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Dangers of Data-Driven Inference

ABSTRACT

Economics is primarily a non-experimental science.  Typically, we cannot generate new

data sets on which to test hypotheses independently of the data that may have led to a

particular theory.  The common practice of using the same data set to formulate and test

hypotheses introduces data-snooping biases that, if not accounted for, invalidate the

assumptions underlying classical statistical inference.  A striking example of a data-

driven discovery is the presence of calendar effects in stock returns.  There appears to be

very substantial evidence of systematic abnormal stock returns related to the day of the

week, the week of the month, the month of the year, the turn of the month, holidays, and

so forth.  However, this evidence has largely been considered without accounting for the

intensive search preceding it.  In this paper we use 100 years of daily data and a new

bootstrap procedure that allows us to explicitly measure the distortions in statistical

inference induced by data-snooping.  We find that although nominal P-values of

individual calendar rules are extremely significant, once evaluated in the context of the

full universe from which such rules were drawn, calendar effects no longer remain

significant.
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“October.  This is one of the peculiarly dangerous months to speculate in stocks in.  The
others are July, January, September, April, November, May, March, June, December,
August and February.”

Mark Twain (1894)

1.  Introduction

Economic theory often is vague about the relationship between economic variables.  As a

result, many economic relations have been initially established from apparent empirical

regularities and had not been predicted ex ante by theory.  Like many of the social

sciences, economics predominantly studies non-experimental data and thus does not have

the advantage of being able to test hypotheses independently of the data that gave rise to

them in the first instance.  If not accounted for, this practice, referred to as data-snooping,

can generate serious biases in statistical inference.1  In the limited sample sizes typically

encountered in economic studies, systematic patterns and apparently significant relations

are bound to occur if the data are analyzed with sufficient intensity.

One of the most striking examples of a data-driven finding that was not anticipated by

theory is the apparently very strong evidence of seasonal regularities in stock returns.

Calendar effects were the first to be analyzed in the “Anomalies” section of the inaugural

issue of Journal of Economic Perspectives (Thaler (1987a,b)).  Indeed, theoretical

considerations would suggest that researchers should not even be looking for such

patterns in the first instance.  According to standard economic theory, stock prices should

follow a martingale process and returns should not exhibit systematic patterns, thus ruling

out seasonal components unless these can be related to systematic variations in risk

premiums, c.f. Samuelson (1965), Leroy (1973), and Lucas (1978).

                                               
1 Leamer (1978) discusses such pretest biases in considerable detail.
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As reflected in the initial Mark Twain quote, investors have nevertheless long been

fascinated by the possibility of finding systematic patterns in stock prices that, once

detected, promise easy profits when exploited by simple trading rules.  Moreover, Merton

(1987) points out that “economists place a premium on the discovery of puzzles, which in

the context at hand amounts to finding apparent rejections of a widely accepted theory of

stock market behavior” (p. 104).  Consequently, there is a long tradition among investors

and academics for searching through stock market data; published academic studies on

calendar effects go back to at least the early thirties, e.g. Fields (1931, 1934).  As a result,

common stock market indexes such as the Dow Jones Industrial Average and the

Standard & Poor’s (S&P) 500 Index are among the most heavily investigated data sets in

the social sciences.

Lo and MacKinlay (1988) point out that the degree of data-snooping bias in a given field

can be expected to increase with the number of studies published on the topic.  Since so

many academics and investors have looked at common US stock price indexes in an

attempt to detect regularities, the performance of the best calendar rules cannot be viewed

in isolation.  Data with important outliers, such as those observed in stock market returns,

are particularly prone to data-snooping biases.  If enough economic models are studied,

by pure chance some of them are likely to outperform a given benchmark by any

economic or statistical criterion.  For example, models that implied investors should have

been short in the stock market during October 19, 1987 are likely to outperform the

market index in a longer sample simply because of the paramount significance of this

single observation.

As a result of these endeavors, there is now a very large literature reporting apparent

‘anomalies’ in stock returns.  Grouped by calendar frequency, researchers have reported

evidence of abnormal returns related to day of the week effects (Ball and Bowers (1988),

Cross (1973), Fields (1931), French (1980), Gibbons and Hess (1981), Jaffe and

Westerfield (1985), Keim and Stambaugh (1984), Lakonishok and Levi (1982), and

Rogalski (1984)), week of the month effects (Ariel (1987) and Lakonishok and Smidt

(1988)), month of the year effects (Haugen and Lakonishok (1988), Keim (1983), Roll
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(1983), and Rozeff and Kinney (1976)), turn of the month effects (Ariel (1987) and

Lakonishok and Smidt (1988)), turn of the year effects (Haugen and Lakonishok (1988),

Jones, Pearce and Wilson (1987), Lakonishok and Smidt (1984), Ritter and Chopra

(1989), and Roll (1983)) and holiday effects (Fields (1934), Haugen and Lakonishok

(1988), Jones, Pearce and Wilson (1987), and Lakonishok and Smidt (1988)).

Interestingly, none of these calendar effects were preceded by a theoretical model

predicting their existence. This is an important consideration; surveying the philosophy of

science literature, Campbell and Vinci (1983) write that “Philosophers of science

generally agree that when observational evidence supports a theory the confirmation is

much stronger when the evidence is novel.”  Similarly, Kahn, Landsburg, and Stockman

(1996) present a Bayesian model that formalizes the idea that empirical evidence giving

rise to a new theory does not support the resulting theory as strongly as when the

evidence had been predicted ex ante by the theory.

Thus the findings of systematic seasonal patterns in stock returns leave us with a

conundrum: do the apparent regularities in stock returns really imply a rejection of simple

notions of market efficiency, or are they just a result of a large, collective data-snooping

exercise?  Many researchers express awareness of this problem.  Lakonishok and Smidt

(1988), for example, comment on the seasonal regularities this way: “However, it is at

least possible that these new facts are really chimeras, the product of sampling error and

data mining.”

In this paper we conduct an analysis that addresses these concerns.  Based on a survey of

the types of calendar rules that have been studied by researchers, we construct a universe

of calendar trading rules using permutational arguments that do not bias us in favor of, or

against, particular calendar effects.  The universe contains nearly 9,500 different calendar

effects and the best calendar rule is evaluated in the context of this set.  We do not

imagine that this large set of calendar rules was inspected by any one individual investor

or researcher.  Rather, the search for calendar rules has operated sequentially across the

investment community as a whole with the results of individual investors being reported
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gradually through the survival of the ‘fittest’ calendar rules.  Viewed this way, the

number of rules we inspect does not appear to be unrealistically large.

We find that although many different calendar rules produce abnormal returns that are

highly statistically significant when considered in isolation, once the dependencies

operating across different calendar rules is accounted for, then the best calendar rule no

longer achieves a P-value that is significant at conventional critical levels.  This

conclusion is robust to whether a mean return criterion or a risk-adjusted Sharpe ratio

criterion is used in the assessment.  Consistent with this finding, the performance of the

calendar rule that was best in-sample actually generates inferior performance in an out-

of-sample experiment using either cash or futures market prices.

To alleviate the concern that even genuinely significant calendar rules may not appear to

be significant if assessed jointly with a sufficiently large set of “irrelevant” rules, we also

evaluate the best known calendar effects in a much smaller universe of 244 calendar

rules.  Again we find that the apparent statistical significance of the best calendar effects

is not robust to data-snooping effects.

The paper proceeds as follows.  Section 2 discusses why standard asset pricing theory

precludes calendar effects and Section 3 explains the bootstrap snooper that we use in our

analysis to account for the effects of data-snooping.  Section 4 describes the empirical

evidence supporting the existence of calendar effects and Section 5 explains the design of

our experiment.  Sections 5 and 6 report the empirical results of our analysis, while

Section 7 concludes.

2.  Calendar Effects and Efficient Markets

In a frictionless market with no arbitrage where agents agree on the possible, the efficient

market theory implies the moment condition:

Et[Qt+1Rt+1]  =  1, (1)

where Rt+1 is an asset’s rate of return, Qt+1 is a pricing kernel reflecting a representative

agent’s intertemporal rate of substitution between future and current consumption, and Et
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is the conditional expectation operator taken with respect to information set It.  It follows

from this equation that the conditionally expected return is

Et[Rt+1]  =  
1 1 1

1

− + +

+

cov ( , )
[ ]

t t t

t t

Q R

E Q
. (2)

Thus standard asset pricing models explain predictable patterns in expected returns

through a time-varying conditional covariance between returns and the pricing kernel or

through variations in the expected pricing kernel itself.  Asset pricing models typically

assume that the pricing kernel is some power function of aggregate consumption and

naturally imply that expected asset returns should vary over the economic cycle.  It is

much harder to explain a priori why expected returns should display calendar

regularities.  Unless investors’ marginal rate of substitution between future and current

consumption is systematically different on, say, Tuesdays or during the fourth week of

the month compared with other points in time, then there is no underlying economic

reason to expect the presence of calendar effects in asset returns.

