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Abstract

We show theoretically and empirically that flows into index funds raise the prices of large

stocks in the index disproportionately more than the prices of small stocks. Conversely, flows

predict a high future return of the small-minus-large index portfolio. This finding runs counter

to the CAPM, and arises when noise traders distort prices, biasing index weights. When funds

tracking value-weighted indices experience inflows, they buy mainly stocks in high noise-trader

demand, exacerbating the distortion. During our sample period 2000-2019, a small-minus-large

portfolio of S&P500 stocks earns ten percent per year, while no size effect exists for non-index

stocks.
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1 Introduction

The growth of passive investing over the recent decades has been explosive. Total assets in index

mutual funds and exchange-traded funds (ETFs) rose from $400 billion in 2000 to $8.5 trillion in

2019, a larger than twentyfold increase. As of 2019, the assets managed by equity index mutual

funds and ETFs accounted for 50 percent of assets managed by all US equity funds, and for 15

percent of the US stock market as a whole. The S&P500 index attracts the bulk of equity index

investing: as of 2019, 42 percent of equity index mutual funds were tracking that index.1

Index funds provide households with a low-cost option to invest in financial markets. Their

effects on equilibrium asset prices and market efficiency are less well-understood. Suppose, in the

spirit of the CAPM, that index funds track the market portfolio, and that portfolio is held by

the average of active funds. If households switch from active funds uniformly into index funds,

then there should be no effect on asset prices. If instead passive investing grows because more

households access financial markets, then the market risk premium should drop. Hence, asset

prices should rise and expected returns should drop, and these effects should be more pronounced

for high CAPM-beta assets.

In this paper we study theoretically and empirically how the growth of passive investing im-

pacts stock prices. On the empirical side, we find that flows into equity index funds have sharply

different effects than the CAPM-implied ones. Flows raise disproportionately the prices of large-

capitalization stocks in the S&P500 index relative to the prices of the index’s small stocks. Hence,

flows are associated with a low return of a portfolio of small minus large index stocks. Conversely,

flows predict a high future return of the small-minus-large index portfolio. These effects run counter

to the CAPM because small stocks have higher CAPM beta than large stocks.2 We find additionally

a strong size effect, namely, small stocks earn higher average returns than large stocks even after

adjusting for CAPM beta. Moreover, this effect is confined to stocks within the S&P500 index.

On the theoretical side, we show that in the absence of noise traders (or when these traders hold

the index), flows into passive funds have the CAPM-implied effects. In the presence of noise traders,

1These data are from Page 39 and Table 42 of the 2020 Investment Company Institute Factbook, and from Page
9 of the 2012 Investment Company Institute Factbook.

2See, for example, Fama and French (1992).
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however, the effects differ sharply and align with our empirical findings. Intuitively, stocks in high

demand by noise traders are overvalued and enter with high weights into indices that weigh stocks

proportionately to their market capitalization. Conversely, stocks in low demand are undervalued

and enter with low weights. Hence, funds that track value-weighted indices overweight stocks in

high noise-trader demand and underweight stocks in low demand, compared to the weights they

would choose under portfolio optimization. When these funds experience inflows, they undertake

investments that exacerbate the price distortions.

Our model is set up in continuous time and builds on Buffa, Vayanos, and Woolley (2020).

Agents can trade one riskless asset, whose return is exogenous and constant over time, and mul-

tiple risky assets, whose prices are determined endogenously in equilibrium. Agents are of three

types: experts, who can invest in the riskless asset and in the risky assets without any constraints;

non-experts, whose risky-asset portfolio must track an index; and noise traders, who generate an

exogenous demand for the risky assets that is constant over time. An increase in the measure of

non-experts corresponds to more households accessing financial markets through index funds. An

increase in the measure of non-experts accompanied by an equal decrease in the measure of experts

corresponds to households switching from active into index funds.

In equilibrium, assets in high noise-trader demand trade at a high price. For these assets,

volatility per share is also high, and so is the price impact of buying additional shares. Hence, an

increase in the measure of non-experts, which triggers asset purchases, generates a larger percentage

price increase for the assets in high noise-trader demand. An increase in the measure of non-experts

that is accompanied by an equal decrease in the measure of experts generates an even stronger effect

in the same direction. Indeed, assets in high noise-trader demand attract less investment by experts

and are, therefore, less affected by a drop in the experts’ demand.

The relationship between noise-trader demand, volatility and price impact is easiest to under-

stand in the case where an asset is in such large demand that experts must short it in equilibrium.

A positive shock to the asset’s expected dividends causes the asset’s price to rise. The experts’

short position thus becomes larger and carries more risk. As a consequence, experts become more

willing to unwind their position and to buy the asset. Their buying pressure amplifies the price

rise, resulting in high volatility per share. The high volatility causes, in turn, high price impact.
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Indeed, experts accommodate additional purchases of the asset by holding an even larger short

position. This exposes them to even more volatility, causing the price to rise with demand in a

convex manner.

We summarize our theoretical results into four hypotheses: (1) flows into index funds are

associated with a low return of a portfolio of small- relative to large-capitalization index stocks,

and predict a high future return of that portfolio; (2) flows into index funds raise the concentration of

index weights, as measured by the cross-sectional standard deviation or the Herfindahl-Hirschman

index, and conversely high concentration predicts a high future return of the small-minus-large

index portfolio; (3) the rise in index investing in the recent decades is associated with a high

average return of the small-minus-large index portfolio; and (4) this size effect is weaker for stocks

not in the index. We test the four hypotheses by taking the index to be the S&P500, and the

flows to be into index mutual funds and ETFs that track that index. We refer to these institutions

collectively as index funds. Our sample period is 2000-2019.

To test the first hypothesis, we examine how the return of the small-minus-large index portfolio

relates to contemporaneous and to lagged flows into index funds. Consistent with the model, we find

a negative relationship between the return and contemporaneous flows, and a positive relationship

between the return and lagged flows. The observed relationships are stronger when market volatility

is high, which is also consistent with the model.

To test the second hypothesis, we examine whether changes in the concentration of index

weights are positively related to flows into index funds. Consistent with the model, we find a

positive contemporaneous relationship between flows and changes in concentration. We further

examine whether changes in concentration relate to the subsequent return of the small-minus-large

index portfolio. High concentration of index weights could be a manifestation of large flows into

index funds or of high noise-trader demand for some index stocks, both of which are positively

related to the future return of the small-minus-large index portfolio. Consistent with the model,

we find a strong positive relationship between changes in concentration and the future return of

the small-minus-large index portfolio.

To test the third hypothesis, we form portfolios based on index weights. The decile portfolio

of lowest index weight stocks earns an average return of 10% per year above the decile portfolio of
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highest index weight stocks. This difference cannot be explained by differences in CAPM beta.

The “within S&P500” size effect that we find differs from the traditional size effect (Banz (1981),

Fama and French (1992)) in important ways. First, the index weight-based portfolio spans (explains

away the abnormal returns of) the Fama and French SMB size portfolio, but not vice-versa. Second,

despite the previous findings of a strong January seasonality in returns of small stocks, we find no

evidence that the within S&P500 size effect exhibits a January seasonality. Third, and consistent

with the fourth hypothesis, while a stock’s weight in the S&P500 index is a strong and negative

predictor of its future return, such a relation is not statistically significant for non S&P500 index

stocks. Interestingly, for the period 1964-2000 when indexing was less prevalent, the relationship

between market capitalization and subsequent returns was similar for the two groups of stocks.

Our paper relates to various strands of the literature on mutual funds and indexing. One strand

examines empirically the effects of index additions, deletions and rebalancings. Harris and Gurel

(1986) and Shleifer (1986) find that when stocks are added to the S&P500 index, their prices rise,

with the effect being partly temporary. Goetzmann and Garry (1986) likewise find a price drop for

deleted stocks.3 Barberis, Shleifer, and Wurgler (2005), Greenwood (2008) and Boyer (2011) find

that inclusion in an index renders stocks more correlated with the index. Our work differs because

we examine the effects of flows into index funds rather than of changes in index composition.

Another strand of related literature examines the effects of institutional flows. Most of these

papers focus on institutions as a whole or on actively managed mutual funds. Badrinath, Kale,

and Noe (1995) and Sias and Starks (1997) find that institutional trading can explain lead-lag

patterns in stock returns. They attribute their findings to institutions reacting to information

before other investors do, an explanation also supported by the findings in Chakravarty (2001).

Nofsinger and Sias (1999) and Wermers (1999) find that institutional trading is positively related

to contemporaneous stock returns and predicts positively future returns over a six-month to one-

3Subsequent papers on how index weight changes affect price levels include Beneish and Whaley (1996) and Lynch
and Mendenhall (1997), who find that part of the effect occurs after weight changes are announced and before they
are made; Kaul, Mehrotra, and Morck (2000) and Chang, Hong, and Liskovich (2015), who use mechanical index
adjustments to rule out explanations other than price pressure; Wurgler and Zhuravskaya (2002) and Petajisto (2011),
who find a larger effect for stocks with higher idiosyncratic risk; Chen, Noronha, and Singal (2004), who find a more
lasting effect for additions than for deletions; Greenwood (2005), who finds that index rebalancings affect not only
those stocks whose weight changes but also the stocks that covary highly with them; and Pandolfi and Williams
(2019) who examine how rebalancings of sovereign bond indices affect bond yields and exchange rates.
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year horizon. Griffin, Harris, and Topaloglu (2003) and Sias, Starks, and Titman (2006) find that

the contemporaneous relationship remains positive in higher frequencies. Dasgupta, Prat, and

Verardo (2011) find that the predictive relationship turns negative over horizons longer than two

years. Coval and Stafford (2007) find that institutional trading in response to extreme flows is

associated with strong price reversals even over shorter horizons. A key question in these papers

is whether institutional trading causes price movements or whether it merely reflects them, either

by leading them, if institutions are better informed, or by lagging them, if institutions are positive

feedback traders. The evidence on price reversals is supportive of a causal relationship, i.e., price

pressure. Price pressure lies at the core of our analysis as well. Our analysis differs because it

concerns flows into index funds.

Relatively few papers study the effects of index fund flows. Goetzmann and Massa (2003) find

that investors sell index mutual funds after market declines, and these flows are positively related

to contemporaneous index returns but do not predict returns over the following week. More recent

papers focus on ETF flows. Closest to our work is Ben-David, Franzoni, and Moussawi (2018),

who find that trading by passive ETFs tend to destabilize the prices of the stocks they hold. Our

analysis differs because we focus on how index fund flows affect price levels in the cross section.

A final strand of related literature is theoretical. In Vayanos and Woolley (2013), active funds

exploit noise-trader induced price distortions. When investors move from active into index funds,

assets in high noise-trader demand become more expensive, while assets in low demand become

cheaper. Our model generates larger effects of index flows on assets in high noise-trader demand

even when the flows come from outside the asset market. In Kapur and Timmermann (2005) and

Cuoco and Kaniel (2011), asset managers receive a fee that depends on their performance relative to

an index, and in Brennan (1993), Basak and Pavlova (2013), Buffa and Hodor (2018) and Kashyap,

Kovrijnykh, Li, and Pavlova (2020), managers derive direct utility from their performance relative

to an index. These papers show that managers’ concerns with relative performance induce them to

buy assets in the index, causing their prices to rise. In our model, flows into index funds also cause

prices to rise, with the effect being stronger for assets with high index weights. In Chabakauri

and Rytchkov (2020), flows into index funds cause asset return volatilities to decline and have

ambiguous effects on return correlations.
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2 Theory

Our model builds on Buffa, Vayanos, and Woolley (2020, BVW), who examine how limits on asset

managers’ deviations from market indices affect equilibrium prices. We focus on the special case of

BVW where the limits are infinitely tight, i.e., managers must track indices perfectly. We extend

BVW by allowing for a more general index and by examining how changes in the measure of index

investors affect prices. We first present our version of the BVW model and solve for equilibrium

prices. We then perform comparative statics on how changes in the measure of index investors

affect prices and expected returns, and derive our empirical hypotheses.

