns, denoted &s. Let the covariance matrix

of X,, be denoted by,,, with the Cholesky transformatiot/,, M, = €,,. ScaleX,,

to an identity covariance matrix tw[;lf(n, which can then be scaled to the sample
covariance by;. The matrix of simulated return¥ is then:

Xy = LM, X,

If w= {wi}fil is the vector of portfolio weights the simulated return veadtas:

K
Rn == ZwiXt,n,i n = ]_, N

i=1
By sorting the simulated portfolio returidg one can read off tail probabilities for the
VaR, in the same manner as in HS. By using this method, it is possible to use a different
covariance matrix for sub samples than for the whole sample. The reason why that may
be desirable is that if the covariance matrix of returns changes over time, it may yield
better results to use the covariance matrix of the last part of the sample instead of the
whole sample matrix.

17



5. ESTIMATION

5 Estimation

To test the performance of the tail estimator, we selected 6 US stocks randomly as
basis for portfolio analysis, in addition to the JP Morgan bank stock price. The stocks
in the tables are referred by their ticker tape symbols. The window length for HS
and the combined tail estimator and HS densities was set at 6 years or 1500 trading
days. Note this is much larger than the regulatory window length of one year. The
reason for this long period is that for accurate estimation of events that happen once
every 100 days, as in the 1% VaR, one year is not enough for accurate estimation.
In general, one should try to use as a large sample as is possible. Using a smaller
sample than 1500 trading days in the performance testing was not shown to improve
the results. Performance testing starts at Jan. 2. 1990, and the beginning of the sample
is then 1500 days before that on Jan. 27, 1984. It is a stylized fact in empirical studies
of financial returns that returns exhibit several common properties, regardless of the
underlying asset. This extends to the tails of returns. In Table 10 we present summary
statistics on a wide range of financial returns, and is clear that the tails all have similar
properties. Summary statistics for each stock return are listed in Table 6 for the entire
sample period, and in Table 7 for the 1990-1996 testing period. The corresponding
correlation matrixes are presented in Tables 8 and 9. The sample correlations drop in
the 1990’s. Given this change in correlation, we tested changing correlations in the
prefitting method, but it not have much impact for our data, and we do not report those
results here.

5.1 VaR Prediction
5.1.1 Interpretation of Results

The VaR return estimates for each method were compared with the realized returns
each day. The number of violations of the VaR estimates were counted, and the ratio
of violations to the length of the testing period was compared with the critical value.
This was done for at several critical values. Results are reported in Table 5.
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Table 5: Estimation Results: Average Number of Realized Portfolios that were Larger than VaR Predictions

Tail Percentage 5% 2.5% 1% 0.5% 0.25% 0.1% 0.05% 0.025% 0.01% 0.005%
Expected Number of
days with Exceedances50 25 10 5 2.5 1 0.5 0.25 0.1 0.05
Expected Frequency
in Days 20 40 100 200
in Years 1.5 3.8 7.7 15 38 7
RiskMetrics 52.45 30.26 16.28 10.65 7.29 4.85 3.55 2.72 2.00 1.58
(7.39)  (4.41) (3.13) (2.73) (2.27) (2.06) (1.81) (1.66) (1.45) (1.29)
Historical 43.24 20.50 7.66 3.69 1.90 0.95 0.75 0.75 0.75 0.75
Simulation (10.75) (7.22) (3.90) (2.39) (1.57) (1.03) (0.89) (0.89) (0.89) (0.89)
Tail Estimator 44.02 22.35 9.32 4.82 2.54 1.21 0.68 0.37 0.09 0.09
Presampling (11.62) (7.66) (4.26) (2.56) (1.71) (1.27) (0.98) (0.71)  (0.31) (0.31)
Tail Estimator 43.14 20.84 8.19 4.23 2.35 1.06 0.59 0.33 0.12 0.06
Post Fitting (11.10) (7.35) (3.86) (2.55) (1.72) (1.13) (0.82) (0.62) (0.35) (0.23)

Daily observations in testing = 1000 over period 930115 to 961230. Window size in HS and TE = 1500, initial staring date for window 870210. Random
portfolios = 500. Simulation size in presampling tail estimator = 10000. Tail estimatior version, Delta. Standard errors in parenthesidie€Rrelpleissed

in precentages with sum=100%
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5. ESTIMATION