To test the implications of calendar effects for the efficient market hypothesis, we

evaluate such effects through the predictive signals they imply when adopted in trading

strategies.  This is the right criterion to use when assessing the economic significance of

calendar effects.  Jensen (1978) states it this way: “A market is efficient with respect to

information set θt if it is impossible to make economic profits by trading on the basis of

information set θt” (p. 96).  Hence a calendar rule has economic value if it allows

investors to exploit it in a simple trading rule that outperforms the benchmark on a mean

return or risk-adjusted return basis, depending on the risk-adjustment procedure in place.2

                                               
2 Importantly, the information set at time t should be interpreted as including the best forecasting model and
the best parameter estimates available at time t.  This suggests that an assessment of the efficient market
hypothesis must be based on the recursive prediction signals generated by the forecasting models under
consideration.  We adopt just such a procedure.



Dangers of Data-Driven Inference

- 7 -

3.  The Bootstrap Snooper

Researchers have long been aware of the potential dangers of data-snooping effects.  For

example, Merton (1987, p. 107) poses the question “Is it reasonable to use the standard t-

statistic as a valid measure of significance when the test is conducted on the same data

used by many earlier studies whose results influenced the choice of theory to be tested?”

Savin (1984) and Lakonishok and Smidt (1988) point out that the size of the induced test

following from a search for the largest possible t-statistic can be very different from its

nominal value.  Suppose a size of one percent is used in the analysis and that a search for

the highest t-statistic is conducted across all possible permutations of day of the week

effects.  Considering rules that accept both long and neutral positions, there are 25 = 32

day of the week permutations.  Likewise, considering rules that accept both short and

neutral positions yields a second set of 32 permutations.  Excluding rules that are always

long, always short, or always neutral, provides for a total of 60 day of the week trading

rules.  Then it follows from the Bonferroni inequality that the induced test would have a

size of no greater than 60 × 0.01 = 0.60, a number that is very different from 0.01.

To deal with such problems, White (1997), building on work of Diebold and Mariano

(1995) and West (1996), provides a procedure for testing whether a particular model

(e.g., calendar trading rule) has predictive superiority over a benchmark model once the

effects of data-snooping have been accounted for.  To accomplish this, the distribution of

a suitable performance measure is evaluated in the context of the full set of models that

led to the best-performing rule.  Here we provide a brief summary of the approach and

refer the reader to White (1997) for more details.  The test procedure is based on the l × 1

performance statistic:

∑
=

+
−=

T

Rt
ttfPf )â̂(1

1 , (3)

where l is the number of calendar rules, P is the number of prediction periods indexed

from R through T so that T = R + P – 1, tâ̂  is a vector of (recursively) estimated

parameters, and f f Zt t t t+ +=1 1( $ ) ( , $ )β β .  Generally, Z consists of a vector of dependent
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variables and predictor variables consistent with assumptions described in Diebold and

Mariano (1995) or West (1996).

Our particular application involves no estimated parameters.  Rather, the various

parameterizations of the calendar rules (βk, k = 1,…, l) directly generate returns that can

be used to measure performance.  In our full sample of the Dow Jones Industrial

Average, P is set equal to 27,567, representing 100 years of daily predictions, and R is set

equal to 1.  The choice of performance metric is simple in our application: the finance

literature assesses significance of calendar rules based on their return performance.  Thus

a particular calendar rule’s performance, where each of the calendar rules is indexed by a

subscript k, is measured as follows:

fk,t+1(β)  =  ln[1 +  yt+1 Sk(D t+1, βk)]  –  ln[1 + yt+1 S0(D t+1, β0)],    k  =  1, …, l (4)

where yt+1 = (Xt+1 – Xt) / Xt, Xt is the original price series (the Dow Jones Industrials

Average and S&P 500 futures, in our case), and Sk( ⋅ ) and S0( ⋅ ) are “signal” functions

that, based on the system parameters βk and β0 convert the sequence of deterministic

calendar indicators D t+1 into market positions.  The signal functions take one of three

values: 1 represents a long position, 0 a neutral position (i.e., out of the market), and –1

represents a short position.  We also utilize an extension of this set-up to evaluate the

calendar rules with the Sharpe ratio in addition to mean returns.

The null hypothesis to test when assessing whether there are abnormal calendar effects is

that the expected performance of the best calendar rule is no better than the expected

performance of the benchmark of always being in the market (S0(D t+1, β0) = 1).  In other

words,

H0:  
lk ,...,1

max
=

 {E( fk )}  ≤  0. (5)
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Rejection of this null hypothesis would lead us to believe that the best calendar rule

genuinely achieves performance superior to the benchmark.3

Since we have no estimated parameters in our forecasting models, the simplest form of

Theorem 4.1 in West (1996) immediately applies and the mean performance of the set of

calendar rules follow an l-dimensional multivariate normal distribution.  No closed-form

expression exists that would permit us to assess the statistical significance of the

maximum value of a general multivariate normal distribution.  However, the null

hypothesis can be tested by using White’s (1997) method, which involves applying the

stationary bootstrap of Politis and Romano (1994) to the observed values of fk,t.  Suppose

B bootstrapped values of kf  are obtained from the calendar rules applied to the

resampled time-series of the returns and that we denote each of these resampled values by

*
,ikf , where i indexes the B bootstrap samples.  We set B = 500 and then construct the

following statistics,4

V   = 
lk ,...,1

max
=

{ P ( kf )} (6)

*
iV   = 

lk ,...,1
max
=

{ P ( kik ff −*
, )},  i = 1, …, B. (7)

We compare V  to the quantiles of *
iV  to obtain White’s Reality Check P-value for the

null hypothesis.  For each resampled time-series we employ the maximum value over all

the l calendar rules to ensure that the Reality Check P-value incorporates the effects of

data-snooping from the search over the l rules.  Asymptotically, as P goes to infinity,

with probability one the best-performing calendar rule will be identified and, if it truly

                                               
3 Our procedure thus emphasizes deviations from the most general and perhaps strongest implication of the
efficient market hypothesis, namely that risky assets never pay a negative risk premium – otherwise, in
equilibrium, risk-averse investors would not hold stocks but would switch into cash.

4 The stationary bootstrap of Politis and Romano (1994) relies upon a “smoothing” parameter, q, to
determine the average resampled block length.  The value of q chosen in our experiments is 0.1,
corresponding to a mean block length of ten observations.  This value appears to be reasonable given the
weak correlation in daily stock returns.  Furthermore, the bootstrap experiments of Sullivan, Timmermann,
and White (1998) suggest that the results of White’s Reality Check test procedure are rather robust to the
choice of q for the data we are analyzing.
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outperforms the benchmark, then this will also be revealed in the sense that the

performance measure exceeds zero, as White (1997) proves.

This approach can also be modified to evaluate forecasts based on the Sharpe ratio, which

measures the average excess return per unit of total risk.  In this case we seek to test the

null hypothesis

H0:  
lk ,...,1

max
=

  { g(E(hk)) } ≤  g(E(h0)), (8)

where h is a 3×1 vector with components given by

hk t, +1
1 (β)  =  yt+1 Sk(D t+1, βk) (9)

hk t, +1
2 (β)  =  ( yt+1 Sk(D t+1, βk))2 (10)

hk t, +1
3 (β)  =  rt

f
+1 , (11)

the form of g(⋅) is given by

g(E( ht +1
1 ), E( ht +1

2 ), E( ht +1
3 ))  =  

E h E h

E h E h

t t

t t

( ) ( )

( ) ( )
+ +

+ +

−

−
1

1
1

3

1
2

1
1 2

, (12)

and f
tr 1+  is the risk-free interest rate.  Expectations are estimated using arithmetic

averages.  Relevant sample statistics are

f k  = g hk( )  – g h( )0 , (13)

where 0h  and kh  are averages computed over the prediction sample for the benchmark

model and the k th calendar rule, respectively.  That is,

h k  =  ∑
=

+
−

T

Rt
tkhP )â(1,

1 ,  k = 0,…,l. (14)

As in the previous case, the Politis and Romano (1994) bootstrap procedure is applied to

yield B bootstrapped values of kf , denoted as *
,ikf , where

*
,ikf  = g hk i( ),

*  – g h i( ),
*

0 ,  i=1,…, B (15)
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*
,ikh  = P hk t i

t R

T
−

+
=
∑1

1, ,
* ( )β ,  i=1,…, B. (16)

The bootstrap procedure can then be repeated to obtain White’s Reality Check P-value

for the Sharpe ratio performance criterion.

4.  Calendar Effects and Data-Snooping Biases

A vast empirical literature reports on the existence of calendar effects in stock returns.

Best known are probably the low mean returns on Mondays and the high mean returns in

January.  French (1980) reports that returns on the S&P 500 tend to be negative from

Friday’s close to Monday’s close and that this is not simply a result of the longer three-

day period between these closing prices.  Building on this discovery, Keim and

Stambaugh (1984) find that the Monday effect is a weekend effect and that it is closely

related to the January effect: during January, Monday returns are positive, while they

become negative during the remaining part of the year.

Some findings question the stability of the Monday effect.  Using hourly return data from

1963 to 1983, Smirlock and Starks (1986) find evidence of nonstationarities in the

Monday effect.  In the beginning of their sample (1963-68), negative returns occur in

every hour of trading on Mondays, while the Friday close to Monday open return is

positive.  In a later part of their sample (post-1974), the negative weekend effect is due to

negative average returns from Friday’s close to Monday’s open.