2.1 Model

Time t is continuous and goes from zero to infinity. The riskless rate is exogenous and equal to

r > 0. There are N risky assets. Asset n = 1, .., N pays a dividend flow Dnt per share and is in

supply of ηn > 0 shares. The dividend flow Dnt follows the square-root process

dDnt = κn
(
D̄ −Dnt

)
dt+ σn

√
DntdBnt, (2.1)

where D̄ and {κn, σn}n=1,..,N are positive constants and Bnt is a Brownian motion. Setting the

long-run mean of the dividend flow to a value D̄ common across assets is without loss of generality

because we can redefine the number ηn of shares of each asset. For simplicity, we take the Brownian

motions {Bnt}n=1,..,N to be mutually independent, thus assuming that assets have independent

cashflows.

Denoting by Snt the price of risky asset n, the asset’s return per share in excess of the riskless

rate is

dRshnt ≡ Dntdt+ dSnt − rSntdt, (2.2)

and the asset’s return per dollar in excess of the riskless rate is

dRnt ≡
dRshnt
Snt

=
Dntdt+ dSnt

Snt
− rdt. (2.3)
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We refer to dRsht as share return, omitting that it is in excess of the riskless rate. We refer to dRt

as return, omitting that it is per dollar and in excess of the riskless rate.

Agents are competitive and form overlapping generations living over infinitesimal time intervals.

Each generation includes agents of three types. Experts observe the dividend flow and the supply of

all risky assets, and can invest in the riskless asset and in the risky assets without any constraints.

These agents can be interpreted as investors who invest with active managers. Non-experts do not

observe the dividend flow and the asset supply, and their risky-asset portfolio must track an index.

These agents can be interpreted as investors who invest with passive managers.4 Noise traders

generate an exogenous asset demand, which is constant over time.

We denote by W1t and W2t the wealth of an expert and a non-expert, respectively, by z1nt and

z2nt the number of shares of risky asset n that these agents hold, and by µ1 and µ2 these agents’

measure. We denote by η′n the number of shares of asset n included in the index. A non-expert thus

holds z2nt = λη′n shares of asset n, where λ is a proportionality coefficient that the agent chooses

optimally. We denote by un the number of shares of asset n held by noise traders, and assume that

un is smaller than the asset’s supply ηn.

The index does not include some assets, possibly small-capitalization ones, and weighs the

remaining assets proportionately to their capitalization. We refer to the included and non-included

assets as index and non-index assets, respectively. Denoting by I the set of index assets, η′n = 0 for

n /∈ I. Since the weights of index assets n ∈ I are proportional to capitalization, included supply

η′n and actual supply ηn are proportional. Without loss of generality, we set them to be equal.

Experts and non-experts born at time t are endowed with wealth W . Their budget constraint

is

dWit =

(
W −

N∑
n=1

zintSt

)
rdt+

N∑
n=1

zint(Dtdt+ dSt) = Wrdt+
N∑
n=1

zintdR
sh
nt , (2.4)

where dWit is the infinitesimal change in wealth over their life, i = 1 for experts, and i = 2 for

4Agents’ choice to invest with active or passive managers could result from trading off the superior returns of
active managers with their higher fees, in the spirit of Grossman and Stiglitz (1980).
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non-experts. They have mean-variance preferences

Et(dWit)−
ρ

2
Vart(dWit) (2.5)

over dWit, where ρ is a risk-aversion coefficient. The objective (2.5) can be derived from any VNM

utility u, as can be seen from the second-order Taylor expansion

u(W + dWit) = u(W ) + u′(W )dWit +
1

2
u′′(W )dW 2

it + o(dW 2
it). (2.6)

Maximizing the conditional expectation of (2.6) is equivalent to maximizing (2.5), with ρ = −u′′(W )
u′(W ) .

Non-experts, who do not observe {Dnt}n=1,..,N , maximize the unconditional expectation of (2.6),

which is equivalent to maximizing that of (2.5). The latter expectation is

E(dWit)−
ρ

2
Var(dWit), (2.7)

because with infinitesimal wealth changes, E
[
Vart(dR

sh
nt)
]

= Var(dRshnt).
5

2.2 Equilibrium

We look for an equilibrium where the price Snt of risky asset n is a function of the asset’s div-

idend flow Dnt. Denoting that function by Sn(Dnt) and assuming that it is twice continuously

differentiable, we can write the share return dRshnt as

dRshnt = Dntdt+ dSn(Dnt)− rSn(Dnt)dt

5We can write E
[
Vart(dR

sh
nt)
]

as

E
[
Vart(dR

sh
nt)
]

= E
[
Et
[
(dRshnt)

2
]
−
[
Et(dRshnt)

]2]
.

Since the first term in the square bracket is of order dt and the second of order dt2, we can keep only the first term
and find

E
[
Vart(dR

sh
nt)
]

= E
[
Et
[
(dRshnt)

2
]]

= E
[
(dRshnt)

2
]
.

We likewise find

Var(dRshnt) = E
[
(dRshnt)

2
]
−
[
E(dRshnt)

]2
= E

[
(dRshnt)

2
]
.
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=

[
Dnt + κn(D̄ −Dnt)S

′
n(Dnt) +

1

2
σ2
nDntS

′′(Dnt)− rSn(Dnt)

]
dt+ σn

√
DntS

′
n(Dnt)dBnt,

(2.8)

where the second step follows from (2.1) and Ito’s lemma.

Using the budget constraint (2.4), we can write the objective (2.5) as

N∑
n=1

zintEt(dRshnt)−
ρ

2

N∑
n=1

z2
intVart(dR

sh
nt).

Experts maximize (2.5) over positions {z1nt}n=1,..,N . The first-order condition is

Et(dRshnt) = ρz1ntVart(dR
sh
nt). (2.9)

The expected share return Et(dRshnt) is the drift term in (2.8), and the share return variance

Vart(dR
sh
nt) is the square of the diffusion term. Non-experts maximize (2.7) over positions {z2nt}n=1,..,N

that satisfy z2nt = λη′n. This amounts to maximizing

N∑
n=1

λη′ntE
(
dRshnt

)
− ρ

2

N∑
n=1

λ2(η′nt)
2Var(dRshnt)

over λ. The first-order condition is

N∑
n=1

η′nE(dRshnt) = ρλ

N∑
n=1

(η′n)2Var(dRshnt). (2.10)

Market clearing requires that the demand of experts, non-experts and noise traders equals the

supply coming from asset issuers:

µ1z1nt + µ2λη
′
n + un = ηn. (2.11)

Solving for z1nt = ηn−µ2λη′n−un
µ1

, and substituting into the first-order condition (2.9) of experts, we
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find the following ordinary differential equation (ODE) for the function Sn(Dnt):

Dnt+κn(D̄−Dnt)S
′
n(Dnt)+

1

2
σ2
nDntS

′′
n(Dnt)−rSn(Dnt) = ρ

ηn − µ2λη
′
n − un

µ1
σ2
nDntS

′
n(Dnt)

2. (2.12)

We look for an affine solution to the ODE (2.12):

Sn(Dnt) = an0 + an1Dnt, (2.13)

where (an0, an1) are constant coefficients. Substituting (2.13) into (2.12) and identifying terms,

we compute (an0, an1). Substituting the affine solution into the first-order condition (2.10) of non-

experts, we compute λ, completing our characterization of the equilibrium.

Proposition 2.1. In equilibrium, the price of risky asset n is given by Sn(Dnt) = an0 + an1Dnt,

with

an0 =
κn
r
an1D̄, (2.14)

an1 =
2

r + κn +
√

(r + κn)2 + 4ρηn−µ2λη′n−un
µ1

σ2
n

, (2.15)

and where λ > 0 solves

N∑
n=1

η′n(ηn − un)a2
n1 = λ(µ1 + µ2)

N∑
n=1

(η′n)2a2
n1. (2.16)

The price depends on (ηn, σn, η
′
n, un, µ1, µ2) only through ηn−µ2λη′n−un

µ1
σ2
n, and is decreasing and

convex in that variable.

The dependence of the price on ηn−µ2λη′n−un
µ1

σ2
n is key for our analysis. The quantity ηn−µ2λη′n−un

µ1
σ2
n

is the risk-adjusted net supply (RANS) of asset n that each expert holds in equilibrium. RANS

is equal to the supply ηn coming from the issuer, minus the demand µ2λη
′
n and un coming from

non-experts and noise traders, respectively. It is expressed in per-capita terms by dividing by the

measure µ1 of experts, and is adjusted for risk by multiplying by σ2
n. An asset n in small RANS
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trades at a high price. Moreover, its price is highly sensitive to changes in the dividend flow Dnt.

Indeed, consider the extreme case in which RANS is negative, so experts are short the asset. An

increase in Dnt tends to raise the asset’s price because it raises expected dividends. At the same

time, dividends become riskier due to the square-root specification of Dnt. Since experts hold a

short position, the increase in risk makes them more willing to unwind their position and to buy

the asset. This amplifies the price rise. Thus, holding constant the volatility of dividends through

the parameter σ2
n, assets in small RANS have high volatility per share.

The negative relationship between RANS and price is more pronounced for smaller values of

RANS, i.e., the price is a decreasing and convex function of RANS. Intuitively, convexity arises

because of the negative relationship between RANS and volatility per share holding σ2
n constant.

Since assets in small RANS have higher volatility per share than assets in large RANS, experts

require a larger price rise to accommodate a decline in RANS when RANS is small than when it is

large.

2.3 Comparative Statics

Our main comparative statics exercise is to increase the measure µ2 of non-experts holding the

measure µ1 of experts constant. This exercise can be interpreted as a increase in asset-market

participation by households through index funds. We also perform an alternative exercise to increase

µ2 holding the measure µ1 +µ2 of experts and non-experts constant. This exercise can interpreted

as a switch by households from active to index funds. We examine how these changes affect the

size (market capitalization) of different risky assets, and the relationship between size and expected

returns.

2.3.1 Measuring Size and Expected Returns

We begin by constructing our measures of size and expected returns. We measure size by weight

in a capitalization-weighted portfolio. The weight of an asset n in a portfolio of assets in a set S is

wnt =
ηnSn(Dnt)∑

m∈S ηmSm(Dmt)
. (2.17)
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The weight wnt varies over time because dividend flows do. With a large number of assets m in

S, independence of dividend flows Dmt and linearity of Sm(Dmt) imply that the denominator of

(2.17) is
∑

m∈S ηmSm(D̄) plus smaller-order terms.6 Hence, the unconditional expectation of wnt

is approximately

E (wnt) ≈
ηnSn(D̄)∑

m∈S ηmSm(D̄)

=

ηn

r+κn+

√
(r+κn)2+4ρ

ηn−µ2λη
′
n−un

µ1
σ2
n∑

m∈S
ηm

r+κm+

√
(r+κm)2+4ρ

ηm−µ2λη
′
m−um

µ1
σ2
m

, (2.18)

where the second equality follows by using (2.13) and the values of (an0, an1) in Proposition 2.1.

We refer to E(wnt) as index weight when the portfolio consists of the index assets (S = I) and by

non-index weight when the portfolio consists of the non-index assets.

The unconditional expected return of risky asset n is

E (dRnt) = E
(

dRshnt
Sn(Dnt)

)

= E

ρηn−µ2λη′n−un
µ1

σ2
nDntS

′
n(Dnt)

2

Sn(Dnt)

 dt

=
2ρηn−µ2λη′n−un

µ1
σ2
n

r + κn +
√

(r + κn)2 + 4ρηn−µ2λη′n−un
µ1

σ2
n

E
(

Dnt
κn
r D̄ +Dnt

)
dt. (2.19)

where the second equality follows by keeping only the drift term in (2.8) and replacing it by its value

in (2.12), and the third equality follows by using (2.13) and the values of (an0, an1) in Proposition

2.1. We use E(wnt) and E(dRnt) to measure portfolio weight and expected return in the propositions

derived in Sections 2.3.2 and 2.3.3.

2.3.2 Increase in Market Participation

When the measure µ2 of non-experts increases, their aggregate investment µ2λ in the index rises and

so do the prices of all index assets. Prices of non-index assets do not change because non-experts

6Denoting the number of assets in S by M ,
∑
m∈S ηmSm(Dmt) is equal to

∑
m∈S ηmSm(D̄), which is of order M ,

plus a term which is of order
√
M , plus smaller-order terms.
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do not invest in them.

