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1 Introduction
Due to the main role of interest rates swap rates in the determination of long term
rates, it has been of great relevance to develop exotic options that incorporate
swap rates. This has led to new products that use the rate of a Constant Maturity
Swap (CMS) as an underlying rate. These are very diverse, ranging from CMS
swaps and bonds to more complicated ones like CMS swaptions, caps and any
traditional exotic …xed income derivatives. These CMS derivatives are tailored
instruments for trading the steepening or ‡attening of the yield curve, since one
receives/pays the swap rate (long term rate) in the future and lends/borrows at
money market rates (short term rates) today. There are other products to trade
the steepening or ‡attening of the yield curve, like in arrear derivatives and other
products with embodied convexity. However, CMS derivatives have become more
popular because they are more leveraged than their competitor derivatives and
they correspond to long duration investment.
A main limitation for pricing and hedging these derivatives has been the in-

ability to get closed formula within a standard term structure yield curve model.
Usually, practitioners compare the CMS rate with the forward swap rate of the
same maturity. In the CMS case, the investor pays/receives the swap rate only
once, whereas in the case of the forward swap, during the whole life of the swap.
Consequently, this modi…ed schedule leads to a di¤erence between the two rates,
classically called convexity adjustment. The term convexity refers to the convex-
ity of a receiver swap prices with respect to the swap rate. Traditionally, this
adjustment is calculated assuming that swap rates behave according to the Black
Scholes (1973) hypotheses.
There has been extensive research for the so called Black Scholes convexity

adjustment. Brotherton-Ratcli¤e and Iben (1993) …rst showed an analytic ap-
proximation for the convexity adjustment in the case of bond yield. Other works
completed the initial formula: Hull (1997) extended it to swap rates, Hart (1997)
gave a result with a better precision approximation, Kirikos and al (1997) showed
how to adapt it to a Hull and White yield curve model. Recently Benhamou
(2000) estimated the approximation error by means of a martingale approach.
However, when assuming that interest rates follow a di¤usion process di¤erent

from the Black-Scholes and Hull and White’s ones, using the convexity adjust-
ment in the Black Scholes setting is irrelevant. Indeed, since nowadays, almost
all …nancial institutions rely on more realistic multi-factor term structure models,
the traditional formula looks old-fashioned and inappropriate. In this paper, we
o¤er a solution to it. Using approximations based onWiener Chaos expansion, we
provide an approximated formula for the convexity adjustment when assuming a
multi-factor lognormal zero coupon model (Heath Jarrow hypotheses). This is
consistent with most common term structure models.
The remainder of this paper is organized as follows. In section 2, we explain

the intuition of the convexity adjustment as well as the products based on CMS
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rates. In section 3, we give explicit formulae of a coupon paying a CMS rate when
assuming a log normal zero coupon bond model. In section 4, we explicit formulae
for di¤erent term structure models and compare the closed form results with the
ones given by a Quasi Monte Carlo method. We conclude brie‡y in section 5. In
appendix, some key results on Wiener chaos expansion are presented as well as
the approximation theorem proof.

2 Convexity: intuition and CMS products
In this section, we explain intuitively the nature of the convexity adjustment as
well as the CMS products.

2.1 convexity of Swap rates

In the modern derivatives industry, two risks have emerged as intriguing and
challenging for the management and control of secondary market risk: for equity
derivatives, it has been the volatility smile and for …xed income derivatives, the
convexity adjustment. Taking correctly these e¤ects into account can provide
competitive advantage for …nancial institutions.
Our paper focuses on swap rates. Since the receiver swap price is a convex

function of the swap rate, it is not correct to say that the expected swap is equal
to the forward swap rate, de…ned as the rate at which the forward swap has zero
value. This can be seen with the …gure 1.

Receiver Swap Price

Swap Rate

!ƒ
  Forward

Swap Rate

"#

"$
!#

!$!%

!e  Expected

Swap Rate

Figure 1: Convexity of the swap rate. In this graphic,
we see that the convexity of the receiver swap price with
respect to the swap rate leads to a higher expected swap rate
than the forward swap rate, corresponding to a zero swap
price.

Let see it by means of a simple model. In our economy, the world is binomial,
with the prices of the swap equal to either P1 or P2 with equal probability 1

2
. The

average price, calculated as the expected value of the future prices, leads to a
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zero value corresponding to a swap rate, Y f , called forward swap rate. However,
because of convexity of the receiver swap price with respect to the swap rate, the
expected swap rate Ye , equal to all the outcomes weighted by their corresponding
probabilities (Ye = 1

2
Y1 +

1
2
Y2) is higher than the forward swap Y f . This little

di¤erence is called the convexity adjustment. In the rest of the paper, we will
see how to determine the convexity adjustment when assuming more realistic
description of interest rates’ evolution .