While the Monday and January effects are best known, a wealth of different calendar

effects have also been reported.  Ariel (1987) finds that mean stock returns are positive

only for days immediately prior to or during the first half of calendar months.  Consistent

with this evidence, Lakonishok and Smidt (1988) report that, for the period 1897 – 1986,

the null hypothesis that the difference between returns during the first and second half of

the month is zero can be rejected at the one percent critical level.  They also report very

high abnormal returns for the period beginning on the last pre-Christmas trading day and

ending on the last trading day of the year, and find a very strong turn-of-the-month effect,
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especially between the last day of the month and the first three days of the subsequent

month.

Subsequent to their discovery, some of the calendar effects have been justified by

theories relating to institutional arrangements in the markets.  For example, the January

effect has been linked to year-end tax-loss selling pressure that could suppress stock

prices in December, only for them to bounce back in early January.  Explanations offered

for the strong Monday effect in stock returns data include delays between trading and

settlements in stocks (Lakonishok and Levi (1982)), measurement error (Keim and

Stambaugh (1984)), institutional factors (Flannery and Protopapadakis (1988)), and

trading patterns (Lakonishok and Maberly (1990)).  These factors appear to explain only

a small portion of the Monday effect, however.

Most importantly, such theories are ‘after the fact’ rationalizations of observed

phenomena.  Both Cross (1973) and French (1980) acknowledge that their study of

weekend effects in stock returns were based on market participants’ claim that prices tend

to fall on Mondays.  Clearly the hypothesis of a Monday effect was not based on any

theory and the same data were used both to formulate and to test the hypothesis, thus

enhancing the dangers of data mining.5

4.1  Universe of Calendar Effects

Our experiment replicates academics’ and the investment community’s search for

successful calendar rules.  At the heart of this experiment is the construction of a universe

from which the calendar rules that have been reported could conceivably have been

drawn.  It is important not only to include the rules that were actually publicly reported,

but also to include other rules that were considered.  Lo and Mackinlay (1990) refer to

the so-called ‘file drawer problem’: many rules that do not appear to generate abnormal

returns are never published and will be filtered out through the sequence of studies that

focus on the successful ones.  However, the successful rules are still drawn from the

                                               
5 In fact, Levi (1988) points out that Cross’s (1973) early study of Monday effects appeared right after a
period over which a large Monday effect could be identified (namely, 1969–1972).
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larger universe that also includes unsuccessful, unreported rules and should thus be

evaluated in this context.

Our strategy for constructing the universe of calendar rules is to identify certain types of

calendar rules based on the calendar frequencies used in published studies.  For a given

frequency, the number of calendar effects is then constructed by permutational rules.

This ensures that all possible rules within a given frequency are considered and that we

do not bias our study towards searching in a particular direction.  The design of the

universe is very important since the correction for data-snooping is only done relative to

the collection of models included in this set.  For this reason we do not consider more

recent calendar rules based on new technologies (e.g., genetic algorithms) since these

have only become available more recently and it is very unlikely that the best calendar

rule was drawn from a set that included such rules.

Two types of errors can occur in the statistical analysis.  First, our universe may be too

small and we may overlook some types of calendar rules that were investigated but never

reported in published studies because they turned out not to be successful.  This would

tend to bias our estimated P-values towards zero since the snooping-adjustment would

not account for the full set of rules from which the best performer is drawn.

Second, we may include many rules in our universe that were not actually considered by

investors.  A natural concern then is whether considering the best calendar rules in

conjunction with a very large number of possibly insignificant calendar rules will

automatically lead to a loss of power so that even genuinely superior rules will not appear

to do well if evaluated in a large enough universe.  Fortunately this is unlikely to be so.

Since the bootstrap procedure corrects for the effects of data-snooping by way of the joint

distribution of the returns generated by each rule, adding another trading rule will

increase the Reality Check P-value only if the new rule increases the effective “span” of

the universe from which the best rule was drawn, without simultaneously improving on

the best performance.  Adding uninformative rules whose returns are closely correlated

with returns from rules previously included in the universe will not lead to a change in
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the P-value once the span of the universe is sufficiently large.6 Furthermore, if the

additional calendar rule extends the span, then there is clearly the possibility that this rule

might outperform the best-performing rule in the smaller universe of rules, so that the

direction of the bias may be reversed.  For these reasons our main results consider a

rather large universe of almost 9,500 calendar rules.  However, we also report results for

a much smaller universe that only contains the most basic types of calendar effects.  The

robustness of our findings effectively answers the concern about ‘diluting the P-value’.

The full set of calendar effects comprises 9,452 different rules.  The basic frequencies of

calendar effects are days, weeks, semi-months, months, and holidays.  Some rules also

combine two of these frequencies, such as in day-of-the-month effects.  To keep the

experiment feasible we do not use three or more layers of compounding such as in day-

of-the-week-of-the month rules, although such rules have in fact been studied (see, e.g.,

Want, Li, and Erickson (1997)).  For similar reasons, and since the literature has focused

on abnormal returns from following simple calendar rules relative to the benchmark of

always being in the market, we do not investigate the compound rules resulting from

combining long and short positions in the same trading strategy.7

We also consider a reduced universe of calendar effects in addition to the full universe.

This permits us to examine the effects of data-snooping when only a core group of

calendar rules is considered.  The reduced universe contains a total of only 244 rules.

A.  Day of the Week

For the full universe of calendar effects, these rules explore the full combination of

possibilities (ignoring Saturdays), except for long (short) all five days, and neutral all five

                                               
6 In another paper (Sullivan, Timmermann and White (1998)), we conduct an analysis of technical trading
rules based on a similarly large universe of rules. We find that, at least for some sub-samples, certain of the
best technical trading rules still come out as statistically significant after data-snooping effects are
accounted for.

7 This decision is also based on what is computationally feasible. Combining short, neutral, and long
positions in the individual trading rules would generate in excess of half a million candidate trading rules.
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days.8  We consider both long and short positions.  The reduced universe of calendar

effects contains rules which are long (short) on each of the five days while being neutral

otherwise, and rules which are neutral on each of the five days while being long (short)

otherwise.  Studies that consider these effects include Ball and Bowers (1988), Cross

(1973), Fields (1931), French (1980), Gibbons and Hess (1981), Jaffe and Westerfield

(1985), Keim and Stambaugh (1984), Lakonishok and Levi (1982), Lakonishok and

Smidt (1988), Rogalski (1984), and Smirlock and Starks (1986).  The full universe

number of rules is 2 × (25 – 2) = 60.  The reduced universe number of rules is 10 + 10 =

20.

B.  Week of the Month

For the full universe of calendar effects, again we use the full combination of

possibilities, except for long (short) all five weeks, and neutral all five weeks.  Both long

and short positions are considered.  The reduced universe of calendar effects contains

rules which are long (short) on each of the five weeks while being neutral otherwise, and

rules which are neutral on each of the five weeks while being long (short) otherwise.  The

“weeks” are constructed such that the first trading day of the month always occurs in the

first week.  If the first trading day of the month is a Friday (and there is no Saturday

trading), then the first week will only contain 1 day; the following Monday will be part of

week 2, and so forth.  Ariel (1987), Lakonishok and Smidt (1988), and Wang, Li and

Erickson (1997) report on such effects.  The full universe number of rules is 2 × (25 – 2)

= 60.  The reduced universe number of rules is 10 + 10 = 20.

C.  Month of the Year

These rules generate by far the largest number of calendar effects for the full universe of

calendar effects.  We use the full combination of possibilities, except for long, short, or

neutral all twelve months.  Both long and short positions are considered.  The reduced

universe contains rules which are long (short) on each of the twelve months while being

neutral otherwise, and rules which are neutral on each of the twelve months while being

                                               
8 We do not include Saturday effects since trading on Saturdays stopped in 1952.
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long (short) otherwise.  Haugen and Lakononishok (1988), Keim (1983), Keim and

Stambaugh (1984), Roll (1983), and Rozeff and Kinney (1976) investigate these calendar

rules.  The full universe number of rules is 2 × (212 – 2) = 8,188.  The reduced universe

number of rules is 24 + 24 = 48.

D.  Semi-Month

There are two types of semi-month rules.  The first type examines the halves of all

months collectively.  Thus, we consider four rules: long in the first half, neutral in the

second; short in the first half, neutral in the second; neutral in the first half, long in the

second; and neutral in the first half, short in the second.  The second type of semi-month

rule examines the halves of specific months.  For instance, we look separately at the first

half of March, or the second half of September.  Then we apply one of four rules: long in

the half of a specific month, neutral otherwise; short in that month’s half, neutral

otherwise; neutral in a specific month’s half, long otherwise; and neutral in that month’s

half, and short otherwise.  The semi-month rules included in both the full universe and

reduced universe of calendar rules are identical.  Ariel (1987) and Lakonishok and Smidt

(1988) investigate these calendar rules.9  The number of rules is 4 + (4 × 24) = 100.

E.  Holidays

We classify each day into one of three categories: pre-holiday, post-holiday, or normal.

Pre-holiday days are those trading days which directly precede a day where the market is

closed, but would normally be open for trading.  Post-holiday days are those which

directly follow pre-holiday days.  All other days are considered normal.  We examine

pre-holiday and post-holiday days separately, with four rules for each: long on the

pre(post)-holiday, neutral otherwise; short on the pre(post)-holiday, neutral otherwise;

neutral on the pre(post)-holiday, long otherwise; and neutral on the pre(post)-holiday,

short otherwise.  The holiday rules included in both the full universe and reduced

universe of calendar rules are identical.  Fields (1934), French (1980), Haugen and

                                               
9 Because of the different ways weeks and semi-months are defined, the semi-month rules are not spanned
by the week of the month rules.
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Lakonishok (1988), Jones, Pearce and Wilson (1987), and Lakonishok and Smidt (1988)

investigate such holiday effects.  The number of rules is 4 + 4 = 8.