Proposition 2.2. Suppose that the measure µ2 of non-experts increases, holding the measure µ1

of experts constant.

• The prices and expected returns of non-index assets do not change.

• Non-experts’ aggregate investment µ2λ in the index rises.

• The prices of all index assets rise and their expected returns drop.

To derive cross-sectional implications for index assets, we focus on two polar opposite cases. In

the first case, all index assets have identical characteristics except for noise-trader demand. That

case captures a market where noise-trader demand is the main driver of cross-sectional variation.

We refer to it as the noise-trader model. In the second case, noise-trader demand for each index

asset is proportional to the asset’s supply. That case is equivalent to noise traders being absent

from the market and to supply being reduced proportionately across all index assets (i.e., multiplied

by a scalar smaller than one and equal across assets). For that reason, we refer to it as the no

noise-trader model. The two models differ in some of their predictions for expected returns and

their response to fund flows. Our empirical results are consistent with the noise-trader model, and

hence with the notion that index weights are biased.

Proposition 2.3. Suppose that all assets in the index have identical characteristics except for their

noise-trader demand ((ηn, κn, σn) = (η, κ, σ) for all n ∈ I). Consider index assets n,m ∈ I with

asset n being in larger demand (un > um).

• Asset n has higher index weight than asset m (E(wnt) > E(wmt)) and earns lower expected

return (E(dRnt) < E(dRmt)).

• When the measure µ2 of non-experts increases, holding the measure µ1 of experts constant:

– The price of asset n rises more in percentage terms than the price of asset m.

– The expected return difference E(dRmt)− E(dRnt) between assets m and n increases.

When all index assets have identical characteristics except for noise-trader demand, an asset

n in higher noise-trader demand than an asset m is in smaller risk-adjusted net supply (RANS).
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Asset n must earn a lower expected return than asset m so that experts are induced to hold its

smaller RANS, and hence trades at a higher share price (Snt > Smt). It has higher capitalization

because of its higher share price and because all assets are in the same number of shares. Hence,

when cross-sectional variation is driven only by noise-trader demand, index weight and expected

return are negatively related.

When there are flows into index funds, assets n and m experience a equal increase in demand (in

terms of number of shares) because the index includes an equal number of shares of both. Because

the price is convex in RANS (Proposition 2.1) and asset n is in smaller RANS than asset m, its

price rises more in percentage terms. Moreover, asset n’s expected return drops more, and hence

the difference in expected returns between assets m and n becomes larger.

Proposition 2.4. Suppose that for all assets in the index, noise-trader demand is proportional to

asset supply (un = Uηn with U < 1 for all n ∈ I) and mean-reversion is the same (κn = κ for

all n ∈ I). Consider index assets n,m ∈ I, with asset n being in smaller risk-adjusted supply

(ηnσ
2
n < ηmσ

2
m).

• Asset n earns lower expected return than asset m (E(dRnt) < E(dRmt)). It has higher index

weight than asset m (E(wnt) > E(wmt)) if

ηn
ηm

>
r + κ+

√
(r + κ)2 + 4ρ (1−U)ηn

µ1+µ2
σ2
n

r + κ+
√

(r + κ)2 + 4ρ (1−U)ηm
µ1+µ2

σ2
m

. (2.20)

• When the measure µ2 of non-experts increases, holding the measure µ1 of experts constant,

– The price of asset n rises less in percentage terms than the price of asset m.

– The expected return difference E(dRmt)− E(dRnt) between assets m and n decreases.

When noise-trader demand is proportional to asset supply, an asset n in smaller risk-adjusted

supply than an asset m is also in smaller RANS. (Supply and net supply are proportional because

non-experts invest in the index and absorb a fixed fraction of the difference between supply and

noise-trader demand.) Asset n must earn a lower expected return than asset m so that experts are

induced to hold its smaller RANS, and hence trades at a higher share price (Snt > Smt). It can
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have a higher or lower capitalization (number of shares times share price) depending on its supply.

If the smaller risk-adjusted supply of asset n is due to its smaller supply, then asset n has a lower

index weight. If instead it is due to lower risk, then asset n can have a higher index weight.

Suppose that there are flows into index funds. If asset n is in smaller supply than asset m,

then it experiences a smaller increase in demand (in terms of number of shares) because the index

includes fewer shares of asset n than of asset m. Because of the lower demand for asset n, that

asset’s price rises less in percentage terms than the price of asset m. The same conclusion holds

if asset n is less risky than asset m because a given increase in demand affects its price less. In

both cases, asset n’s expected return drops less than asset m, and hence the difference in expected

returns between assets m and n becomes smaller.

The effects of flows in Proposition 2.4 are in line with the CAPM. Indeed, since agents have

mean-variance preferences and there are no noise traders, the expected returns of the assets in the

index are given by the CAPM. Since asset n earns a lower expected return than asset m, it has a

lower CAPM beta. Hence, Proposition 2.4 implies that flows into index funds raise the price of the

low CAPM-beta asset n less than of the high CAPM-beta asset m.

2.3.3 Switch from Active to Passive

When the measure µ2 of non-experts increases, holding the measure µ1 + µ2 of experts and non-

experts constant, all assets are affected, including non-index ones. Non-index assets drop in price

because there are fewer experts to invest in them and non-experts do not pick up the slack. To

characterize the cross-sectional effects, we focus on the same two special cases as in Section 2.3.2,

generalizing their definitions to include non-index assets. We derive counterparts of Propositions

2.3 and 2.4 in the Appendix (Propositions A.1 and A.2), and summarize them below.

Under the noise-trader model, an increase in µ2 holding µ1 +µ2 constant has the same effects as

in Proposition 2.3: index assets in high noise-trader demand rise in price more in percentage terms

than index assets in low demand, and their relative expected return drops. Two mechanisms drive

these effects. As in Proposition 2.3, index assets in high noise-trader demand are more affected by

the rise in the demand of non-experts because the price is convex. Moreover, the same assets are less

affected by the drop in the demand of experts, because being in higher noise-trader demand they

15



attract less investment by experts. The difference in expected return between non-index assets in

high and low noise-trader demand moves in the same direction as for index assets. The movement

is smaller, however, under plausible sufficient conditions derived in Proposition A.1, because the

effect through non-expert demand (and price convexity) is absent.

Under the no noise-trader model, an increase in µ2 holding µ1 + µ2 constant does not affect

index assets. This is because, in line with the CAPM, experts and non-experts hold the index,

and their total measure does not change. On the other hand, because demand for non-index assets

drops, and more so for assets in larger supply, the effects on those assets are the reverse of those in

Proposition 2.4. In particular, the difference in expected return between non-index assets in high

and low RANS rises.

2.3.4 Empirical Hypotheses

Our empirical hypotheses follow from the noise-trader model, analyzed in Propositions 2.3 and

A.1. Hypothesis 1 concerns the relationship between flows into index funds and the return of

small- relative to large-capitalization index assets. According to each of Propositions 2.3 and A.1,

index assets in higher noise-trader demand (i) have higher index weight, (ii) experience a higher

percentage price increase following flows into index funds, and (iii) experience a larger decline in

their future expected return following flows into index funds. Combining (i) and (ii) yields the

first statement in Hypothesis 1. Combining (i) and (iii) yields the second statement. The third

statement follows because the effects of flows on prices in Propositions 2.3 and A.1 converge to zero

when the volatility parameter σ goes to zero.

Hypothesis 1. Flows into index funds during Period t are:

• Negatively related to the return of small- minus that of large-capitalization index assets during

Period t.

• Positively related to the return of small- minus that of large-capitalization index assets during

Periods t′ > t.

These effects are stronger during times of high market volatility.

Hypothesis 2 concerns the relationship between the concentration in index weights on the one
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hand, and flows and returns on the other. Concentration reflects the extent to which the index

weight of large-capitalization index assets exceeds that of small-capitalization ones. In our empirical

analysis, we use two measures of concentration: the cross-sectional standard deviation of index

weights, and the Herfindahl-Hirschman Index of index weights.

Since flows into index funds cause the price of large-capitalization index assets to rise more in

percentage terms than the price of small-capitalization ones, they raise concentration. This yields

the first statement in Hypothesis 2. The second statement follows because high concentration can

arise following flows into index funds or following changes to noise-trader demand that make it

more heterogeneous across assets (higher for assets in high demand, and lower for assets in low

demand). In both cases, the future expected return of small-capitalization index assets increases

more relative to that of large-capitalization ones.

Hypothesis 2. High concentration of index weights during Period t is:

• Positively related to flows into index funds during Period t.

• Positively related to the return of small- minus that of large-capitalization index assets during

Periods t′ > t.

Hypothesis 3 concerns the unconditional relationship between market capitalization and ex-

pected return for index assets. According to each of Propositions 2.3 and A.1, index assets in high

noise-trader demand have higher index weight than assets in low demand. Moreover, the former

assets earn lower expected return. Combining the two results yields Hypothesis 3.

Hypothesis 3. Small-capitalization index assets earn higher average return than large-capitalization

index assets.

Hypothesis 4 compares the relationship between market capitalization and expected return for

index and for non-index assets. This relationship is negative for index assets, and becomes more

negative following flows into index funds. Hence the rise in indexing should generate a more negative

relationship between market capitalization and expected return for index assets than for non-index

assets.
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Hypothesis 4. The average return difference between small- and large-capitalization assets is

higher for index assets than for non-index assets.

Hypotheses 1-3 cannot hold simultaneously in the no noise-trader model. Suppose that assets

in lower risk-adjusted supply have higher index weight (i.e., (2.20) holds) and hence are the large-

capitalization assets. Proposition 2.4 implies that these assets experience a lower percentage price

increase following flows into index funds, contradicting Hypothesis 1. Suppose instead that assets

in lower risk-adjusted supply are the small-capitalization assets. Proposition 2.4 implies that they

earn lower expected return, contradicting Hypothesis 3.

3 Empirics

We test Hypotheses 1–4 by taking the index to be the S&P500, and the flows to be into index

mutual funds and ETFs tracking that index. The S&P500 index attracts the bulk of equity index

investing. We refer to index mutual funds and ETFs tracking the S&P500 index as index funds.

By considering only flows into index funds, we exclude the broader groups of institutions whose

performance is benchmarked against the S&P500 index. For example, many active managers are

evaluated against the S&P500 index or face tracking-error constraints limiting their deviation from

that index. We focus on index funds because it is easier to measure their assets.

3.1 Descriptive Statistics

Our data on stock returns and firm accounting variables come from the Center for Research in

Security Prices (CRSP) and Compustat. Our data on assets and flows for index mutual funds

tracking the S&P500 index come from the Investment Company Institute (ICI). ICI does not

report data on S&P500 ETFs. We instead collect those data from CRSP. CRSP reports data on

domestically listed ETFs. We include in our analysis only plain-vanilla ETFs, excluding alternative

ETFs such as leveraged ETFs, inverse ETFs and buffered ETFs. Our ETF sample consists of the

SPDR S&P 500 ETF Trust, the iShares Core S&P 500 ETF, and the Vanguard S&P 500 Index

Fund ETF, which collectively account for almost all of the plain-vanilla S&P500 ETF market.

Table 1 reports descriptive statistics for our main variables, for the sample of S&P500 stocks
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and the period July 2000 to June 2019. The descriptive statistics in Panel A of Table 1 concern

firm-level variables. The average stock earns an average monthly return of 0.91%, with a standard

deviation of 9.76%. It has an average market capitalization of $27 billion and an average index

weight of 0.18%. The distributions of market capitalization and index weight are skewed to the

right, with high skewness and kurtosis. In the Fama-MacBeth regressions, we use the natural

logarithm of index weight (log(IndexWeight)), which has skewness and kurtosis closer to zero.