The test sample length was 1000 trading days. For the 1% risk level, we expect a
single violation of the VaR every 100 days, or 10 times over the entire testing period.
This risk level is given in the fourth column from the left in Table 5. At this risk level
RiskMetrics yields too many violations, i.e. 16, on average, while the other methods
give too few violations, or from 7.6 to 9.3, on average. If the number of violations is
higher than the expected value, it indicates that the tails are underpredicted, thinner
or lower than expected, and conversely too few violations indicate that the estimated
tail is thicker than expected. In addition to the tail percentages, we show the implied
number of days, i.e. how frequently one would expect a tail event to occur. For large
number of days we transform the days into years, assuming 260 trading days per year.

5.1.2 Comparison of Methods

For the 5th percentile, RiskMetrics performs best. The reason for this is that at the 5%
level we are sufficiently inside the sample so that the conditional prediction performs
better than unconditional prediction. However, as we move to the tails, RiskMetrics
consistently underpredicts the tail, with ever larger biases as we move farther into the
tails. For example, at the 0.1% level RiskMetrics predicts 5 violations, while the ex-
pected number is one. Therefore RiskMetrics will underpredict the true number of
negative returns at a given risk level. Historical simulation has in an way the oppo-
site problem, in that it consistently overpredicts the tails. Note that for HS we can not
obtain estimates for lower probabilities than one over the sample size, or in our case
probabilities lower than once every 1500 days. Hence the lowest prediction, 0.75, is re-
peated in the table. Obviously for lower sample sizes HS is not able to predict the VaR
for even relatively high probabilities. Both tail estimator (TE) estimators have good
performance, especially out in the tails. The presampling version of the TE estimator
can not provide estimates for the lowest probability. The simulation size was 10,000
and this limits the lowest probability at 1/10,000. The post fitting version has no such
problems. It is interesting to note that the TE estimators do a very good job at tracking
the expected value of exceedances. Even at the lowest probability, the expected value
is 0.05 and the TE methods predicts 0.06.

5.2 Implication for Capital Requirements

A major reason for the implementation of VaR methods is the determination of Capital
Requirements (CR). Financial regulators determine the CR according to the formula

CR = 3*VaR + constant

Individual financial institutions estimate the VaR, from which the CR are calculated.
If the banks underestimate the VaR they get penalized by an increase in the multiplica-
tive factor or the additive constant, and if they over estimate the VaR they presumably
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VAR

get penalized by shareholders. Hence accurate estimation of the VaR is very impor-
tant. The scaling factor 3 appears to be somewhat arbitrary, and has come under crit-
icism from financial institutions for being to high. Stahl (1997) argues that the factor
is justified by applying Chebyshev’s inequality to the ratio of the true and model VaR
distributions. In this worst case scenario, Stahl calculates 2.7 as an appropriate scaling
factor at the 5% level, 4.3 at the 1% level, and increasing with lower the probabilities.
But according to Table 5, we feel that this factor is way too conservative. By com-
paring the RiskMetrics and the TE results at the 5% level, we see that they are very
close to the expected number of violations, and in that case a multiplicative constant
close to one would be appropriate. At the 0.1% level, RiskMetrics has five times the
expected number of violations and in that case a large multiplicative constant may be
appropriate, but the TE method gives results close to the expected value, suggesting
that the constant should be close to one if TE is used for VaR. While a high scaling fac-
tor may be justified in the normal case, by using the optimal estimate of the tails, as we
do with the tail estimator method, the multiplicative factor can be much lower. Indeed
for a TE implementation of VaR there is no reason to believe that the multiplicative
factor should not be one. Note that HS, implies too high capital requirements in our
case, while RiskMetrics implies too low CR. The tail estimator method appears to pro-
vide accurate estimated of the tails, and hence the most accurate way to set capital
requirements.

6  Practical Issues for Implementation of Tail Estimator for VaR

There are several practical issues in implementing the tail estimator method, primar-
ily the length of the data set, estimation of the tail, and calculation of the VaR for
individual portfolios.