F.  End of December

Following Lakonishok and Smidt (1988), we create three classifications of days at the

end of December: from the middle of December up to, but not including, the last trading

day prior to Christmas; from the first trading day after Christmas up to, but not including,

the last trading day prior to New Year's day; the last trading day prior to Christmas and

the last trading day prior to New Year's day.  We then examine four rules for each of

these classifications: long on the classified day, neutral otherwise; short on the classified

day, neutral otherwise; neutral on the classified day, long otherwise; and neutral on the

classified day, short otherwise.  The end-of-December rules included in both the full

universe and reduced universe of calendar rules are identical.  Studies on these rules

include Haugen and Lakonishok (1988), Jones, Pearce, and Wilson (1987), Lakonishok

and Smidt (1984, 1988), Ritter and Chopra (1989) and Roll (1983).  The number of rules

is 4 + 4 + 4 = 12.

G.  Turn-of-the-Month

For the full universe of calendar rules, we examine the first four trading days of the

month and the last four trading days of the month and consider all possible combinations

of these.  In particular, we look at four strategies for each combination of these days: long

on the turn-of-the-month day(s), neutral otherwise; short on the turn-of-the-month day(s),

neutral otherwise; neutral on the turn-of-the-month day(s), long otherwise; and neutral on

the turn-of-the-month day(s), short otherwise.  The reduced universe of calendar effects

contains rules which are long (short) on each of the eight days while being neutral

otherwise, and rules which are neutral on each of the eight days while being long (short)

otherwise.  Additionally, the eight turn-of-the-month days are considered collectively in

the same manner.  Ariel (1987) and Lakonishok and Smidt (1988) inspect such trading

rules.  The full universe number of rules is 4 × 28 = 1,024.  The reduced universe number

of rules is 16 + 16 + 4 = 36.
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The total number of calendar rules for the full universe is 60 + 60 + 8,188 + 100 + 8 + 12

+ 1,024 = 9,452.  The total number of calendar rules for the reduced universe, on the

other hand, is 20 + 20 + 48 + 100 + 8 + 12 + 36 = 244.

5.  Empirical Results

Some of the best-documented seasonal effects occur at either the daily or the monthly

frequencies, so it is important to have a long data set with daily observations when testing

for calendar effects.  The longest available daily data set on stock prices is the Dow Jones

Industrial Average (DJIA) analyzed by Lakonishok and Smidt (1988) and Brock,

Lakonishok, and LeBaron (1992).  This data set goes back to 1897 and we have

subsequently extended it from 1987 up to the end of 1996.10  Two features of the data are

worth noting.  First, as pointed out by Lakonishok and Smidt (1988), the DJIA only

includes large, actively traded firms and hence constitutes an ideal index from the

perspective of identifying short-term market movements such as day of the week effects.

Second, although the price index excludes dividends, Lakonishok and Smidt (1988)

conduct a sensitivity analysis for this omission and find that excluding dividends does not

affect their conclusions regarding the existence of seasonalities.11

Calendar effects in the Dow Jones Industrial Average are initially investigated for the 90

year period from 1897 to 1986.  Following Lakonishok and Smidt (1988), we split this

sample into seven short sub-samples, each comprising approximately 13 years of data.

Also, we include a long sub-sample covering the 90 year period from 1897 to 1986.  This

ensures that our results are directly comparable to those reported by Lakonishok and

Smidt (1988) who conduct perhaps the most systematic study of calendar effects in the

literature.  The sub-samples are

Sub-Period 1: January 1897 – December 1910

                                               
10 We thank Blake LeBaron for providing us with the data set used in the BLL study.

11 Lakonishok and Smidt (1988) find that a quarterly seasonality is the largest regular calendar effect in the
dividends of the firms included in the DJIA.  Daily and other seasonal patterns are much smaller by
comparison.
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Sub-Period 2: January 1911 – December 1924

Sub-Period 3: January 1925 – December 1938

Sub-Period 4: January 1939 – May 1952

Sub-Period 5: June 1952 – December 1963

Sub-Period 6: January 1964 – December 1975

Sub-Period 7: January 1976 – May 1986

Sub-Period 8: January 1897 – May 1986,

while the full sample of the Dow Jones Industrial Average is

Full Sample: January 1897 – December 1996.

The stability of the best performing trading rule across sub-samples will provide

important information about calendar effects.  For example, if the same calendar rule

appears to be optimal in many different sub-samples, it would indicate that this rule is

indeed capable of outperforming the benchmark.  It also would suggest that investors

could have adopted a recursive decision rule to identify the best performer and have used

this to produce genuinely superior out-of-sample performance.12

5.1  Results for the Mean Return Criterion (Full Universe)

For the reasons discussed above, we initially consider which types of rules were optimal

in the various sample periods.  This information is reported in Table I.

[Insert Table I]

The most striking observation is that the optimal calendar rule changes between every

single short sub-sample.  Month of the year rules were chosen in three samples, a turn of

the month rule in one sample, and three different day of the week rules were chosen in

the remaining short sub-samples.  Thus, there is no single calendar effect that clearly

                                               
12 See also Thaler (1987b) for an argument that the use of several sub-samples is a remedy against the
effects of data-snooping.
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dominates in the sense that it almost always gets chosen as the optimal rule.  This is

exactly the kind of situation that is likely to lead researchers and investors to experiment

with historical data since different rules, when studied in different periods, appear to be

optimal.  In the full sample, and in the long sub-sample, the optimal calendar rule is to be

neutral on Mondays and be back in the market from Tuesdays to Fridays.  Note that this

corresponds to the well-publicized Monday (or Weekend) effect.

[Insert Table II]

Table II reports the performances of the benchmark market portfolio and of the calendar

rule with the highest average return in any given sample period.  Also included in the

table are the nominal13 and Reality Check P-values.  In the full sample, 1897 – 1996, the

market paid a mean annualized return of 4.63 percent, compared to 8.66 percent on the

optimal rule that is neutral on Mondays.  As a result, the nominal P-value of the best

calendar rule is less than 0.002 in the full sample and in the long 90 year sub-sample.14

In sharp contrast, the Reality Check P-value of the best trading rule is 0.20 in the 90 year

sub-sample and 0.24 in the full sample.

In most of the shorter sub-samples, the superior performance of the best calendar rule

relative to the market index is even larger, and this difference varies from 3.05 to a very

substantial 11.71 percent per year.  In these samples, the nominal P-values are significant

at the 10 percent critical level in all of the seven periods, while the Reality Check P-value

is always higher than 0.21.

These numbers effectively illustrate the role of data-snooping in explaining findings of

‘abnormal’ returns in the stock market related to calendar effects.  Our results confirm the

                                               
13 The nominal P-value is that which results from applying the bootstrap methodology to the best trading
rule only, thereby ignoring the effects of the data-snooping.

14 Our choice of utilizing 500 bootstrap re-samples in the Reality Check procedure results in an accuracy of
1/500 = 0.002.
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concern expressed in many empirical studies that the effect on statistical inference from

data-snooping can be very serious.

For each of the calendar rules included in the universe and using again the full sample

period 1897 – 1986, Figure 1 plots the mean return as a function of the model number.

Also shown in the Figure are the sequentially updated highest mean return and the

corresponding Reality Check P-value.  Since the sequential ordering of calendar rules is

arbitrary, only the terminal value of the highest mean return and the terminal Reality

Check P-value matter to the final assessment.  The clear emergence of patterns in the

mean returns effectively demonstrates the complicated dependencies operating across the

mean payoffs generated by the different calendar rules.  The regularity with which these

patterns occur reflects the ordering of the permutations used to generate the universe of

trading rules.  This graphical illustration of the complexity of the cross-sectional

dependencies also indicates that it would be very difficult to deal with these other than

through a bootstrap procedure.

Another interesting point that emerges from Figure 1 is that the best model (i.e., the

model that is neutral on Mondays) is selected early on, after only 29 models have been

considered.  From this point the ‘increased spanning’ effect of the calendar rules leads to

a gradual increase in the snooping-adjusted P-value.  That the P-value of the best model

is not below 0.10 when the best model is only considered in conjunction with 28 other

day of the week rules also demonstrates that the effects of data-snooping can be very

large even in a very small universe of forecasting models.  Also note that the “dilution”

or “erosion” of the P-value occurs at a rather moderate (and decreasing) rate as we

expand the universe of rules.