We estimate a stock’s CAPM beta by regressing the stock’s monthly excess return on the excess

return of the S&P500 index on a rolling five-year basis. The average stock has CAPM beta close

to one. For each stock, we also compute the industry-adjusted book-to-market (BM) ratio, using

the procedure of Fama and French (1992) and Daniel, Grinblatt, Titman, and Wermers (1997);

the return momentum, measured by the past one-year return skipping the most recent month

(Ret−12,−2), following Jegadeesh and Titman (1993); and the short-term return reversal, measured

by the past one-month return (Ret−1).

In our sample period, the growth of index funds was substantial. As shown in Figure 1, the

assets of index funds more than tripled, growing from less than $500 billion in July 2000 to more

than $1.5 trillion in July 2019. As a result, the funds’ ownership of S&P500 stocks more than

doubled, expanding from 2.5% to more than 6%. Because index fund holdings exhibit a secular

trend during our sample period, we focus on fund flows in our empirical tests.

The descriptive statistics in Panel B of Table 1 concern aggregate variables, sourced at a quar-

terly frequency. The variables are: index fund holdings, fund flows, and the concentration of index

weights. We define index fund holdings at the end of quarter t as the ratio of the value of index

fund net assets to the value of the S&P500 index (i.e., the combined value of the S&P500 firms):

IndexFundt =
$IndexAssetst

$SP500t
.

We use two measures of index fund flows. The first is the change in index fund holdings between

the end of quarters t− 1 and t:

Flow1,t = IndexFundt − IndexFundt−1.

19



The second is dollar flows in quarter t divided by the index value at the end of that quarter:

Flow2,t =
$Flowt

$SP500t
.

ICI reports dollar flows into index mutual funds, so we use that direct measure. ICI does not report

dollar flows into ETFs, so we infer these indirectly from CRSP using the change in ETF net assets

and the ETF return as:

$ETFFlowt = $ETFAssetst − $ETFAssetst−1 × (1 + ETFRett).

We measure concentration of index weights at the end of quarter t by the cross-sectional stan-

dard deviation of index weights (Dispersiont) or alternatively by the Herfindahl-Hirschman Index

(HHIt).

3.2 Time-Series Relationships

Hypotheses 1 and 2 concern the time-series relationships between index fund flows and concentration

of index weights, respectively, with the return spread of the small-minus-large index portfolio. We

construct that portfolio in each quarter by forming decile portfolios based on size, with Decile 1

containing the smallest stocks in the S&P500 index (i.e., the stocks with the smallest index weights),

and Decile 10 containing the largest stocks (i.e., the stocks with the largest index weights). The

small-minus-large index portfolio consists of a long position in the stocks in Decile 1 combined with

an equal short position in the stocks in Decile 10. We construct that portfolio in both equally-

weighted and value-weighted terms.

3.2.1 Index Fund Flows

We test Hypothesis 1 using the regression specification:

SMBSPi,t = αi,j + γi,j,contemp × Flowj,contemp,t + γi,j,past × Flowj,past,t + εi,j,t,
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where SMBSPi,t is the return of the small-minus-large S&P500 index portfolio in quarter t, with i =

ew if the return is computed in equal-weighted terms, and i = vw if the return is computed in value-

weighted terms; Flowj,contemp,t are contemporaneous index fund flows, with j = 1, 2 corresponding

to the two measures of flows; and Flowj,past,t are past index fund flows. Hypothesis 1 implies

γi,j,contemp < 0 and γi,j,past > 0.

We define contemporaneous flows in quarter t to also include flows in the previous quarter:

Flowj,contemp,t = Flowj,t + Flowj,t−1.

We define past flows to include flows in more distant quarters going back to one year and a half:

Flowj,past,t =
6∑
i=2

Flowjj,t−i.

We include the previous quarter into contemporaneous flows to account for lags between flows and

trade. For example, when ETF sponsors accept cash from authorized participants (APs) to create

new ETF shares, they may not purchase the constituent securities immediately. Similarly, when

APs redeem ETF shares, ETF sponsors return the constituent securities to APs but APs may not

sell the securities immediately.

Table 2 shows the regression results. For both equal- and value-weighted returns, and for both

measures of flows, we find the pattern of regression coefficients consistent with Hypothesis 1.

The coefficient γi,j,contemp on contemporaneous flows is negative across the four specifications

in Columns 1–4. The effects are statistically significant and economically large. For example, a

one standard deviation increase in Flow1,contemp,t is associated with a contemporaneous decline in

the return of the equally weighted small-minus-large index portfolio by 3.56% per quarter.7 Hence,

flows into index funds tend to drive up the prices of large stocks in the S&P500 index by more than

the prices of small stocks in that index.

It is, of course, possible that a negative γi,j,contemp reflects reverse causality. Suppose that large

stocks in the S&P500 index perform well. Since they are the main driver of the index, the index

7A one standard deviation increase in Flow1,contemp,t is 0.14% (= 0.10%×
√

2). Multiplied by the slope coefficient
-25.47, it yields an effect of -3.56%.
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performs well too. If investors are performance-chasers, then they invest more in the index. This

gives rise to a negative relationship between index fund flows and the return of the small-minus-

large index portfolio. To partly address this concern, we include the index return in the regressions.

The regression results remain similar.

The coefficient γi,j,past on past flows is positive across the four specifications in Columns 1–4. It

is statistically significant, however, only for Flow2,past,t (Columns 3–4). That effect is economically

large. For example, a one standard deviation increase in Flow2,past,t predicts an increase in the

future return of the equally weighted small-minus-large index portfolio by 2.82% per quarter.8

Our model implies that the relationship between index fund flows and the return of the small-

minus-large index portfolio should be stronger when volatility is high. In Columns 5–8 of Table 2,

we perform the same regressions as in Columns 1–4 for quarters when VIX is above average. In all

specifications, the results are consistent with Hypothesis 1 and are statistically significant despite

a smaller sample. Moreover, their economic significance strengthens. In particular, the coefficient

γi,j,past on past flows is four times as large for Flow1,contemp,t and twice as large for Flow2,past,t.

3.2.2 Concentration of Index Weights

We test the first part of Hypothesis 2 using the regression specification

∆Concentrationt = αj + γj × Flowj.contemp,t + εj,t,

where Concentrationt is the concentration of index weights at the end of quarter t, measured by

Dispersiont or HHIt, and Flowj,contemp,t are contemporaneous index fund flows, with j = 1, 2.

The regression also includes the lagged equal- or value-weighted return of the small-minus-large

index portfolio, to control for momentum. The first part of Hypothesis 2 implies γj > 0.

Table 3 shows the regression results. The coefficient γj is positive and statistically significant

across all four specifications. This finding is consistent with the first part of the Hypothesis 2

that flows into index funds increase the concentration of index weights. It is also consistent with

Hypothesis 1 and the findings in Table 2, which indicate that flows into index funds are associated

8A one standard deviation increase in Flow2,past,t is 0.20% (=0.09% ×
√

5). Multiplied by the slope coefficient
14.01, it yields and effect of 2.82%.
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with a low return of the small-minus-large index portfolio. The lagged return of the small-minus-

large index portfolio is not statistically significant in the regressions.

We test the second part of Hypothesis 2 using the regression specification

SMBSPi,t = αi + γi,t−n × Concentrationt−n + εi,t,

where SMBSPi,t is the return of the small-minus-large S&P500 index portfolio in quarter t, with

i = ew if the return is computed in equal-weighted terms, and i = vw if the return is computed in

value-weighted terms; and Concentrationt−n is the concentration of index weights in quarter t−n,

measured by Dispersiont−n or HHIt−n. The coefficient γi,t−n represents the predictive effect of

index concentration on the returns on the small-minus-large index portfolio n quarters ahead. The

second part of Hypothesis 2 implies γi,t−n > 0.

Table 4 shows the regression results. The coefficient γi,t−n is positive and statistically significant

across all four specifications. These results support the second part of the Hypothesis 2 that

concentration of index weights predicts the future return of the small-minus-large index portfolio.

The effects are economically large. For example, Column 1 shows that a one standard deviation

increase in Dispersiont predicts an increase in the return of the equally weighted small-minus-large

index portfolio two quarters ahead by 4.17% (= 0.03% × 139.2), with an adjusted R2 of 19.1%.

Column 2 shows that HHIt has a similar predictive power for the future return of the small-

minus-large index portfolio. The predictive power of concentration carries through for six to seven

quarters ahead.

3.3 Unconditional Averages

Hypotheses 3 and 4 concern the unconditional averages of returns. Hypothesis 3 compares the

unconditional averages of returns across small and large stocks in the index. Hypothesis 4 examines

how this comparison differs across index and non-index stocks.
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3.3.1 Size Effect for Index Stocks

A simple way to test Hypothesis 3 is to form portfolios based on index weights for stocks in the

S&P500 index. At the end of each June from 2000 to 2018, we form decile portfolios based on size,

with Decile 1 containing the smallest stocks in the index (i.e., the stocks with the smallest index

weights), and Decile 10 containing the largest stocks (i.e., the stocks with the largest index weights).

We compute equal- and value-weighted returns on the ten portfolios and on the small-minus-large

index portfolio that buys stocks in Decile 1 and shorts stocks in Decile 10.

Table 5 shows a sizable return spread between small and large index stocks. On an equal-

weighted basis, stocks in Decile 1 earn average excess returns of 1.16% per month, while stocks in

Decile 10 earn 0.37% per month. The resulting return spread of 0.79% per month is statistically

significant at the 1% level. On a value-weighted basis, the return spread is even larger, 0.81% per

month.

The return spread between small and large index stocks cannot be explained by differences in

CAPM beta. After controlling for CAPM beta, the return spread (i.e., the spread in CAPM alpha)

becomes 0.58% per month on an equally-weighted basis, and 0.61% per month on a value-weighted

basis.

The “within S&P500” size effect that we find is reminiscent of the traditional size effect identified

by Banz (1981) and Fama and French (1992), among others. We explore the relationship between

the two effects through a series of tests.

A first test is to examine whether the payoff space of SMBSP spans the payoff space of the

Fama and French SMBFF factor designed to capture the equity size effect, or vice versa. We

do this by regressing the equal- or value-weighted return of SMBSP on the return of SMBFF ,

and testing whether the intercept (alpha) is statistically different from zero. We then reverse the

regression and perform the same test on the new intercept.

Columns 1–4 of Table 6 show the results. When regressing SMBSP on SMBFF , the alpha is

0.57% and 0.59% per month for SMBSPew and SMBSPvw, respectively. Both alphas are statisti-

cally significant. By contrast, when regressing SMBFF on SMBSPew and SMBSPvw, the alpha

is approximately -0.04% per month and statistically insignificant. These results indicate that the
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small-minus-large index portfolio spans the traditional size factor, but not the other way around.

A second test is to examine whether the “within S&P500” size effect exhibits a strong January

seasonality, as previous papers document for the traditional size effect. Columns 5–8 of Table 6

show that the large average returns on the small-minus-large index portfolio are not associated

with a January seasonality. The intercepts in the regressions of SMBSPew and SMBSPvw on

the January indicator variable are 0.76% and 0.77% per month, respectively, both statistically

significant; the slope coefficients for the January dummy are 0.42% and 0.54%, respectively, both

statistically insignificant. For SMBFF , the intercept is 0.17% and the slope coefficient for the

January dummy 0.44%, both statistically insignificant.

To put the findings in Table 6 in historical perspective and connect them to previous papers,

we perform the same regressions for an earlier sample period ranging from July 1964 to June 2000.

The findings, reported in Table 7, show an entirely different picture. The returns on SMBSPew,

SMBSPvw, and SMBFF are closely related, rendering the alphas from the spanning tests statis-

tically insignificant. Moreover, there is a strong January seasonality that dominates the average

returns on SMBSPew, SMBSPvw, and SMBFF . In non-January months, the average returns are

statistically insignificant, but in January, the returns are sizable. The historical evidence reinforces

the notion that the “within S&P500” size effect that we identify is distinct from the traditional

size effect.

3.3.2 Size Effect for Index versus Non-Index Stocks

To test Hypothesis 4, we divide the universe of stocks available in CRSP and Compustat into two

sets: S&P500 index stocks and non S&P500 index stocks. For an index stock, we compute its index

weight by dividing the stock’s market capitalization by the total capitalization of the stocks in the

index. For a non-index stock, we compute an analogous portfolio weight, by dividing the stock’s

market capitalization by the total capitalization of non-index stocks. We then use the Fama and

MacBeth (1973) cross-sectional regression to test if the relationship between portfolio weight and

future returns is more negative within index stocks.