6.1 Window Length

For any application where we are concerned with extreme outcomes, or events that
happen perhaps once every 100 days or less, as is typical in VaR analysis, the data
set has to include sufficient number of extreme events in order to obtain an accurate
prediction of VaR. For example, if we are concerned with a 1% VaR, or the worst
outcome every 100 days, a window length of one year, or 250 days is not very sensible.
In effect the degrees of freedom are around two, and the VaR estimates will be highly
inaccurate. Thisis recognized by the Basle Committee which emphasizes stress testing
over multiple tumultuous periods such as the 1987 Crash and the 1993 ERM crisis. In
this paper we use a window length of 1,500 days, or about 7 years, and feel that a much
shorter sample is not practical. This is reflected when we apply our tail estimator to a
short sample in Monte Carlo experiments. When the sample is small, say 500 days or
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two years, the estimate of the tail index is inaccurate to the point of being useless. There
is no way around this issue, historical simulation and parametric methods will have the
same small sample problems. In general the sample should be as large as possible. The
primary reason to prefer a relatively small sample size is if the correlation structure in
the sample is changing over time. However, in that case one can use the presampling
version of the tail estimator, and use a covariance matrix that is only estimated with the
most recent realizations in the sample. In general one would expect lower correlation
in extremes among stocks than e.g. exchange rates, and we were not able demonstrate
any benefit for our sample by using a frequently updated covariance matrix. However,
we would expect that to happen for a sample that includes exchange rates that belong
to managed exchange rate systems like the EMS.

6.2 Estimation of the Tall

Estimation of the tails is not difficult to implement. Using the historical sample to con-
struct the simulated portfolio is in general not computer intensive for even very large
portfolios, and in most cases can be done in a spreadsheet like Excel. The subsequent
estimation of the tails may take a few seconds at most using an add-in module with a
dynamic link library (dll) to fit the tails.

Note that including nonlinear derivatives like options in the portfolio does not in many
cases cause difficulty. In general one might have to price the option in the process
of calculating the VaR, however this is a generic problem for any VaR method, and
not specific to the tail estimator method. The tail estimator method can be used to
generate the data for the underlying asset, and these simulated data can be used to
price the option under risk neutrality. A structured Monte Carlo, as suggested in the
RiskMetrics manual, is easily implemented by the post fitting method. We obtained
the value of the SP-500 index, the interest rate, the strike price and the price of a 30
day European call option on the SP-500 index from the Wall Street Journal on July 7,
1997. The option price was 19, the strike price 920, the annual interest rate was 5%,
and the forward price 916. By simulating the returns on the options until maturity, we
can obtain a distribution of the net return on the option. The expected value of the net
return was 15, and the option hence overpriced by 4.

7 Conclusion

Many financial application are dependent on accurate estimation of downside risk,
such as optimal hedging, insurance, pricing of far out of the money options, as well as
the application in this paper, Value-at-Risk. Several methods have been proposed for
VaR estimation. Some are based on using conditional volatilities, such as the GARCH
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based RiskMetrics method. Others rely on the unconditional historical distribution of
returns, such as historical simulation. We propose the use of the tail estimator as a
parametric method for estimation of tail probabilities. This method is based on using
an optimal tail estimator to fit the tails of returns. By having this estimate, we can make
accurate inference of extreme events in the data set under study.

We show that conditional parametric methods, such as GARCH with normal innova-
tions, as implemented in RiskMetrics, underpredict the VaR for a sample of U.S. stock
returns. Historical simulation performs much better in predicting the VaR, but suffers

from a high variance and discrete sampling far out in the tails. The performance of the
tail estimator method performs better than both RiskMetrics and historical simulation
out in the tails.
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A. EXTREME VALUE THEORY AND TAIL ESTIMATORS

A  Extreme Value Theory and Tail Estimators

This appendix gives an overview of the statistical methods that are used in obtaining
the estimated extreme tail distribution. The following is a brief summary of results in
Danielsson and de Vries (198 Avhich also provide all the proofs; this method has
been applied by Danielsson and de Vries (1§97

Let x be the return on a risky financial asset where the distribution®heavy tailed.
Suppose the distribution functidhi(z) varies regularly at infinity with tail index:

tli)rgll_LF((tf)):x“, a>0, x>0. (6)
This implies that the unconditional distribution of the returns is heavy tailed and that
unconditional moments which are larger tharare unbounded. The assumption of
regular variation at infinity as specified in (6) is essentially the only assumption that is
needed for analysis of tail behavior of the retugndkegular variation at infinity is a
necessary and sufficient condition for the distribution of the maximum or minimum to
be in the domain of attraction of the limit law for extremes of heavy tailed distributed
random variables.