5.2  Results for the Sharpe Ratio Criterion (Full Universe)

We construct the Sharpe ratio as excess returns divided by the standard deviation of

returns.  Excess returns are measured as the returns from a given calendar effect trading

rule less the risk-free interest rate.  Considering that data on daily risk-free interest rates

is not readily available over the entire 100 year sample, we utilize data from three
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separate sources for three over-lapping periods.  The first source is Banking and

Monetary Statistics, 1914–1941 (1943), where we extract the interest rate for 90-day

stock exchange time loans.  Since these rates are reported on a monthly basis only, we

convert them into a daily series by simply applying the interest rate reported for a given

month to each day of that month.  This source is used for our risk-free interest rate from

1897 to 1925.  From 1926 to June 1954, we use the 1-month T-bill rates from the

Fama/Bliss risk-free rates CRSP file.  These are also reported on a monthly basis and

converted into a daily series in the same way.  Finally, from July 1954 to 1996, we are

able to employ daily rates from the daily Federal funds rate.15  The three sources of

interest rates are concatenated to form a single data series.  Each data source reports the

daily interest rate in annualized form.  We thus convert the annualized rates reported into

daily rates using the following formula:

rd  =  
ln( )1

252
+ rann (17)

where rd is the daily interest rate, rann is the reported annualized rate, and 252 represents

the average number of trading days in a year.16

The main effect of including the risk-free rate in the Sharpe ratio is that of a (time-

varying) drift-adjustment, since the volatility of daily interest rates is substantially

smaller than that of daily stock returns.  For this reason, our use of monthly interest rates

in the earlier samples is unlikely to affect the results in any important way.

[Insert Table III]

                                               
15 The Federal funds rate is the cost of borrowing immediately available funds, primarily for one day.  The
effective rate is a weighted average of the reported rates at which different amounts of the day’s trading
through New York brokers occurs.

16 Examining the behavior of our interest rates in the first overlapping period (1925-1941, 193
observations), we find that monthly values for the stock exchange 90-day time loans and the Fama/Bliss
risk-free rates have a correlation of 0.964.  To compare the Fama/Bliss risk-free rates (monthly) to the
Federal funds rates (daily), we converted the risk-free rates to daily rates by applying the Fama/Bliss rate
for a given month to all days in that month.  The overlap period of 1954-1996 (15,525 observations)
produced a correlation of 0.963.
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Table III shows that the best calendar rules chosen according to the Sharpe ratio criterion

tend to be different from those based on selecting calendar rules according to the highest

mean return.  However, for the longest sub-sample period, 1897 – 1986, the day of the

week rule invested in stocks Tuesday through Friday, and out of the market on Mondays,

produces the highest Sharpe ratio.  The many changes in the type of optimal rule chosen

in the different sub-samples is quite striking: three day of the week, two turn of the

month, and two month of the year rules are selected.

[Insert Table IV]

Table IV shows that the best calendar rule, chosen according to the Sharpe criterion,

produces a Sharpe ratio of 0.33 in the full sample 1897 – 1996.  This value is much

higher than that of the market index (0.01).  As a result, the nominal P-value of the best

calendar rule is less than 0.002.  This may seem to be fairly conclusive evidence that

calendar effects matter.  However, once data-snooping effects are accounted for even the

most successful calendar rule is no longer significant at the 10 percent critical level.  In

fact the best calendar rules generate nominal P-values below 0.1 in every single sub-

sample, but not a single one of the Reality Check P-values is significant at the 10 percent

critical level.

Figure 2 plots the estimated Sharpe ratio for each of the models in the universe of

calendar trading rules.  It also shows the sequence tracking the highest Sharpe ratio and

the corresponding Reality Check P-value.  As in Figure 1, the systematic patterns in the

sequence of estimates of the performance measure reveal the complicated cross-sectional

dependencies operating in the simulation experiment.  Note from the break-up in patterns

that the effective span of models increases after 8,300 models have been inspected.  Since

the maximum Sharpe ratio does not increase at this point, the Reality Check P-value

jumps dramatically from about 0.33 to 0.52 subsequent to including just a handful of

these new rules.17  From this point onward, without an increase in the maximum Sharpe

ratio, the P-value experiences a gradual increase throughout the remainder of the

                                               
17 This break-point is due to the change from month of the year rules to half of the month rules.
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universe.  This illustrates succinctly how the effective span of trading rules affects the

Reality Check P-value.

5.3  Out-of-Sample Results

As pointed out by many researchers, new data is an effective remedy against data-

snooping.  Use of new data ensures that the sample on which a hypothesis was originally

based effectively is separated from the sample used to test the hypothesis.  The two most

prominent studies that use the DJIA index, namely Lakonishok and Smidt (1988) and

Brock, Lakonishok and LeBaron (1992), both end in May 1986.  Thus we have access to

a post-sample data set comprising daily observations from June 1986 – December 1996.

This is a relatively short period to evaluate the monthly effects but it is a long sample for

the daily calendar effects.

To address issues related to the absence of dividends from the DJIA price index and

transaction costs incurred from implementing the calendar rules in a trading strategy

based on the individual stocks traded in the cash market, we also consider the longest

available futures price index, namely the Standard and Poor’s (S&P) 500 Future Price

Index, established in 1983.  Hence we use the following out-of-sample periods:18

Sub-Period 9: June 1986 – December 1996

S&P 500 Futures: January 1983 – December 1996.

Pinnacle Data Corporation is the provider of the S&P 500 futures data.  We use the prices

from the nearest futures contract and apply a rollover date of the 9th of the delivery month

for the contract.  In doing so, on the 9th of March, June, September, and December, any

position in the current contract is closed out, and a new position is opened, in accordance

with the calendar trading rule.  We then develop a series of returns which is linked

together at the rollover dates.  A new price series is generated from this returns series by

                                               
18 The futures price data effectively covers an out-of-sample period since it only has a short overlap with
the 1897 – 1986 period considered by earlier studies and all other studies have looked at cash market
prices.
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employing the price of the S&P 500 futures contract on the first available day of our data

set.

According to the mean return criterion, in the sample June 1986 – December 1996, a

calendar rule that is in the market all the time, except during the fourth week of each

month, turns out to be optimal.  In the case of the S&P 500 Futures data covering the

period 1983 – 1996, a month of the year rule that is out of the market in September and

October is optimal.19

The best calendar rule chosen for the DJIA data generated a mean return in excess of the

market index of 3.6 percent per year.  This yielded a nominal P-value of 0.12 and a

Reality Check P-value of 0.87.  An even weaker performance of the best calendar rule

emerges from the Futures data set: here the abnormal performance is 1.8 percent per year,

yielding nominal and Reality Check P-values of 0.30 and 0.99, respectively.

These findings also show that if an investor had chosen to use the calendar rule that fared

best up to 1986, namely the Monday rule, in a trading strategy between 1987 and 1996,

then this would not have produced statistically significant superior performance relative

to the market index.20  Furthermore, analyzing the Monday effect from its initial date of

publicity in Cross (1973) through to 1996, reveals that it did not continue to significantly

outperform.  The market during this period earned a mean annualized return of 8.78

percent, whereas the Monday rule earned just slightly more at 9.02 percent.  The nominal

P-value is not significant at 0.44.  The outcome is similar when examining the Sharpe

ratio, with a nominal P-value of 0.36.  The Sharpe ratios for the benchmark and Monday

rule were 0.078 and 0.112, respectively.  This is additional evidence against the presence

of calendar effects in stock returns.

                                               
19 Interestingly, if we omit trading on October 19, 1987, it is no longer optimal to be neutral during the
month of October.

20 Indeed, an investor engaging in the Monday rule during the out-of-sample period in the DJIA would have
experienced an annualized mean return of 10.2%, which is less than the 11.6% provided by the buy-and-
hold strategy.  Note that this is true in light of the “assistance” provided to the rule by the market break that
occurred on October 19, 1987, which is a Monday.
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Further extending this argument, it is worth noting that the literature had already

identified a variety of calendar anomalies by the mid-1970s.  One of our sub-samples,

1976 – 1986, closely corresponds to this period and it is reassuring to see that even the

nominal P-values of the best rule, at 0.09 and 0.08 for the mean return and Sharpe ratio

criteria, respectively, are quite high.  This again suggests that no investor could have

outperformed the market benchmark after reading the early literature even if this would

have allowed the investor to correctly pick the best rule.

Figures 3 and 4 again provide fascinating pictures of complicated cross-dependencies in

the payoffs produced by the universe of calendar rules selected according to the mean

return criterion.  As in Figure 2, the patterns break up after 8,300 rules have been

considered.  In contrast to the earlier figure, the Reality Check P-value does not

dramatically increase at this point.  These new rules either do not improve on the best

mean return performance (Figure 3) and thus experience a gradual increase in the P-

value, or only marginally improve performance (Figure 4)21 and experience a very slight

increase in the Reality Check P-value.

The earlier in-sample results on the Sharpe ratio carry over to the out-of-sample period.

For these, the Sharpe ratios of the best calendar rules are more than twice as high as those

of the benchmark, resulting in nominal P-values of 0.03 for the DJIA, and 0.21 for the

S&P 500 futures.  However, the Reality Check P-value is greater than 0.91 for both price

series.

Figures 5 and 6 provide similar plots for the models selected by the Sharpe ratio criterion

and, perhaps more clearly than any other figures, illustrate the workings of the Reality

Check procedure.  In particular, notice the very large increase in the Reality Check P-

value in Figure 5 starting at model number 8,300.  This episode effectively demonstrates

                                               
21 Including a large number of calendar rules thus does not simply decrease the probability that a ‘good’
calendar rule really is superior by evaluating this rule jointly with the set of rules from which it was drawn.
Rather, the search over many rules ensures that we really have identified the best rule in this large universe.
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the working of the bootstrap procedure: at this point a new class of calendar models is

introduced into the universe.  These models do not lead to an increase in the best model’s

Sharpe ratio while simultaneously increasing the effective span from which the best

model was selected.  The effect is to increase the P-value.  Figure 6, on the other hand,

displays an increase in the best performance at rule 8,435.  However, at nearly the same

time, the effective span of rules increases.  This leads to a nearly imperceptible drop in

the Reality Check P-value that then continues to tend towards one.