2.2 CMS derivatives

Since their early creation in 1981, interest rates swap contracts have grown very
rapidly. The swap market represents now hundreds of billions of dollars each year.
Subsequently, investors have been and are potentially looking for new instruments
to risk-manage and hedge their positions as well as to speculate on the steepening
or ‡attening of the yield curve. Indeed, the main interest of investors has turned
out to be speculation. Even if other products like in arrear derivatives enable to
trade the ‡attening or the steepening of the yield curve, CMS derivatives are of
particular interest since they are highly leveraged.
CMS derivatives are called CMS because they use a Constant Maturity Swap

rate as the underlying rate. They are very diverse ranging from CMS swaps, CMS
bonds to CMS swaptions and all other types of CMS exotics. Two major products
are mainly traded over the counter: CMS swap and CMS bond. Logically, a CMS
swap is an agreement to exchange a …xed rate for a swap rate, the latter referring
to a swap of constant maturity. Assuming that our CMS swap starts in …ve years,
is annual and is based on a swap rate of …ve year maturity, this typical contract
will be the following: in …ve years, the investor will receive the swap rate of the
swap starting in …ve years from today maturing in ten years. The investor will
pay in return a …xed rate agreed in advance in the contract. One year later,
that is in six years from today, the investor will receive the swap rate of the
swap starting this time in six years from today maturing in eleven years. Again,
the investor will pay the …xed rate. We see that at each payment, the investor
receives a swap rate of a di¤erent swap. All the swap have in common to be
settled at the date of the payment and to have the same maturity. A CMS bond
is very similar to a CMS swap. It is a bond with coupons paying a swap rate of
constant maturity. Therefore a CMS bond is exactly equal to the swap leg paying
the swap rate. Since the swap leg paying the swap rate can be decomposed into
each di¤erent payment, to price the CMS swap or CMS bond, we only need to
price one payment of a swap rate. The value of a swap rate paid only once is
called CMS rate value. The di¤erence in value between the forward swap rate
and this CMS rate is called the convexity adjustment.
Indeed, other CMS derivatives can be priced using forward rates increased by

the convexity adjustment. The rest of the paper will concentrate on the pricing of
the CMS rate. Knowing these rates, one can use them to plug it into derivatives
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pricing formula to get an approached value of the CMS derivatives.

2.3 CMT bond and CMS swap

We consider a continuous trading economy with a trading interval [0; ¿ ] for a
…xed ¿ > 0: The uncertainty in the economy is characterized by the probability
space (­; F;Q) where ­ is the state space, F is the ¾¡algebra representing mea-
surable events, and Q is the risk neutral probability measure uniquely de…ned in
complete markets with no-arbitrage (Harrison, Kreps(1979) and Harrison, Pliska
(1981)). We assume that information evolves according to the augmented right
continuous complete …ltration fFt; t 2 [0; ¿ ]g generated by a standard (initial-
ized at zero) k¡dimensional Wiener Process (or Brownian motion). Let (rt)t<¿
be the continuous spot rate, B (t; T )t<¿;T<¿ the price at time t of a default-free
forward zero coupon maturing at time T and (yT )T<¿ the swap rate at time T .
These three stochastic variables are supposed to be adapted to the information
structure (Ft)t2[0;¿ ] :
The ith coupon of a CMS bond pays the swap rate yTi; with a constant matu-

rity speci…ed in the contract, determined at a …xing date Ti often equal (eventually
prior) to the payment date T pi . Therefore, referring each coupon by the subscript
variable i, the coupon value at time T pi is the swap rate times the nominal yTiN
while, at the …xing time, it is this value discounted by the forward zero coupon
: B (Ti; T

p
i ) yTiN: Assuming the no-arbitrage condition in a complete market, the

value of one coupon Ci at time zero is obtained as the expectation under the risk
neutral probability measure Q of the discounted payo¤:

Ci = EQ
h
e¡

R Ti
0 rsdsB (Ti; T

p
i ) yTiN

i
(1)

The total value at time zero of a N -nominal bond with m coupons with value at
time zero (Ci)i=1::m, with payment dates (T

p
i )i=1::m, providing that the nominal

N is paid at the end date T pm, is given by:

CMS_Bond =
mX
i=1

Ci +N ¤B (0; T pm) (2)

In an interest rate CMS receiver swap, the …xed rate is received and the Constant
Maturity Swap rate is paid. The di¤erent payment dates are also noted T p1 ; :::T

p
m.