A parametric form for the tail shape &f(z) can be obtained by taking a second order
expansion of” (z) asx — co. The only non-trivial possibility under mild assumptions
is

F(r)= 1—azx™® [1+bx’ﬂ+0(x*ﬁ)], B>0 asz — 0 (7)

The tail index can be estimated by the Hill estimator (Hill (1975)), whefés the
random number of exceedances.

1 1 & X;
S = = S log 8
SRS TR VRS ®)

The asymptotic normality, variance, and bias, are known for this estimator. It can be
shown that a uniqu& MSE minimizing threshold levek exists which is a function

of the parameters and number of observations. This value can be estimated by the
bootstrap estimator of Danielsson and de Vries (H9n this paper we employ the
simpler procedure presented in Danielsson and de Vries {997

It is possible to use (7) and (8) to obtain estimators for out of sample quantile and
probability (P, )) combinations given that the data exhibit fat tailed distributed in-
novations. The properties of/tne guantile and tail probability estimators below follow
directly from the properties df/«. In addition, the out of sampleP, Q) estimates are
related in the same fashion as the in sanfplg)) estimates.
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A. EXTREME VALUE THEORY AND TAIL ESTIMATORS

To derive the out of sampl@P, Q) estimator consider two excess probabilitieand

t with p < 1/n < t, wheren is the sample size. Correspondingpt@nd¢ are the
large quantilesz, andz;, where forz; we havel — F (z;) = i, i = t,p. Using the
expansion off’ (z) in (7) with 3 > 0 we can show that by ignoring the higher order
terms in the expansion, and replacinigy A/ /n andz; by the (M + 1)-th descending
order statistic one obtains the estimator

1
m &
ro=X — . 9
Tp = X(m+) <np> (©)
It can be shown that the quantile estimatgris asymptotically normally distributed.
A reverse estimator can be developed as well.

=M <ﬁ> . (10)
n \x,

The excess probability estimatpris also asymptotically normal distribute@, Q)
estimates for multi period returns can be obtained as follows. Assume data is i.i.d.
and form all possible multi day returns (we only have to form the highest/lowest). Use
sub sample bootstrap to determine the point where the tail starts for this multi period

sample, use this value fab/ orf((MH) as in (9) or (10).
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B  Figures

Table 6: Summary Statistics. Jan. 27 1984 to Dec. 31, 1996.
JPM MMM  MCD INTC IBM XRX  XON

Mean 0.05 0.04 0.07 0.09 0.01 0.04 0.05
S.D. 1.75 1.41 1.55 2.67 1.62 1.62 1.39
Kurtosis 100.28 68.07 8.36 5.88 25.71 16.44 49.23
Skewness -2.70 -3.17 —-0.58 —-0.36 —-1.08 —1.06 —1.74
Minimum —40.56 —30.10 —18.25 —21.40 —26.09 -—22.03 —26.69
Maximum 24.63 10.92 10.05 23.48 12.18 11.67 16.48
JPM = J. P. Morgan; MMM = 3M; MCD = McDonalds; INTC=Intel; IBM=IBM;XRX=Xerox; XON = Exxon. Source
DATASTREAM.

Table 7: Summary Statistics. Jan. 2 1990 to Dec. 31, 1996.
JPM MMM MCD INTC IBM XRX  XON

Mean 0.05 0.04 0.05 0.15 0.03 0.06 0.04
S.D. 1.45 1.19 1.48 2.34 1.72 1.60 1.12
Kurtosis 1.83 3.78 1.51 2.86 6.67 9.46 1.10
Skewness  0.28 —0.32 0.05 —0.36 0.25 —-0.35 0.11
Minimum —-6.03 -9.03 —-8.70 —14.60 —11.36 —15.63 —4.32
Maximum  6.70 4.98 6.27 9.01 12.18 11.67 5.62
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Table 8: Correlation Matrix. Jan. 27 1984 to Dec. 31, 1996.