6.  Extensions of the Empirical Results

In this section we investigate the robustness of the results on the significance of calendar

rules with regard to data-snooping effects.  Initially, we analyze the impact of data-

snooping on calendar effects in the context of the reduced universe comprising only 244

calendar rules.  We also look at the sensitivity of the findings in the original studies on

the Monday effect with regard to data-snooping, using only a handful of rules and the

original sample periods adopted by those studies.

6.1  Results From the Reduced Universe of Calendar Effects

In addition to the full universe of calendar rules, we consider a reduced universe that

contains only the core set of calendar effects.  This universe comprises only 244 rules

rather than 9,452.  The entire experiment explained above is repeated for this smaller set

of calendar effects.  The reason for doing this is to answer the question, “How does the

best rule fare, in terms of the data-snooping adjusted P-value, when examined in the

context of only a handful of rules?”22

[Insert Table V]

Table V provides the best calendar effect trading rule, according to the mean return

criterion, for each of the sub-samples, the full data set, and both the DJIA and S&P 500

                                               
22 Note that the best rule chosen from the full universe of calendar effects may not be included in the
reduced universe.
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futures “out-of-sample” periods.  Similar to the results for the full universe, the optimal

rule varies in nearly every sub-period, with the exception being the two sub-periods

extending from June 1952 to December 1975.  These two sub-periods find the Monday

effect rule to be the best, which is quite interesting considering that it is these periods

which were most heavily investigated to find the Monday effect in the first place.  We

will have more to say on this topic shortly.

[Insert Table VI]

The performance of the best rule, according to the mean return criterion and chosen from

the reduced set of rules is provided in Table VI.  The results are strikingly similar to those

for the full universe of calendar rules.  In two of the sub-periods, the best rule chosen

from the full universe is also contained in the reduced universe.  The Reality Check P-

values, however, are still highly insignificant at values greater than 0.21.  This same

phenomenon also occurs for the original data set from 1897 to 1986, and the full sample

from 1897 to 1996.

[Insert Table VII]

The best performing rule from the reduced universe chosen according to the Sharpe ratio

criterion, is presented in Table VII for each of the sample periods.  Although the best rule

varies from one sub-period to the next for all of the sub-periods, only three unique rules

are found to be best when evaluated by the Sharpe ratio.  Two of these three rules exploit

the anomaly of negative returns on Mondays.

[Insert Table VIII]

Table VIII provides the performance of the best rules from the reduced universe when

considering the Sharpe ratio.  The results are similar once again.  Six out of the seven

sub-periods have data-snooping adjusted P-values greater than 0.24.  It is also worth
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noting that both of the out-of-sample periods perform very poorly with Reality Check P-

values above 0.93.

6.2  In-Sample Data-Snooping Biases for the Monday Effect

In our final piece of empirical analysis, we examine the Monday effect during the exact

sample period in which it was found.  In particular, Cross (1973), French (1980), and

Gibbons and Hess (1981) analyze the sample periods January 1953 – December 1970,

January 1953 – December 1977, and July 1962 – December 1978, respectively.  Each of

these studies uses the S&P 500 cash index, and Gibbons and Hess (1981) also include the

CRSP value-weighted and equal-weighted portfolios.23

We examine each of these sample periods with the DJIA and examine the effects of very

moderate data-snooping on the results.  Interestingly, for each of the three sub-periods,

the best model from the reduced universe of rules is indeed the Monday effect.  We

abridge the reduced universe of rules even further and consider only day-of-the-week

trading rules.  In particular, we consider the performance of the Monday effect when

considered in conjunction with only 10 day-of-the-week rules (including long and neutral

positions only), as well as after examining the 20 day-of-the-week rules which include

both long and short positions.

[Insert Table IX]

[Insert Table X]

                                               
23 One could argue that the period following the study by Fields (1931) determines an out-of-sample period
with regard to the Monday effect.  We believe that there are two reasons why this argument is implausible.
First, Fields (1931) was explicitly not looking for a Monday effect but instead considered a Saturday effect:
“More specifically, it is often held that the unwillingness of traders to carry their holdings over the
uncertainties of a week-end leads to a liquidation of long accounts and a consequent decline of security
prices on Saturday” (page 415).  This would seem to predict a positive Monday effect as prices bounce
back after the weekend.  Furthermore, Fields refers to the “complete absence” of a Saturday effect, rather
than pointing to the existence of a Monday effect.  Second, other calendar effects were no doubt focused on
historically but did not subsequently receive the same attention because they were not as large in
subsequent samples as the Monday effect.  This leaves us again with the task of assessing the best
individual calendar rule in conjunction with a larger set of (historical) calendar rules.
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Tables IX and X present the results of this exercise.  When considered in isolation, the

Monday rule (neutral on Mondays, long otherwise) has nominal P-values of nearly zero

for both the mean return and Sharpe ratio criteria.  However, introducing only a handful

of models tends to increase the Reality Check P-value substantially.

In both the 1953 – 1970 sample and the 1953 – 1977 sample, the Reality Check P-value

does not experience any fluctuation while examining the first ten day-of-the-week rules

which include only long and neutral positions, and thus remains near zero.  This is true

for both criteria.  The 1962 – 1978 sample, on the other hand, shows an increase in the P-

value from zero to 0.034 for the mean return criterion, and an increase to 0.087 for the

Sharpe ratio criterion.  Note that this increase in the P-value occurs after examining only

the 10 standard day-of-the-week rules.

In the context of an examination of all 20 day-of-the-week rules, all three sub-periods

exhibit a substantial increase in the P-value.  For the mean return criterion, the P-value

increases to 0.062 for the two samples beginning in 1953, bordering on statistical

insignificance, and jumps to over 21 percent in the 1962 – 1978 sample.  The results are

similar for the Sharpe ratio.

This suggests that if the original researchers had been able to formally account for data-

snooping biases, they may have been relatively skeptical of their results.  Evaluating the

Monday effect in the context of only the core day-of-the-week rules renders the statistical

significance of the Monday effect doubtful, even in the period during which the Monday

effect was discovered.

7.  Conclusion

In their systematic study of calendar effects in the DJIA index, Lakonishok and Smidt

(1988) conclude “In summary, DJIA returns are persistently anomalous over a 90-year

period around the turn of the week, around the turn of the month, around the turn of the

year, and around holidays.”  They explicitly acknowledge the potential dangers of data-
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snooping effects and state that “The possibility that these particular anomalies could have

occurred by chance cannot be excluded, but this is very unlikely.”

In this paper we have shown that, in fact, when assessed in the context of either the full

universe, or a restricted version, of calendar rules that could plausibly have been

considered by investors and academics with access to our data set, the strength of the

evidence on calendar anomalies looks much weaker.  Using Reality Check P-values that

adjust for the effects of data-snooping, no calendar rule appears to be capable of

outperforming the benchmark market index.  This is true in all of the individual sample

periods, in the out-of-sample experiment with the DJIA and S&P 500 Futures data, and in

the full sample using a century of daily data.

We have not considered calendar effects in other types of securities such as small or

foreign firms’ equities.  This may be important since some calendar effects, such as the

high returns in January, are largely associated with these assets.  In principle our analysis

could be extended to include other assets.  It is likely that data-snooping has also

occurred across several types of assets and that investors have considered firms sorted by

size, accounting characteristics, market sector, and so forth.  Extending our analysis to

cover both the cross-section of calendar rules and types of assets does not appear to be

computationally feasible at this moment, however.24  Our choice of portfolio (the DJIA)

is deliberate in that the included stocks are all very liquid and trade without large

transaction costs so that findings of calendar effects would be more of a challenge to the

efficient market hypothesis than if these were found for, say, less liquid firms.  Small

firms have paid higher mean returns than large ones at the beginning of January in 32 out

of 33 years, c.f., Kamara (1998), and this anomaly is likely to be robust with respect to

data-snooping.  However, researchers have also found that this calendar effect cannot be

exploited to generate economic profits because of the presence of high transaction costs.

                                               
24 The results of Flannery and Protopapadakis (1988) suggest that calendar effects are not the same across
different assets.  They investigate intra-week seasonalities on T-bills, bonds and stocks and find that similar
securities display significantly different calendar effects.  If the theory is that calendar effects are induced
by a common factor, this evidence would seem to further suggest that these effects are spurious.
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We find it suggestive that the single most significant calendar rule, namely the Monday

effect, has indeed been identified in the empirical literature.  This is probably not by

chance and it indicates that very substantial search for calendar regularities has been

carried out by the financial community.25  It is particularly noteworthy that when the

Monday effect is examined in the context of as few as 20 day-of-the-week trading rules,

and during the sample period originally used to find the Monday effect, its statistical

significance becomes questionable.  Subsequent to its appearance, various theories have

attempted to explain the Monday effect without much success.  Thaler (1987b) lists a

number of institutional and behavioral reasons for calendar effects.  Our study suggests

that the solution to the puzzling abnormal Monday effect actually lies outside the

specificity of Mondays and rather has to do with the very large number of rules

considered besides the Monday rule.