We start with index stocks. At the end of each June from 2000 to 2018, we compute the index

weight of each stock and use it to predict the stock’s monthly returns in the subsequent 12 months
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from July to next June. As additional predictors, we use the stock’s CAPM beta, industry-adjusted

book-to-market (BM) ratio, return momentum measured by the past one-year return skipping the

most recent month (Ret−12,−2), and short-term return reversal measured by the past one-month

return (Ret−1).

We report the results in Panel A of Table 8. Columns 1–5 shows univariate regressions of

stock return on each of the five predictors. Index weight is strongly negatively related to future

return, and is the only predictor that is statistically significant. Column 6 shows a multivariate

regression of stock return on all five predictors. After controlling for CAPM beta, book-to-market

ratio, return momentum and short-term return reversal, the negative relationship between index

weight and future return strengthens, with the t-statistic increasing from −2.95 in the univariate

regression to −3.45. It is noteworthy that the “within S&P500” size effect is distinct from the value

effect, as proxied by BM. For S&P500 stocks, index weight is a strong predictor of future returns

but BM is not.

We repeat the exercise with non-index stocks, and report the results in Panel B of Table 8.

Column 1 shows that the relationship between portfolio weight and future return is negative but

statistically insignificant, with a t-statistic of -0.80. In terms of economic significance, the slope

coefficient on portfolio weight among stocks outside the S&P500 index is only one fifth of that

among S&P500 stocks. Among other predictors, only short-term return reversal is statistically

significant.

We next test whether the mean of the Fama-MacBeth regression coefficient for Log(IndexWeight)

in Column 6 of Panel A (γIndexWeight) equals that for Log(PortfolioWeight) in Column 6 of Panel

B (γPortfolioWeight). Consistent with Hypothesis 4, equality of the two coefficients is rejected, at

the 5% significance level.

To put the findings in Table 8 in historical perspective, we perform the same regressions for

an earlier sample period from July 1964 to June 2000. The findings, reported in Table 9, differ

from those in Table 8 in two important ways. First, the relationship between portfolio weight

and future return for non-index stocks is negative, statistically significant and close to that for

index stocks. The multivariate regression coefficients for index and non-index stocks are -0.118 and

-0.119, respectively, as shown in Column 6 of Panels A and B. This finding is consistent with the
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finding in Section 3.3.1 that SMBSP and SMBFF tend to be indistinguishable from each other in

the spanning test in the earlier sample. Second, the “outside S&P500” size effect diminishes over

time: the slope coefficient changes from -0.119 to 0.002, essentially becoming non-existent. On the

other hand, the “within S&P500” size effect increases over time: the slope coefficient changes from

-0.118 to -0.171, strengthening by almost one half.

3.3.3 Anomalies in the S&P500 Index

Our finding of a strong negative relationship between index weight and future return among stocks

in the S&P500 index is surprising for two reasons. First, S&P500 stocks are liquid and widely

followed by security analysts and institutional investors. Hence, there are reasons to believe that

they are efficiently priced. Consistent with this conjecture, the cross-sectional association between

the “anomaly” variables and stock returns tends to be stronger in small and micro-cap stocks (see,

e.g., Fama and French (2008)). Second, several studies have documented that the efficiency of the

stock market has increased over time, in the sense that some return anomalies seem to have gone

away (see, e.g., McLean and Pontiff (2016); Green, Hand, and Zhang (2017)). For example, Green,

Hand, and Zhang (2017) argue that only 12 out of 94 stock characteristics identified in previous

literature as predicting returns have predictive power for non-microcap stocks over the period 1980

to 2014. Against this backdrop, our post-millennium finding for a strong “within S&P500” size

effect is surprising.

To provide more context for our finding, we examine the predictive power of the 12 stock

characteristics identified by Green, Hand, and Zhang (2017) in our sample. We exclude two of

the characteristics that they identify, book-to-market ratio and short-term return reversal, as they

are examined in Table 8. This leaves us with 10 characteristics: cash holdings (cash), changes in

6-month momentum (chmom), changes in analyst coverage (chnanalyst), earnings announcement

returns (aer), number of earnings increases (nincr), ratio of R&D expenditures to market value

(rdve), return volatility (retvol), volatility of share turnover (std turn), share turnover ratio (turn),

and number of zero trading days (zerotrade). We include three additional characteristics, following

Fama and French (2015): corporate investment and two proxies for profitability, gross profitability

(gma) and operating profitability (operof).
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We perform Fama-MacBeth regressions for the 13 characteristics, similar to the regressions in

Table 8. The results, shown in Table 10, indicate that for stocks in the S&P500 index, none of the

13 characteristics predicts returns over the period 2000 to 2019.

4 Conclusion

We study theoretically and empirically how the growth of passive investing impacts stock returns.

In a CAPM world, flows into equity index funds would not affect stock prices if the flows represent

a uniform switch from active to index funds. If instead the flows represent new investment in

the stock market, they would raise stock prices, with the impact being stronger for high CAPM-

beta stocks. We instead find empirically that flows into funds tracking the S&P500 index raise

disproportionately the prices of large-capitalization stocks in the index relative to the prices of the

index’s small stocks. Moreover, the flows predict a high future return of the small-minus-large

index portfolio. We find additionally a strong “within S&P500” size effect: a small-minus-large

portfolio of S&P500 stocks earns ten percent per year, while the return of the counterpart portfolio

of non-S&P500 stocks is smaller and statistically insignificant.

Our theoretical model generates results in line with our empirical findings when noise traders do

not hold the index, distorting prices away from the CAPM. When prices are distorted, weights of

value-weighted indices are biased, and flows into index funds exacerbate the distortions. Intuitively,

stocks in high demand by noise traders are overvalued and enter with high weights into value-

weighted indices. Conversely, stocks in low demand are undervalued and enter with low weights.

Hence, funds that track value-weighted indices overweight the former stocks and underweight the

latter, compared to the weights they would choose under portfolio optimization. When these funds

experience inflows, they undertake investments that exacerbate the distortions.

Our results suggest that passive investing and benchmarking can have important effects on

market efficiency, and hence on the allocation of capital in the economy.9 The strength of these

effects can depend on the design of indices and on the decisions by passive funds on which indices

to track. Examining these issues seems an interesting direction for future research.

9Kashyap, Kovrijnykh, Li, and Pavlova (2020) explore the links between benchmarking and investment decisions
by firms.
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Figure 1: Assets of S&P500 Index Funds
This figure plots the value of the assets of mutual funds and ETFs tracking the S&P500 index over the period June

2000 to June 2019. The red line represents the ratio of index fund net assets to index value (left y-axis). The blue

bars represent index fund net assets in millions of dollars (right y-axis). The data come from CRSP and ICI.
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Figure 2: Value of $1 Invested in Small and Large Stocks in the S&P500 Index
This figure plots the value of $1 invested at the end of June 2000 in the bottom 10% of S&P500 stocks based on

market capitalization (small stocks, blue line) and in the top 10% of S&P500 stocks (large stocks, red line). The

portfolios are rebalanced annually at the end of each subsequent June and are liquidated in June 2019.
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Table 1: Descriptive Statistics
This table shows descriptive statistics for the main variables in our sample from July 2000 to June 2019. Panel

A includes the following firm-level variables: monthly stock return in percent, market capitalization in millions of

dollars, weight of a stock in the S&P500 index in percent, CAPM beta, industry-adjusted book-to-market ratio, and

return momentum (cumulative return from month t − 12 to month t − 2) for stocks in the S&P500 index. Panel B

includes the following aggregate variables: index fund holdings (ratio of S&P500 index fund net assets to index value),

changes in index fund holdings (Flow1), dollar flows into index funds divided by index value (Flow2), cross-sectional

standard deviation of S&P500 index weights (Dispersion), and Herfindahl-Hirschman Index (HHI) of S&P500 index

weights. The variables in Panel B are sourced at a quarterly frequency and are multiplied by 100.

Panel A: Firm-Level Variables

Mean Std Dev 25th Pctl 50th Pctl 75th Pctl Skewness Kurtosis
Monthly Return (Rt × 100) 0.91 9.76 -3.75 1.06 5.62 0.46 10.93
Market Cap ($millions) 27,393 51,383 5,9021 11,827 25,305 5.71 50.56
Index Weight (×100) 0.18 0.32 0.04 0.08 0.16 5.05 34.25
Log(Index Weight) -7.05 1.10 -7.79 -7.16 -6.41 0.47 0.37
Beta 1.03 0.63 0.59 0.95 1.36 1.04 2.16
Industry-Adjusted BM -0.46 0.51 -0.74 -0.53 -0.27 3.37 31.28
Momentum (Rt−12,t−2) 0.10 0.34 -0.08 0.09 0.26 1.93 23.41

Panel B: Time-Series Variables (Quarterly, ×100)

Index Fund Holdings 4.17 1.08 3.40 4.11 4.88 0.46 -0.57
Flow1 0.05 0.10 0.00 0.04 0.10 0.51 3.44
Flow2 0.03 0.09 -0.02 0.02 0.07 0.27 3.73
Dispersion 0.35 0.03 0.32 0.34 0.37 0.38 -0.79
HHI 0.81 0.11 0.72 0.79 0.88 0.52 -0.63
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Table 3: Index Fund Flows and Concentration in Index Weights
This table shows the relationship between S&P500 index fund flows and changes in the concentration of index weights.

Panel A shows the results for Flow1,contemp; Panel B for Flow2,contemp. We use two measures of concentration of

index weights: the cross-sectional standard deviation (Dispersion) and the Herfindahl-Hirschman Index (HHI). We

use the lagged return of the small-minus-large index portfolio as a control variable.

Panel A: Flow1,contemp

(1) (2) (3) (4) (5) (6)

∆Dispersion ∆HHI ∆Dispersion ∆HHI ∆Dispersion ∆HHI

Flow1,contemp 0.0282 0.104 0.0271 0.100 0.0268 0.0992
(2.97) (2.97) (2.89) (2.96) (2.84) (2.91)

L.SMBSPew -2.29e-05 -2.19e-05
(-0.18) (-0.05)

L.SMBSPvw -4.55e-05 -0.000108
(-0.35) (-0.23)

Intercept -3.99e-05 -0.000151 -3.46e-05 -0.000130 -3.37e-05 -0.000127
(-2.47) (-2.53) (-2.09) (-2.18) (-2.03) (-2.12)

Observations 76 76 75 75 75 75
R2 0.106 0.112 0.107 0.110 0.109 0.112

Panel B: Flow2,contemp

(1) (2) (3) (4) (5) (6)

∆Dispersion ∆HHI ∆Dispersion ∆HHI ∆Dispersion ∆HHI

Flow2,contemp 0.0209 0.0758 0.0226 0.0836 0.0225 0.0831
(1.99) (1.95) (2.23) (2.28) (2.22) (2.26)

L.SMBSPew -7.75e-05 -0.000224
(-0.61) (-0.49)

L.SMBSPvw -0.000105 -0.000330
(-0.80) (-0.69)

Intercept -2.25e-05 -8.60e-05 -1.77e-05 -6.79e-05 -1.70e-05 -6.52e-05
(-1.55) (-1.61) (-1.23) (-1.31) (-1.18) (-1.25)

Observations 76 76 75 75 75 75
R2 0.051 0.049 0.070 0.071 0.073 0.074
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Table 4: Concentration in Index Weights and the Return of the Small-Minus-Large
Index Portfolio
This table shows the relationship between concentration of index weights and the future return of the small-minus-

large index portfolio. In Columns 1–4 we measure concentration by Dispersion, and in Columns 5–8 we measure

concentration by HHI. The regressions are univariate, and we use concentration lagged up to eight quarters.