JPM MMM MCD INTC IBM XRX XON

JPM 1.00

MMM  0.49 1.00

MCD  0.42 0.44 1.00

INTC  0.30 036 0.29 1.00

IBM 0.38 0.42 034 040 1.00

XRX  0.35 039 034 032 0.35 1.00
XON  0.44 048 037 024 035 0.30 1.00

Table 9: Correlation Matrix. Jan. 2 1990 to Dec. 31, 1996.

JPM MMM MCD INTC IBM XRX XON

JPM 1.00

MMM  0.28 1.00

MCD 0.28 0.28 1.00

INTC 0.24 0.21 0.21 1.00

IBM 0.18 0.19 019 032 1.00

XRX  0.23 0.23 022 021 0.19 1.00
XON  0.20 0.25 021 0.12 0.10 0.12 1.00
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Table 10: 10 Years, 2600 Daily Returns, 1987 - 1996. With Predicted Maximum Daily Drop in one Year (250 days)

8¢

upper tail lower tail
mean var kurtosis max min skewa m Xy max o m Xy o max
Stock Index
Hang Seng 0.06 2.7 1445 89 —405 —-6.5 3.5 32 3.5 3.6% 2.2 49 —-3.2 —=3.3%
Straights Times  0.03 1.5 644 115 -234 -3.7 3.1 36 2.5 26% 2.2 59 —-23 —-2.3%
Word 0.03 0.6 25.7 79 —-100 —-1.4 3.5 37 1.6 1.7% 3.1 44 —-1.6 —1.7"%
DAX 0.03 14 12.2 73 —13.7 —-1.1 2.9 52 2.3 23% 2.6 43 -2.7 —2.8%
FT All Share 0.03 0.7 25.9 5.7 —12.1 —-2.0 2.9 58 1.5 1.5% 3.1 86 -1.3 —-1.3%
SP-500 0.04 1.0 115.8 87 —-228 —-5.1 3.8 26 2.3 24% 2.5 51 -19 —1.9%
Miscellaneous Assets
Gold Bulion 0.00 0.5 7.6 3.6 72 —-10 48 16 2.2 22% 3.0 33 -19 —1.9%
US Bonds 0.00 0.9 73.5 17.8 —-10.7 1.7 2.4 &6 1.3 1.4% 25 79 —-1.4 —-1.5%
US Stocks
JPM 0.03 3.3 1069 246 —-406 -3.1 35 31 4.2 43% 3.1 48 -3.2 —=3.3%
MMM 0.04 2.1 725 109 -30.1 —-36 45 29 34 35% 24 52 —2.8 —2.9%
MCD 0.06 2.5 6.6 10.0 -183 —-0.7 52 22 4.1 42% 3.0 45 —-3.3 —=3.4%
INTC 0.13 6.8 5.1 23.5 —-214 —-0.5 4.7 29 6.3 6.6% 2.8 37 —6.2 —6.4%
IBM 0.01 29 23.5 122 —-26.1 -—-1.2 3.2 28 4.3 45% 29 38 -3.8 —-3.9%
XRX 0.03 2.6 16.9 11.7 —-220 -1.2 3.6 29 4.0 41% 2.7 50 -3.3 —-3.4%
XON 0.04 2.0 56.7 16.5 —26.7 —-2.0 35 34 3.1 32% 2.7 70 —2.3 —24%
Forex

FRF/USD —-0.01 04 -0.8 27 =32 0.0 6.2 16 20 2.0% 8.2 17 —21 —-21%
DM/USD —0.01 0.5 -09 32 =30 0.0 7.0 16 2.2 22% 6.7 16 -2.1 —-2.2%
YEN/USD —0.01 04 0.2 3.4 -3.6 —-0.2 49 16 1.9 2.0% 4.7 18 -21 —-21%

GBP/USD —-0.01 04 =05 33 =28 0.3 9.5 16 23 23% 63 17 -1.9 —2.0%
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