Blame for data-snooping cannot and must not be laid on individual researchers.  Data

exploration is an inevitable part of the scientific discovery process in the social sciences

and many researchers go to great lengths in attempts to avoid such practices.  Ultimately,

however, it is extremely difficult for a researcher to account for the effects the cumulated

‘collective knowledge’ of the investment community may have had on a particular study.

Research is a sequential process through which new studies build on evidence from

earlier papers.

Once a sufficient body of research has accumulated, it is important to assess the results

not by treating the individual studies as independent observations but by explicitly

accounting for their cross-dependencies.  In doing this, one should not be overwhelmed

by the sheer amount of empirical evidence.  This is sometimes difficult because the

dependencies between results in different studies are unknown.  For example, Michael

Jensen, in his introduction to the 1978 volume of the Journal of Financial Economics on

market anomalies writes “Taken individually many scattered pieces of evidence … don’t

                                               
25 Brock, Lakonishok and LeBaron (1992) provide a very fitting quote from Merton (1987, page 104) “All
this fits well with what the cognitive psychologists tell us is our natural individual predilection to focus,
often disproportionately so, on the unusual”.
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amount to much.  Yet viewed as a whole, these pieces of evidence begin to stack up in a

manner which make a much stronger case for the necessity to carefully review both our

acceptance of the efficient market theory and our methodological procedures” (page 95).

In this paper we have adopted and carefully applied a procedure which evaluates the

significance of calendar effects in stock returns in the context of the entire set of rules

studied in the literature.  Our results show that even supposedly strongly supported

empirical phenomena may not stand up to closer scrutiny.  There may well be many other

such surprises waiting for researchers trying to establish our degree of knowledge about

other economic phenomena.
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Table I

Best Calendar Rules under the Mean Return Criterion

This table reports the historically best-performing calendar rule, chosen with respect to the mean return

criterion, in each sample period for the full universe of 9,452 calendar rules.

Sample Full Universe Best Model:  Mean Return Criterion

Jan 1897 - Dec 1910
Month of Year -- j, f, m, a, m, j, j, a, s, o, n, d = 1, 0, 1, 0, 0, 0, 1, 
1, 0, 1, 1, 1

Jan 1911 - Dec 1924
Month of Year -- j, f, m, a, m, j, j, a, s, o, n, d = 1, 0, 1, 1, 1, 0, 0, 
1, 1, 1, 0, 1

Jan 1925 - Dec 1938 Day of the Week -- m, t, w, th, f = -1, 0, 0, 0, 0

Jan 1939 - May 1952
Turn of Month -- -4, -3, -2, -1, 1, 2, 3, 4, otherwise = 0, 0, 0, 0, 0, 
0, 0, 1, 1

June 1952 - Dec 1963 Day of the Week -- m, t, w, th, f = 0, 1, 1, 1, 1

Jan 1964 - Dec 1975 Day of the Week -- m, t, w, th, f = 0, 0, 1, 1, 1

Jan 1976 - May 1986
Month of Year -- j, f, m, a, m, j, j, a, s, o, n, d = 1, 0, 1, 1, 0, 1, 1, 
1, 0, 0, 1, 1

Jan 1897 - May 1986 Day of the Week -- m, t, w, th, f = 0, 1, 1, 1, 1

Jan 1897 - Dec 1996 Day of the Week -- m, t, w, th, f = 0, 1, 1, 1, 1

June 1986 - Dec 1996 Week of the Month -- 1, 2, 3, 4, 5 = 1, 1, 1, 0, 1

S&P 500 Futures
(Jan 1983 - Dec 1996)

Month of Year -- j, f, m, a, m, j, j, a, s, o, n, d = 1, 1, 1, 1, 1, 1, 1, 
1, 0, 0, 1, 1

Out-of-Sample
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Table II

Performance of the Best Calendar Rules under the Mean Return Criterion

This table presents the performance results of the best calendar rule, chosen with respect to the mean return

criterion, in each of the sample periods, for the full universe of 9,452 calendar rules.  The table reports the

annualized mean return for the benchmark model and the best performing model, along with White’s

Reality Check P-value and the nominal P-value (i.e., that which results from applying the Reality Check

methodology to the best trading rule only, thereby ignoring the effects of the data-snooping).

Sample Benchmark Model Nominal White's
Return Return P -value P -value

Jan 1897 - Dec 1910 4.17 9.40 0.028 0.617

Jan 1911 - Dec 1924 2.43 6.05 0.089 0.739

Jan 1925 - Dec 1938 1.51 13.22 0.065 0.367

Jan 1939 - May 1952 3.42 8.01 0.048 0.481

June 1952 - Dec 1963 9.21 17.38 0.000 0.216

Jan 1964 - Dec 1975 0.93 10.88 0.000 0.241

Jan 1976 - May 1986 7.56 10.61 0.090 0.915

Jan 1897 - May 1986 3.88 8.50 0.000 0.196

Jan 1897 - Dec 1996 4.63 8.66 0.000 0.243

June 1986 - Dec 1996 11.61 15.23 0.117 0.874

S&P 500 Futures
(Jan 1983 - Dec 1996)

8.54 10.33 0.297 0.992

Out-of-Sample

Full Universe Best Model:  Mean Return Criterion
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Table III

Best Calendar Rules under the Sharpe Ratio Criterion

This table reports the historically best-performing calendar rule, chosen with respect to the Sharpe ratio

criterion, in each sample period for the full universe of 9,452 calendar rules.

Sample Full Universe Best Model:  Sharpe Ratio Criterion

Jan 1897 - Dec 1910
Turn of Month -- -4, -3, -2, -1, 1, 2, 3, 4, otherwise = 1, 0, 1, 1, 1, 
1, 1, 0, 1

Jan 1911 - Dec 1924
Month of Year -- j, f, m, a, m, j, j, a, s, o, n, d = 1, 0, 1, 1, 1, 0, 0, 
1, 1, 1, 0, 1

Jan 1925 - Dec 1938 Day of the Week -- m, t, w, th, f = -1, 0, 0, 0, 0

Jan 1939 - May 1952
Turn of Month -- -4, -3, -2, -1, 1, 2, 3, 4, otherwise = 1, 1, 0, 0, 0, 
0, 0, 1, 1

June 1952 - Dec 1963 Day of the Week -- m, t, w, th, f = 0, 0, 1, 1, 1

Jan 1964 - Dec 1975 Day of the Week -- m, t, w, th, f = 0, 0, 1, 1, 1

Jan 1976 - May 1986
Month of Year -- j, f, m, a, m, j, j, a, s, o, n, d = 1, 0, 1, 1, 0, 1, 1, 
1, 0, 0, 1, 1

Jan 1897 - May 1986 Day of the Week -- m, t, w, th, f = 0, 1, 1, 1, 1

Jan 1897 - Dec 1996 Day of the Week -- m, t, w, th, f = 0, 1, 1, 1, 1

June 1986 - Dec 1996 Week of the Month -- 1, 2, 3, 4, 5 = 1, 0, 1, 0, 1

S&P 500 Futures
(Jan 1983 - Dec 1996)

Turn of Month -- -4, -3, -2, -1, 1, 2, 3, 4, otherwise = 1, 1, 1, 1, 1, 
1, 1, 0, 1

Out-of-Sample
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Table IV

Performance of the Best Calendar Rules under the Sharpe Ratio Criterion

This table presents the performance results of the best calendar rule, chosen with respect to the Sharpe

Ratio criterion, in each of the sample periods, for the full universe of 9,452 calendar rules.  The table

reports the Sharpe Ratio for the benchmark model and the best performing model, along with White’s

Reality Check P-value and the nominal P-value (i.e., that which results from applying the Reality Check

methodology to the best trading rule only, thereby ignoring the effects of the data-snooping).

Sample Benchmark Model Nominal White's
Sharpe Ratio Sharpe Ratio P -value P -value

Jan 1897 - Dec 1910 0.01 0.46 0.036 0.845

Jan 1911 - Dec 1924 -0.13 0.12 0.055 0.976

Jan 1925 - Dec 1938 -0.01 0.99 0.006 0.130

Jan 1939 - May 1952 0.23 1.27 0.000 0.125

June 1952 - Dec 1963 0.63 1.66 0.000 0.274

Jan 1964 - Dec 1975 -0.37 0.51 0.000 0.584

Jan 1976 - May 1986 -0.13 0.12 0.081 1.000

Jan 1897 - May 1986 0.01 0.33 0.000 0.467

Jan 1897 - Dec 1996 0.04 0.33 0.000 0.554

June 1986 - Dec 1996 0.35 0.83 0.029 0.915

S&P 500 Futures
(Jan 1983 - Dec 1996)

0.11 0.33 0.212 0.997

Full Universe Best Model:  Sharpe Ratio Criterion

Out-of-Sample
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Table V

Best Calendar Rules, in the Reduced Universe, under the Mean Return Criterion

This table reports the historically best-performing calendar rule, chosen with respect to the mean return

criterion, in each sample period for the reduced universe of 244 calendar rules.