(1) (2) (3) (4) (5) (6) (7) (8)

SMBSPew SMBSPvw SMBSPew SMBSPvw SMBSPew SMBSPvw SMBSPew SMBSPvw

Specification Dispersion Slope Coefficients Adj. R2 HHI Slope Coefficients Adj. R2

(1) L1. 133.3 133.7 0.169 0.185 L1. 38.46 38.63 0.174 0.191
(3.85) (4.07) (3.92) (4.15)

(2) L2. 139.2 133.5 0.191 0.198 L2. 40.23 38.58 0.198 0.205
(4.12) (4.22) (4.21) (4.31)

(3) L3. 101.8 98.00 0.105 0.110 L3. 28.80 27.69 0.104 0.109
(2.89) (2.96) (2.88) (2.95)

(4) L4. 75.94 80.81 0.058 0.074 L4. 20.97 22.43 0.055 0.071
(2.08) (2.37) (2.02) (2.31)

(5) L5. 95.98 100.6 0.094 0.116 L5. 27.19 28.53 0.093 0.115
(2.67) (3.00) (2.66) (3.00)

(6) L6. 86.15 89.88 0.080 0.099 L6. 24.50 25.57 0.080 0.099
(2.43) (2.73) (2.43) (2.73)

(7) L7. 67.45 69.19 0.050 0.060 L7. 19.06 19.54 0.050 0.059
(1.88) (2.07) (1.87) (2.06)

(8) L8. 50.78 55.14 0.028 0.038 L8. 14.16 15.46 0.027 0.037
(1.38) (1.61) (1.36) (1.59)
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Table 5: Size Effect for S&P500 Index Stocks
This table shows the average monthly return and CAPM alpha in percent for decile portfolios formed on the basis

of stocks’ weights in the S&P500 index. Specifically, at the end of each June from 2000 to 2018, we sort stocks in

the index into ten portfolios according to their market capitalization-based index weights, with Decile 1 containing

the stocks with smallest index weights, and Decile 10 containing the stocks with largest index weights. We compute

equal- and value-weighted returns on the ten portfolios. We also compute SMBSP , the difference in returns between

stocks in deciles 10 and 1.

Panel A: Equal-Weighted Portfolio Returns

Low 2 3 4 5 6 7 8 9 High SMBSP

Average 1.16 1.00 0.996 0.878 0.993 0.716 0.792 0.601 0.517 0.372 0.790
(2.38) (2.68) (2.63) (2.57) (3.12) (2.34) (2.63) (1.94) (1.64) (1.27) (2.48)

CAPM α 0.487 0.459 0.437 0.371 0.521 0.255 0.323 0.119 0.0197 -0.0886 0.576
(1.86) (2.64) (2.65) (2.61) (3.86) (2.17) (3.53) (1.26) (0.23) (-1.06) (1.97)

Panel B: Value-Weighted Portfolio Returns

Average 1.13 0.987 0.987 0.876 0.981 0.717 0.788 0.602 0.504 0.32 0.813
(2.41) (2.64) (2.62) (2.56) (3.08) (2.36) (2.63) (1.94) (1.60) (1.10) (2.54)

CAPM α 0.479 0.447 0.431 0.368 0.508 0.257 0.321 0.118 0.00805 -0.13 0.608
(1.94) (2.56) (2.64) (2.57) (3.79) (2.21) (3.52) (1.25) (0.09) (-1.36) (2.05)
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Table 6: S&P500 Size Factor and Fama-French Size Factor
This table shows the relationship between the S&P500 size factor, defined as the return of the small-minus-large

index portfolio in equal- and value-weighted terms (SMBSPew and SMBSPvw, respectively), and the Fama and

French SMB factor (SMBFF ). Columns 1–4 present the results of spanning tests. Columns 5–7 test for the January

seasonality. We use monthly returns from July 2000 to June 2019.

(1) (2) (3) (4) (5) (6) (7)

Spanning Test January Seasonality

SMBSPew SMBSPew SMBFF SMBFF SMBSPew SMBSPew SMBFF
SMBFF 1.101 1.081

(10.72) (10.31)
SMBSPew 0.306

(10.72)
SMBSPvw 0.296

(10.31)
January 0.415 0.542 0.435

(0.36) (0.47) (0.72)
Intercept 0.567 0.594 -0.0389 -0.0378 0.756 0.768 0.167

(2.18) (2.23) (-0.28) (-0.27) (2.27) (2.29) (0.95)
Observations 228 228 228 228 228 228 228
Adj. R2 0.334 0.317 0.334 0.317 -0.00385 -0.00346 -0.00215
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Table 7: S&P500 Size Factor and Fama-French Size Factor in the Earlier Period
This table shows the same information as Table 6 for the period July 1964 to June 2000.

(1) (2) (3) (4) (5) (6) (7)

Spanning Test January Seasonality

SMBSPew SMBSPew SMBFF SMBFF SMBSPew SMBSPew SMBFF
SMBFF 1.027 0.986

(20.01) (19.20)
SMBSPew 0.470

(20.01)
SMBSPvw 0.468

(19.20)
January 5.770 5.100 2.260

(7.11) (6.34) (3.97)
Intercept 0.138 0.197 0.0514 0.0289 -0.112 -0.00699 0.036

(0.81) (1.15) (0.44) (0.24) (-0.48) (-0.03) (0.22)
Observations 432 432 432 432 432 432 432
Adj. R2 0.481 0.460 0.481 0.460 0.103 0.0832 0.0331
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Table 8: Size Effect for S&P500 Index Stocks Versus for Non-Index Stocks
This table shows the relationship between stock characteristics and future stock returns. Panel A uses the stocks in

the S&P500 index and Panel B uses non-S&P stocks. IndexWeight is the weight of a stock in the S&P500 index;

PortfolioWeight is the weight of a stock in a hypothetical value-weighted portfolio of stocks not in the S&P500

index. The results are obtained using Fama-MacBeth cross-sectional regressions on monthly returns from July 2000

to June 2019.

Panel A: S&P500 Stocks

(1) (2) (3) (4) (5) (6)

Log(IndexWeight) -0.185 -0.171
(-2.95) (-3.45)

Beta -0.152 -0.322
(-0.55) (-1.40)

BM 0.100 -0.067
(0.88) (-0.67)

Rett−12,t−2 -0.334 -0.405
(-0.60) (-0.83)

Rett−1 -0.518 -1.487
(-0.44) (-1.62)

Intercept -0.426 1.044 0.948 0.621 0.822 -0.338
(-1.15) (5.00) (2.86) (2.11) (2.79) (-0.92)

Adj. R2 0.011 0.058 0.008 0.044 0.026 0.114

Panel B: Non-S&P500 Stocks

(1) (2) (3) (4) (5) (6)

Log(PortfolioWeight) -0.037 0.002
(-0.80) (0.04)

Beta -0.132 -0.15
(-0.66) (-0.87)

BM 0.085 0.035
(1.11) (0.53)

Rett−12,t−2 -0.234 -0.266
(-0.75) (-0.92)

Rett−1 -2.224 -2.437
(-3.06) (-4.15)

Intercept 0.592 1.094 1.019 0.816 0.981 0.948
(0.83) (4.97) (2.92) (2.48) (2.97) (1.87)

Adj. R2 0.006 0.023 0.002 0.013 0.01 0.044

Pr(γIndexWeight = γPortfolioWeight) = 0.0131
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Table 9: Size Effect for S&P500 Index Stocks Versus for Non-Index Stocks in the Earlier
Period
This table shows the same information as Table 8 for the period July 1964 to June 2000.

Panel A: S&P500 Stocks

(1) (2) (3) (4) (5) (6)

Log(IndexWeight) -0.096 -0.118
(-2.11) (-2.84)

Beta 0.127 0.029
(0.67) (0.18)

BM 0.019 0.035
(0.62) (1.25)

Rett−12,t−2 0.883 0.705
(3.39) (3.08)

Rett−1 -3.227 -4.642
(-4.75) (-7.87)

Intercept 0.501 1.080 1.203 1.086 1.265 0.339
(1.63) (5.66) (5.15) (4.81) (5.41) (1.07)

Adj. R2 0.018 0.03 0.001 0.027 0.016 0.076

Panel B: Non-S&P500 Stocks

(1) (2) (3) (4) (5) (6)

Log(PortfolioWeight) -0.118 -0.119
(-2.68) (-2.78)

Beta 0.132 0.082
(0.86) (0.59)

BM 0.075 0.062
(4.56) (4.31)

Rett−12,t−2 1.046 0.977
(5.67) (6.48)

Rett−1 -4.347 -5.342
(-8.67) (-12.65)

Intercept 0.212 1.158 1.290 1.106 1.287 0.058
(0.51) (7.28) (4.93) (4.52) (4.98) (0.14)

Adj. R2 0.012 0.023 0.001 0.017 0.01 0.054
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Appendix

A Proofs

Proof of Proposition 2.1. Substituting the affine price function (2.13) into the ODE (2.12), we

find

Dnt + κn(D̄ −Dnt)an1 − r(an0 + an1Dnt) = ρ
ηn − µ2λη

′
n − un

µ1
σ2
nDnta

2
n1. (A.1)

Equation (A.1) is affine in Dnt. Identifying the terms in (A.1) that are linear in Dnt yields

ρ
ηn − µ2λη

′
n − un

µ1
σ2
na

2
n1 + (r + κn)an1 − 1 = 0. (A.2)

Equation (A.2) is quadratic in an1. When ηn − µ2λη
′
n − un > 0, the left-hand side is increasing

for positive values of an1, and (A.2) has a unique positive solution, given by (2.15). When ηn −

µ2λη
′
n − un < 0, the left-hand side is hump-shaped for positive values of an1, and (A.2) has either

two positive solutions (including one double positive solution) or no solution. When two solutions

exist, (2.15) gives the smaller of them, which is the continuous extension of the unique positive

solution when ηn − µ2λη
′
n − un > 0. Identifying the constant terms in (A.1) yields

κD̄an1 − ran0 = 0,

whose solution is (2.14).

Equations (2.13) and (2.14) imply that the price is decreasing and convex in z ≡ ηn−µ2λη′n+un
µ1

σ2
n

if an1 is. Equation (2.15) implies that an1 is decreasing and convex in z if the function

Ψ(z) ≡ 1

A+
√
B + Cz

is, where (A,B,C) are positive constants. The function Ψ(z) is decreasing because its derivative

Ψ′(z) = − C

2
√
B + Cz

1(
A+
√
B + Cz

)2
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is negative. Since, in addition, Ψ′(z) is increasing, Ψ(z) is convex.

The unconditional expectation of the share return dRshnt is

E(dRshnt) = E[Et(dRshnt)]

= E
[
Dnt + κn(D̄ −Dnt)S

′
n(Dnt) +

1

2
σ2
nDntS

′′(Dnt)− rSn(Dnt)

]
dt

= E
[
ρ
ηn − µ2λη

′
n − un

µ1
σ2
nDntS

′
n(Dnt)

2

]
dt (A.3)

= ρ
ηn − µ2λη

′
n − un

µ1
σ2
nD̄a

2
n1dt, (A.4)

where the second inequality follows from (2.8), the third from (2.12), and the fourth from (2.13).

The unconditional variance of the share return dRshnt is

Var(dRshnt) = E[Vart(dR
sh
nt)]

= E
[
σ2
nDntS

′
n(Dnt)

2
]
dt

= σ2
nD̄a

2
n1dt, (A.5)

where the second inequality follows from (2.8), and the third from (2.13). Substituting (A.4) and

(A.5) into (2.10), we find

N∑
n=1

η′n
ηn − µ2λη

′
n − un

µ1
a2
n1 = λ

N∑
n=1

(η′n)2a2
n1, (A.6)

which we can rewrite as (2.16). Since ηn > un, (2.16) implies λ > 0.

An equilibrium exists if (2.16), in which {an1}n=1,..,N are implicit functions of λ defined by

(2.15), has a solution. For all non-positive values of λ, both sides of (2.16) are well-defined because

the positivity of ηn−µ2λη
′
n−un ensures that (A.2) has a solution for an1. Moreover, the right-hand

side of (2.16) is positive, and exceeds the left-hand side which is non-positive. An equilibrium exists

if both sides of (2.16) remain well-defined for a sufficiently large positive value of λ that renders

them equal. If there are multiple solutions λ to (2.16), then we take the smallest.

Lemma A.1 shows that an asset’s unconditional expected return is increasing and concave in
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the asset’s RANS.

Lemma A.1. The unconditional expected return E(dRnt) that risky asset n earns in equilibrium

depends on (ηn, σn, η
′
n, un, µ1, µ2) only through ηn−µ2λη′n+un

µ1
σ2
n, and is increasing and concave in

that variable.

Proof of Lemma A.1. Equation (2.19) implies that E(dRnt) is increasing and concave in z ≡
ηn−µ2λη′n+un

µ1
σ2
n if the function

Φ(z) ≡ z

A+
√
B + Cz

is, where (A,B,C) are positive constants. (The same constants as in the definition of Ψ(z) in the

proof of Proposition 2.1.) The function Φ(z) is increasing because its derivative

Φ′(z) =
A+

B+Cz
2√

B+Cz(
A+
√
B + Cz

)2
is positive. Since, in addition,

Φ′(z) =
A+

B+Cz
2√

B+Cz(
A+
√
B + Cz

)2 =
A+ 1

2

√
B + Cz(

A+
√
B + Cz

)2 +

B
2
√
B+Cz(

A+
√
B + Cz

)2 ,
and both functions in the sum are decreasing, Φ′(z) is decreasing, and hence Φ(z) is concave.

Proof of Proposition 2.2. For a non-index asset n′, η′n′ = 0. Equations (2.13)-(2.15) imply that

the asset’s price is

Sn′t(Dn′t) =
2

r + κn +
√

(r + κn)2 + 4ρ
ηn′−un′
µ1

σ2
n

(κn
r
D̄ +Dt

)
. (A.7)

Equation (2.19) implies that the asset’s expected return is

E (dRn′t) =
2ρ

ηn′−un′
µ1

σ2

r + κn +
√

(r + κn)2 + 4ρ
ηn′−un′
µ1

σ2
n

E
(

Dnt
κn
r D̄ +Dnt

)
dt. (A.8)
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Hence, the asset’s price and expected return do not change when µ2 increases.

To show that µ2λ increases in µ2, we write (2.16) as

N∑
n=1

η′n
[
ηn − un − λ(µ1 + µ2)η′n

]
a2
n1 = 0. (A.9)

Setting M ≡ µ2λ, we write (A.9) as

N∑
n=1

η′n

[
ηn − un −M

(
µ1

µ2
+ 1

)
η′n

]
a2
n1 = 0, (A.10)

and view the left-hand side of (A.10) as a function of M rather than λ. At the smallest solution λ of

(2.16), the derivative of the left-hand side of (A.9) with respect to λ is negative (since the smallest

solution is positive and the left-hand side of (A.9) is positive for λ = 0). Hence, the derivative of

the left-hand side of (A.10) with respect to M is also negative at that solution. Since an1 depends

on (µ2, λ) only through M , the derivative of the left-hand side of (A.10) with respect to µ2 (holding

M constant) is

N∑
n=1

Mµ1

µ2
2

(η′n)2a2
n1 > 0.

Hence, the derivative of M with respect to µ2 is positive, which means that µ2λ increases in µ2.

Since ηn−µ2λη′n−un
µ1

σ2
n decreases in µ2 for index assets (η′n > 0), Proposition 2.1 implies that the

price of these assets increases in µ2, and Lemma A.1 implies that these assets’ expected return

decreases in µ2.

Proof of Proposition 2.3. When (ηn, σn) = (η, σ) for all n ∈ I, RANS for an index asset n is

η − µ2λη − un
µ1

σ2 =
(1− µ2λ)η − un

µ1
σ2.

Since RANS decreases in un, Lemma A.1 and κn = κ for all n ∈ I imply E(dRnt) < E(dRmt).

Moreover, (2.18) and (ηn, κn, σn) = (η, κ, σ) for all n ∈ I imply E(wnt) > E(wmt).

When µ2 increases, (2.13)-(2.15) imply (through the same calculations as when differentiating
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the function Ψ(z) defined in the proof of Proposition 2.1) that the price of asset n changes by

∂Snt(Dnt)

∂µ2
=

∂(µ2λ)
∂µ2

4ρηnσ2
n

µ1√
(r + κn)2 + 4ρηn−µ2λη′n−un

µ1
σ2
n

[
r + κn +

√
(r + κn)2 + 4ρηn−µ2λη′n−un

µ1
σ2
n

]2

(κn
r
D̄ +Dt

)
,

and the percentage change is

1

Snt(Dnt)

∂Snt(Dnt)

∂µ2
=

∂(µ2λ)
∂µ2

2ρηnσ2
n

µ1√
(r + κn)2 + 4ρηn−µ2λη′n−un

µ1
σ2
n

[
r + κn +

√
(r + κn)2 + 4ρηn−µ2λη′n−un

µ1
σ2
n

] .
(A.11)

Moreover, (2.19) implies (through the same calculations as when differentiating the function Φ(z)

defined in the proof of Lemma A.1) that the expected return of asset n changes by

∂E(dRnt)

∂µ2
= −

∂(µ2λ)
∂µ2

2ρηnσ2
n

µ1

r + κn +
(r+κn)2+2ρ

ηn−µ2λη
′
n−un

µ1
σ2
n√

(r+κn)2+4ρ
ηn−µ2λη

′
n−un

µ1
σ2
n


[
r + κn +

√
(r + κn)2 + 4ρηn−µ2λη′n−un

µ1
σ2
n

]2 E
(

Dnt
κn
r D̄ +Dnt

)
dt. (A.12)

Using (ηn, κn, σn) = (η, κ, σ) for all n ∈ I to simplify (A.11) and (A.12), we find that when

µ2 increases, the percentage change in the price of asset n and the change in that asset’s expected

return are

1

Snt(Dnt)

∂Snt(Dnt)

∂µ2
=

∂(µ2λ)
∂µ2

2ρησ2

µ1√
(r + κ)2 + 4ρ (1−µ2λ)η−un

µ1
σ2

[
r + κ+

√
(r + κ)2 + 4ρ (1−µ2λ)η−un

µ1
σ2

] ,
(A.13)

∂E(dRnt)

∂µ2
= −

∂(µ2λ)
∂µ2

8ρ2ησ4

µ2
1

r + κ+
(r+κ)2+2ρ

(1−µ2λ)η−un
µ1

σ2√
(r+κ)2+4ρ

(1−µ2λ)η−un
µ1

σ2


[
r + κ+

√
(r + κ)2 + 4ρ (1−µ2λ)η−un

µ1
σ2

]2 E
(

Dnt
κ
r D̄ +Dnt

)
dt, (A.14)

respectively. Equation (A.13) implies that the price of asset n rises more in percentage terms than
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the price of asset m if the function

ΦSu(z) ≡ 1√
B + Cz

(
A+
√
B + Cz

)
is decreasing, where (A,B,C) are positive constants. Since the denominator is increasing, ΦSu(z)

is decreasing. Equation (A.14) implies that the expected return difference E(dRmt) − E(dRnt)

between assets m and n increases if the function

ΦRu(z) ≡
A+

B+Cz
2√

B+Cz(
A+
√
B + Cz

)2
is decreasing, where (A,B,C) are positive constants. Since ΦRu(z) = Φ′(z) for the concave function

Φ(z) defined in the proof of Proposition 2.2, ΦRu(z) is decreasing.

Proof of Proposition 2.4. When un = Uηn for all n ∈ I, (2.16) implies

λ =
1− U
µ1 + µ2

. (A.15)

Using un = Uηn and (A.15), we can write RANS for an index asset n as

ηn − µ2λη
′
n − un

µ1
σ2
n =

(1− U)ηn
µ1 + µ2

σ2
n. (A.16)

Since ηnσ
2
n < ηmσ

2
m, Lemma A.1 and κn = κ for all n ∈ I imply E(dRnt) < E(dRmt). Moreover,

(2.18), (A.16) and κn = κ imply E(wnt) > E(wmt) if (2.20) holds.

Using un = Uηn and κn = κ for all n ∈ I to simplify (A.11) and (A.12), we find

1

Snt(Dnt)

∂Snt(Dnt)

∂µ2
=

∂(µ2λ)
∂µ2

2ρηnσ2
n

µ1√
(r + κ)2 + 4ρ (1−U)ηn

µ1+µ2
σ2
n

[
r + κ+

√
(r + κ)2 + 4ρ (1−U)ηn

µ1+µ2
σ2
n

] ,
(A.17)
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∂E(dRnt)

∂µ2
= −

∂(µ2λ)
∂µ2

2ρηnσ2
n

µ1

[
r + κ+

(r+κ)2+2ρ
(1−U)ηn
µ1+µ2

σ2
n√

(r+κ)2+4ρ
(1−U)ηn
µ1+µ2

σ2
n

]
[
r + κ+

√
(r + κ)2 + 4ρ (1−U)ηn

µ1+µ2
σ2
n

]2 E
(

Dnt
κ
r D̄ +Dnt

)
dt, (A.18)

respectively. Equation (A.17) implies that the price of asset n rises less in percentage terms than

the price of asset m if the function

ΦSη(z) ≡
z√

B + Cz
(
A+
√
B + Cz

)
is increasing, where (A,B,C) are positive constants. Since

ΦSη(z) =
z

B + Cz
×

√
B + Cz

A+
√
B + Cz

and both functions in the product are increasing, ΦSη(z) is increasing. Equation (A.18) implies

that the expected return difference E(dRmt) − E(dRnt) between assets m and n decreases if the

function

ΦRη(z) ≡
z

(
A+

B+Cz
2√

B+Cz

)
(
A+
√
B + Cz

)2
is increasing, where (A,B,C) are positive constants. Since

ΦRη(z) =
z

B + Cz
×
[ √

B + Cz

A+
√
B + Cz

]2

×

(
A+

B + Cz
2√

B + Cz

)

and all three functions in the product are increasing, ΦRη(z) is increasing.

Proposition A.1. Suppose that all assets in the index are in the same supply (ηn = η for all

n ∈ I), all assets not in the index are in the same supply, which can differ from that of index assets

(ηn′ = η̄ for all n′ /∈ I), and (κn, σn) = (κ, σ) for all n. Consider assets n,m ∈ I, with asset n

being in larger noise-trader demand (un > um), and assets n′,m′ /∈ I, with asset n′ being in larger

noise-trader demand (un′ > um′).
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• Asset n′ has higher non-index weight than asset m′ (E(wn′t) > E(wm′t)) and earns lower

expected return (E(dRn′t) < E(dRm′t)).

• When µ2 increases, holding µ1 + µ2 constant:

– The price of asset n rises more, or drops less, in percentage terms than the price of asset

m.

– The expected return difference E(dRmt)− E(dRnt) between assets m and n increases.

– The price of asset n′ drops less in percentage terms than the price of asset m′.

– The expected return difference E(dRm′t)− E(dRn′t) between assets m′ and n′ increases.

– The expected return difference E(dRmt) − E(dRnt) increases more than E(dRm′t) −

E(dRn′t) under the sufficient conditions (i) η̄−un′ ≥ η(1−µ2λ)−un and (ii) un−um ≥

un′ − um′.

The conditions ensuring that E(dRm)− E(dRnt) decreases more than E(dRm′t)− E(dRn′t) are

(i) net supply for the index assets in high noise-trader demand is smaller than for their non-index

counterparts, and (ii) the spread in noise-trader demand is larger for index than for non-index assets.

Condition (ii) is plausible if index assets are mostly high-capitalization ones, with large numbers

of shares. Condition (i) is plausible even if index assets are high-capitalization ones because the

demand by non-experts reduces their net supply.

Proof of Proposition A.1. When (ηn′ , σn′) = (η̄, σ) for all n′ /∈ I, RANS for a non-index asset

n′ is
η̄−un′
µ1

σ2. Since RANS decreases in un′ , Lemma A.1 and κn′ = κ for all n′ /∈ I imply E(dRn′t) <

E(dRm′t). Moreover, (2.18) and (ηn′ , κn′ , σn′) = (η̄, κ, σ) for all n′ /∈ I imply E(wn′t) > E(wm′t).