Sample Reduced Universe Best Model:  Mean Return Criterion

Jan 1897 - Dec 1910
Month of Year -- j, f, m, a, m, j, j, a, s, o, n, d = 1, 1, 1, 1, 1, 1, 1, 
1, 0, 1, 1, 1

Jan 1911 - Dec 1924
Month of Year -- j, f, m, a, m, j, j, a, s, o, n, d = 1, 1, 1, 1, 1, 1, 1, 
1, 1, 1, 0, 1

Jan 1925 - Dec 1938 Day of the Week -- m, t, w, th, f = -1, 0, 0, 0, 0

Jan 1939 - May 1952
Turn of Month -- -4, -3, -2, -1, 1, 2, 3, 4, otherwise = 1, 1, 1, 1, 1, 
1, 1, 1, 0

June 1952 - Dec 1963 Day of the Week -- m, t, w, th, f = 0, 1, 1, 1, 1

Jan 1964 - Dec 1975 Day of the Week -- m, t, w, th, f = 0, 1, 1, 1, 1

Jan 1976 - May 1986 Semi Month -- second half of October, otherwise = 0, 1

Jan 1897 - May 1986 Day of the Week -- m, t, w, th, f = 0, 1, 1, 1, 1

Jan 1897 - Dec 1996 Day of the Week -- m, t, w, th, f = 0, 1, 1, 1, 1

June 1986 - Dec 1996 Week of the Month -- 1, 2, 3, 4, 5 = 1, 1, 1, 0, 1

S&P 500 Futures
(Jan 1983 - Dec 1996)

Week of the Month -- 1, 2, 3, 4, 5 = 1, 1, 1, 0, 1

Out-of-Sample
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Table VII

Best Calendar Rules, in the Reduced Universe, under the Sharpe Ratio Criterion

This table reports the historically best-performing calendar rule, chosen with respect to the Sharpe ratio

criterion, in each sample period for the reduced universe of 244 calendar rules.

Sample Reduced Universe Best Model:  Sharpe Ratio Criterion

Jan 1897 - Dec 1910
Turn of Month -- -4, -3, -2, -1, 1, 2, 3, 4, otherwise = 1, 1, 1, 1, 1, 
1, 1, 1, 0

Jan 1911 - Dec 1924 Day of the Week -- m, t, w, th, f = 0, 1, 1, 1, 1

Jan 1925 - Dec 1938 Day of the Week -- m, t, w, th, f = -1, 0, 0, 0, 0

Jan 1939 - May 1952
Turn of Month -- -4, -3, -2, -1, 1, 2, 3, 4, otherwise = 1, 1, 1, 1, 1, 
1, 1, 1, 0

June 1952 - Dec 1963 Day of the Week -- m, t, w, th, f = 0, 1, 1, 1, 1

Jan 1964 - Dec 1975 Day of the Week -- m, t, w, th, f = -1, 0, 0, 0, 0

Jan 1976 - May 1986 Semi Month -- second half of October, otherwise = 0, 1

Jan 1897 - May 1986 Day of the Week -- m, t, w, th, f = 0, 1, 1, 1, 1

Jan 1897 - Dec 1996 Day of the Week -- m, t, w, th, f = 0, 1, 1, 1, 1

June 1986 - Dec 1996 Week of the Month -- 1, 2, 3, 4, 5 = 1, 1, 1, 0, 1

S&P 500 Futures
(Jan 1983 - Dec 1996)

Week of the Month -- 1, 2, 3, 4, 5 = 1, 1, 1, 0, 1

Out-of-Sample
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Table VIII

Performance of the Best Calendar Rules, in the Reduced Universe, under the
Sharpe Ratio Criterion

This table presents the performance results of the best calendar rule, chosen with respect to the Sharpe ratio

criterion, in each of the sample periods, for the reduced universe of 244 calendar rules.  The table reports

the Sharpe ratio for the benchmark model and the best performing model, along with White’s Reality

Check P-value and the nominal P-value (i.e., that which results from applying the Reality Check

methodology to the best trading rule only, thereby ignoring the effects of the data-snooping).

Sample Benchmark Model Nominal White's
Sharpe Ratio Sharpe Ratio P -value P -value

Jan 1897 - Dec 1910 0.01 0.23 0.133 0.956

Jan 1911 - Dec 1924 -0.13 0.02 0.157 0.978

Jan 1925 - Dec 1938 -0.01 0.99 0.006 0.069

Jan 1939 - May 1952 0.23 1.02 0.000 0.241

June 1952 - Dec 1963 0.63 1.60 0.000 0.276

Jan 1964 - Dec 1975 -0.37 0.48 0.056 0.579

Jan 1976 - May 1986 -0.13 0.00 0.043 0.997

Jan 1897 - May 1986 0.01 0.33 0.000 0.435

Jan 1897 - Dec 1996 0.04 0.33 0.000 0.511

June 1986 - Dec 1996 0.35 0.73 0.031 0.935

S&P 500 Futures
(Jan 1983 - Dec 1996)

0.11 0.28 0.196 0.988

Reduced Universe Best Model:  Sharpe Ratio Criterion

Out-of-Sample
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Table IX

Performance of the Monday Effect Trading Rule under the Mean Return Criterion
(Day-of-the-Week Universe)

This table presents the performance results of the Monday effect trading rule, evaluated with respect to the

mean return criterion, in three sample periods corresponding to the original literature.  The table reports the

annualized mean return for the benchmark model and the Monday rule, the nominal P-value, and White’s

Reality Check P-value after examination of the ten long and neutral day-of-the-week rules, and the full

twenty day-of-the-week rules including short positions.

Sample Benchmark Model Nominal 10 Model 20 Model
Return Return P -value P -value P -value

Jan 1953 - Dec 1970
Cross (1973)

5.90 14.72 0.000 0.000 0.062

Jan 1953 - Dec 1977
French (1980)

4.20 12.24 0.000 0.000 0.062

July 1962 - Dec 1978
Gibbons & Hess (1981)

2.20 8.99 0.000 0.034 0.212

Monday Effect:  Mean Return Criterion
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Table X

Performance of the Monday Effect Trading Rule under the Sharpe Ratio Criterion
(Day-of-the-Week Universe)

This table presents the performance results of the Monday effect trading rule, evaluated with respect to the

Sharpe ratio criterion, in three sample periods corresponding to the original literature.  The table reports the

Sharpe ratio for the benchmark model and the Monday rule, the nominal P-value, and White’s Reality

Check P-value after examination of the ten long and neutral day-of-the-week rules, and the full twenty day-

of-the-week rules including short positions.

Sample Benchmark Model Nominal 10 Model 20 Model
Sharpe Ratio Sharpe Ratio P -value P -value P -value

Jan 1953 - Dec 1970
Cross (1973)

0.23 1.20 0.000 0.000 0.032

Jan 1953 - Dec 1977
French (1980)

0.00 0.76 0.000 0.000 0.051

July 1962 - Dec 1978
Gibbons & Hess (1981)

-0.26 0.30 0.000 0.087 0.265

Monday Effect:  Sharpe Ratio Criterion
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Figure 1.  Economic and Statistical Performance of the Best Model Chosen According to
the Mean Return Criterion:  DJIA, January 1897 – December 1996

For a given trading rule, n, indexed on the x-axis, the scattered points plot the mean annualized returns

experienced during the sample period.  The thin line measures the best mean annualized return among the

set of trading rules i = 1,…,n, and the thick line measures the associated data-snooping adjusted P-value.

Figure 2.  Economic and Statistical Performance of the Best Model Chosen According to

the Sharpe Ratio Criterion:  DJIA, January 1897 – December 1996

For a given trading rule, n, indexed on the x-axis, the scattered points plot the Sharpe ratio experienced

during the sample period.  The thin line measures the best Sharpe ratio among the set of trading rules i =

1,…,n, and the thick line measures the associated data-snooping adjusted P-value.

Figure 3.  Economic and Statistical Performance of the Best Model Chosen According to

the Mean Return Criterion:  DJIA, June 1986 – December 1996

For a given trading rule, n, indexed on the x-axis, the scattered points plot the mean annualized returns

experienced during the sample period.  The thin line measures the best mean annualized return among the

set of trading rules i = 1,…,n, and the thick line measures the associated data-snooping adjusted P-value.

Figure 4.  Economic and Statistical Performance of the Best Model Chosen According to

the Mean Return Criterion:  S&P 500 Futures, January 1983 – December 1996

For a given trading rule, n, indexed on the x-axis, the scattered points plot the mean annualized returns

experienced during the sample period.  The thin line measures the best mean annualized return among the

set of trading rules i = 1,…,n, and the thick line measures the associated data-snooping adjusted P-value.

Figure 5.  Economic and Statistical Performance of the Best Model Chosen According to

the Sharpe Ratio Criterion:  DJIA, June 1986 – December 1996

For a given trading rule, n, indexed on the x-axis, the scattered points plot the Sharpe ratio experienced

during the sample period.  The thin line measures the best Sharpe ratio among the set of trading rules i =

1,…,n, and the thick line measures the associated data-snooping adjusted P-value.

Figure 6.  Economic and Statistical Performance of the Best Model Chosen According to

the Sharpe Ratio Criterion:  S&P 500 Futures, January 1983 – December 1996

For a given trading rule, n, indexed on the x-axis, the scattered points plot the Sharpe ratio experienced

during the sample period.  The thin line measures the best Sharpe ratio among the set of trading rules i =

1,…,n, and the thick line measures the associated data-snooping adjusted P-value.