The counterparts of (A.11) and (A.12) when µ2 increases holding µ1 + µ2 constant are

1

Snt(Dnt)

∂Snt(Dnt)

∂µ2
=

2ρσ2
n

µ1

(
∂(µ2λ)
∂µ2

ηn − ηn−µ2λη′n−un
µ1

)
√

(r + κn)2 + 4ρηn−µ2λη′n−un
µ1

σ2
n

[
r + κn +

√
(r + κn)2 + 4ρηn−µ2λη′n−un

µ1
σ2
n

] ,
(A.19)
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∂E(dRnt)

∂µ2
= −

2ρσ2
n

µ1

(
∂(µ2λ)
∂µ2

ηn − ηn−µ2λη′n−un
µ1

)r + κn +
(r+κn)2+2ρ

ηn−µ2λη
′
n−un

µ1
σ2
n√

(r+κn)2+4ρ
ηn−µ2λη

′
n−un

µ1
σ2
n


[
r + κn +

√
(r + κn)2 + 4ρηn−µ2λη′n−un

µ1
σ2
n

]2 E
(

Dnt
κn
r D̄ +Dnt

)
dt,

(A.20)

respectively. Moreover, the derivative of the left-hand side of (A.10) with respect to µ2 holding

µ1 + µ2 and M constant is

N∑
n=1

M(µ1 + µ2)

µ2
2

(η′n)2a2
n1 > 0.

Hence, µ2λ increases when µ2 increases holding µ1 + µ2 constant. Using (ηn, κn, σn) = (η, κ, σ) for

all n ∈ I to simplify (A.19) and (A.20), we find

1

Snt(Dnt)

∂Snt(Dnt)

∂µ2
=

2ρσ2

µ1

(
∂(µ2λ)
∂µ2

η − (1−µ2λ)η−un
µ1

)
√

(r + κ)2 + 4ρ (1−µ2λ)η−un
µ1

σ2

[
r + κ+

√
(r + κ)2 + 4ρ (1−µ2λ)η−un

µ1
σ2

] ,
(A.21)

∂E(dRnt)

∂µ2
= −

2ρσ2

µ1

(
∂(µ2λ)
∂µ2

η − (1−µ2λ)η−un
µ1

)r + κ+
(r+κ)2+2ρ

(1−µ2λ)η−un
µ1

σ2√
(r+κ)2+4ρ

(1−µ2λ)η−un
µ1

σ2


[
r + κ+

√
(r + κ)2 + 4ρ (1−µ2λ)η−un

µ1
σ2

]2 E
(

Dnt
κ
r D̄ +Dnt

)
dt,

(A.22)

respectively. Equation (A.21) implies that the price of asset n rises more, or drops less, in percentage

terms than the price of asset m if the function ΦSu(z) defined in the proof of Proposition 2.3 is

decreasing and the function ΦSη(z) defined in the proof of Proposition 2.4 is increasing. Equation

(A.22) implies that the expected return difference E(dRmt) − E(dRnt) between assets m and n

increases if the function ΦRu(z) defined in the proof of Proposition 2.3 is decreasing and the

function ΦRη(z) defined in the proof of Proposition 2.4 is increasing. Both properties are shown in

the proof of Propositions 2.3 and 2.4.
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The counterparts of (A.19) and (A.20) for non-index assets are

1

Sn′t(Dn′t)

∂Sn′t(Dn′t)

∂µ2
= −

2ρ(ηn′−un′ )σ2
n′

µ2
1√

(r + κn′)2 + 4ρ
ηn′−un′
µ1

σ2
n′

[
r + κn′ +

√
(r + κn′)2 + 4ρ

ηn′−un′
µ1

σ2
n′

] ,
(A.23)

∂E(dRn′t)

∂µ2
= −

2ρ(ηn′−un′ )σ2
n′

µ2
1

r + κn′ +
(r+κn′ )

2+2ρ
ηn′−un′

µ1
σ2
n′√

(r+κn′ )
2+4ρ

ηn′−un′
µ1

σ2
n′


[
r + κn′ +

√
(r + κn′)2 + 4ρ

ηn′−un′
µ1

σ2
n′

]2 E
(

Dn′t
κn′
r D̄ +Dn′t

)
dt, (A.24)

respectively. Using (ηn′ , κn′ , σn′) = (η̄, κ, σ) for all n′ /∈ I to simplify (A.23) and (A.24), we find

that when µ2 increases holding µ1 +µ2 constant, the percentage change in the price of asset n′ and

the change in that asset’s expected return are

1

Sn′t(Dn′t)

∂Sn′t(Dn′t)

∂µ2
= −

2ρ(η̄−un′ )σ2

µ2
1√

(r + κ)2 + 4ρ
η̄−un′
µ1

σ2
[
r + κ+

√
(r + κ)2 + 4ρ

η̄−un′
µ1

σ2
] ,

(A.25)

∂E(dRn′t)

∂µ2
=

2ρ(η̄−un′ )σ2

µ2
1

r + κ+
(r+κ)2+2ρ

η̄−un′
µ1

σ2√
(r+κ)2+4ρ

η̄−un′
µ1

σ2


[
r + κ+

√
(r + κ)2 + 4ρ

η̄−un′
µ1

σ2
]2 E

(
Dn′t

κ
r D̄ +Dn′t

)
dt, (A.26)

respectively. Equation (A.33) implies that the price of asset n′ drops less in percentage terms than

the price of asset m′ if the function ΦSη(z) defined in the proof of Proposition 2.4 is increasing.

Equation (A.34) implies that the expected return difference E(dRm′t)−E(dRn′t) between assets m′

and n′ increases if the function ΦRη(z) defined in the proof of Proposition 2.4 is increasing. Both

properties are shown in the proof of Proposition 2.4.

Equations (A.26) and (A.22) imply

∂E(dRmt)

∂µ2
− ∂E(dRnt)

∂µ2
>
∂E(dRm′t)

∂µ2
− ∂E(dRn′t)

∂µ2

⇔ ΦRη

(
(1− µ2λ)η − um

µ1

)
− ΦRη

(
(1− µ2λ)η − un

µ1

)
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− ∂(µ2λ)

∂µ2
η

[
ΦRu

(
(1− µ2λ)η − um

µ1

)
− ΦRu

(
(1− µ2λ)η − un

µ1

)]
> ΦRη

(
η̄ − um′
µ1

)
− ΦRη

(
η̄ − un′
µ1

)
. (A.27)

Since ΦRu(z) is decreasing, un > um and ∂(µ2λ)
∂µ2

> 0, (A.27) holds under the sufficient condition

ΦRη

(
(1− µ2λ)η − um

µ1

)
− ΦRη

(
(1− µ2λ)η − un

µ1

)
≥ ΦRη

(
η̄ − um′
µ1

)
− ΦRη

(
η̄ − un′
µ1

)
,

which we can write as

∫ (1−µ2λ)η−um
µ1

(1−µ2λ)η−un
µ1

Φ′Rη(z)dz ≥
∫ η̄−um′

µ1

η̄−un′
µ1

Φ′Rη(z)dz

⇔
∫ η̄−un′+un−um

µ1

η̄−un′
µ1

Φ′Rη

(
z +

(1− µ2λ)η − un − (η̄ − un′)
µ1

)
dz ≥

∫ η̄−um′
µ1

η̄−un′
µ1

Φ′Rη(z)dz. (A.28)

Equation (A.28) holds under the sufficient conditions in the proposition, provided that ΦRη(z) is

increasing and concave. Indeed, ΦRη(z) increasing and un−um ≥ un′−um′ imply that the left-hand

side of (A.28) is not smaller than

∫ η̄−um′
µ1

η̄−un′
µ1

Φ′Rη

(
z +

(1− µ2λ)η − un − (η̄ − un′)
µ1

)
dz. (A.29)

Moreover, ΦRη(z) concave and η̄ − un′ ≥ η(1 − µ2λ) − un implies that (A.29) is not smaller than

the right-hand side of (A.28).

In the proof of Proposition 2.4 we show that ΦRη(z) is increasing. To show that ΦRη(z) is

concave, we write it as

ΦRη(z) =

z

(
A+

B+Cz
2√

B+Cz

)
(
A+
√
B + Cz

)2
=

z
(
A+ B+Cz√

B+Cz

)
2
(
A+
√
B + Cz

)2 +
z
(
A+ B√

B+Cz

)
2
(
A+
√
B + Cz

)2
=

z

2
(
A+
√
B + Cz

) +
zA

2
√
B + Cz

(
A+
√
B + Cz

) (A.30)
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= Φ(z) +
A

2
ΦSη(z) (A.31)

where the third equality follows if B = A2, a property that holds in the instances where we define

ΦRη(z), and the functions Φ(z) and ΦSη(z) are defined in the proofs of Lemma A.1 and Proposition

2.4, respectively. In the proof of Lemma A.1 we show that Φ(z) is concave. Therefore, ΦRη(z) is

concave if ΦSη(z) is concave. The derivative of ΦSη(z) is

Φ′Sη(z) =
B +A

B+Cz
2√

B+Cz

(B + Cz)
(
A+
√
B + Cz

)2
=

B +A B+Cz√
B+Cz

2(B + Cz)
(
A+
√
B + Cz

)2 +
B +A B√

B+Cz

2(B + Cz)
(
A+
√
B + Cz

)2
=

A

2(B + Cz)
(
A+
√
B + Cz

) +
B

2(B + Cz)
3
2

(
A+
√
B + Cz

) ,
where the third equality follows if B = A2. Since both functions in the sum are decreasing, Φ′Sη(z)

is decreasing, and hence ΦSη(z) is concave.

Proposition A.2. Suppose that noise-trader demand is proportional to asset supply (un = Uηn

with U < 1 for all n). Consider assets n′,m′ /∈ I, with asset n′ being in smaller risk-adjusted supply

(ηn′σ
2
n′ < ηm′σ

2
m′).

• Asset n′ earns lower expected return than asset m′ (E(dRn′t) < E(dRm′t)).

• When µ2 increases, holding µ1 + µ2 constant:

– The prices and expected returns of index assets do not change.

– The price of asset n′ drops less in percentage terms than the price of asset m′.

– The expected return difference E(dRm′t)− E(dRn′t) between assets m′ and n′ increases.

Proof of Proposition A.2. When un = Uηn, RANS of a non-index asset n′ is

ηn′ − un′
µ1

σ2
n′ =

(1− U)ηn′

µ1
σ2
n′ . (A.32)

Since ηn′σ
2
n′ < ηm′σ

2
m′ , Lemma A.1 and κn′ = κ for all n′ /∈ I imply E(dRn′t) < E(dRm′t).
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When µ2 increases holding µ1 + µ2 constant, (A.16) implies that the net supply of an index

asset n does not change. Hence, (2.13)-(2.15) imply that the asset’s price does not change, and

(2.19) implies that the asset’s expected return does not change.

Using un′ = Uηn′ and κn′ = κ for all n′ /∈ I to simplify (A.23) and (A.24), we find

1

Sn′t(Dn′t)

∂Sn′t(Dn′t)

∂µ2
= −

2ρ(1−U)ηn′σ
2
n′

µ1√
(r + κ)2 + 4ρ

(1−U)ηn′
µ1

σ2
n′

[
r + κ+

√
(r + κ)2 + 4ρ

(1−U)ηn′
µ1

σ2
n′

] ,
(A.33)

∂E(dRn′t)
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2ρ(1−U)ηn′σ
2
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µ1

r + κ+
(r+κ)2+2ρ

(1−U)ηn′
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(r+κ)2+4ρ
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µ1
σ2
n′


[
r + κ+

√
(r + κ)2 + 4ρ

(1−U)ηn′
µ1

σ2
n′

]2 E
(

Dnt
κ
r D̄ +Dnt

)
dt, (A.34)

respectively. Equation (A.33) implies that the price of asset n′ drops less in percentage terms than

the price of asset m′ if the function ΦSη(z) defined in the proof of Proposition 2.4 is increasing.

Equation (A.34) implies that the expected return difference E(dRm′t)−E(dRn′t) between assets m′

and n′ increases if the function ΦRη(z) defined in the proof of Proposition 2.4 is increasing. Both

properties are shown in the proof of Proposition 2.4.
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