The …xed leg valuation is easy. Its total value, denoted by VF ; is equal to the
sum of all the discounted cash ‡ows equal to the …xed rate Rfixed:

VF =
mX
i=1

RfixedB (0; T
p
i )

The …xing dates for the swap rates are denoted by T1; :::Tm. The CMS leg can
be valuated as the sum of all the di¤erent coupons with value at time Ti yTi and
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paid at time T pi . Its total value, denoted by VCMS, is the sum of individual swap
rate coupons:

VCMS =
mX
i=1

EQ

h
e¡

R Ti
0 rsdsB (Ti; T

p
i ) yTi

i
(3)

The price of the CMS swap is the di¤erence of price between the two legs: VF ¡
VCMS for a receiver CMS swap and the opposite for a payer CMS swap. As a
consequence, the rate RCMS_swap, called the CMS swap rate, is the one which
makes the value of the two legs equal:

RCMS_swap =
VCMSPm

i=1B (0; T
p
i )

(4)

The term of the denominator is classically called the sensitivity of the swap. The
CMS swap rate is consequently the value of the CMS leg over the sensitivity of
the swap.
As a conclusion of this subsection, CMS swap or CMS bonds are valued exactly

with the same procedure. One needs to determine the exact value of a coupon
paying the CMS rate. To calculate explicitly these quantities, we need to specify
our interest rate model.

3 Calculating the convexity adjustment
In this section, we explain how to price the convexity adjustment with an approx-
imated formula based on a Wiener Chaos expansion. Indeed, techniques based
on perturbation theory or Kramers Moyal expansion could have also been used.
Moreover, a recursive use of the Ito lemma gives exactly the same results. How-
ever, the framework given by Wiener Chaos expansion is much more powerfull
and leads to a straightforward calculation instead of very tedious ones.

3.1 Pricing framework

We assume that default-free zero coupon bonds are modelled by a lognormal
k-multi-factor model, with a k-dimensional deterministic volatility vector de-
noted by V (t; T ) = (v1 (t; T ) ; :::; vk (t; T ))

0
verifying the Novikov condition 8T <

¿; e
1
2

R ¿
0 kV (s;T )k2ds < +1. This enables us to use probability measure change

since this condition is su¢cient for the Girsanov theorem. The default-free T¡
maturity zero coupon bond price at time t is denoted by B (t; T ) and it is de…ned
as the unique strong solution of the stochastic di¤erential equation given under
the risk neutral probability Q by:

dB (t; T )

B (t; T )
= rtdt+ hV (t; T ) ; dWti (5)
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with hV (t; T ) ; dWti =
P

k vk (t; T ) dW
k
t . The initial condition expresses that at

maturity, the zero coupon bound is equal to the unity coupon B (T; T ) = 1. Using
traditional results (El-Karoui et al(1995)), we can de…ne the forward neutral
probability at time t, Qt either by means of its Radon Nykodym derivatives
with respect to the risk neutral probability measure or by the fact that gdWs =
dWs ¡ V (s; t) ds is a standard Brownian motion under Qt. We get that under
this new probability measure, the bond price solution of the equation (5) can be
written as a normalized Doleans martingale times the value of the forward zero
coupon bond at time zero:

B (t; T ) =
B (0; T )

B (0; t)
e
R t
0hV (s;T )¡V (s;t);gdWsi¡ 1

2

R t
0(kV (s;T )¡V (s;t)k2)ds (6)

To price a CMS swap/bond, we need to determine the value of one coupon,
knowing that the total value of the swap/bond is the sum of the individual swap
coupons. The core of the pricing problem is to determine the value at time zero,
¦0; of a contingent claim that at a payment time T , gives the swap rate yT …xed
at time T; of a vanilla interest rate swap. The underlying interest rate swap has
n equally separated payment dates : T1; :::Tn: As proved for example in Musiela
Ruttkowski(1997) page 389 equation (16.4)) the no-arbitrage condition gives a
simple expression of the swap rate yT with respect to the zero coupon bonds
(B (T; Ti))i=0::n

yT =
B (T; T0)¡B (T; Tn)Pn

i=1B (T; Ti)
(7)

We then adopt the following de…nition of the CMS rate:

De…nition 1 CMS rate is the expected value under the forward risk neutral prob-
ability measure at the payment time T of the swap rate yT

CMS_Rate = E
QT
(yT ) (8)

When payment time T p is di¤erent from …xing time T f ; the above formula is
modi…ed in CMS_Rate = E

QTp

¡
yTf
¢

The guiding idea of the paper is to obtain an approximation formula for the
expression above, by means of Wiener Chaos expansion. Let us introduce some
notations. We call BTi the forward zero coupon:

BTi =
B (0; Ti)

B (0; T )

Let the forward volatility V (T;Ti)s be the volatility of a T¡forward zero coupon
maturing at time Ti:

V (T;Ti)s = V (s; Ti)¡ V (s; T )
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let C (Ti; Tj) denote the (symmetric) correlation term between the return of the
zero coupon bonds (mathematically between the logarithm of zero coupon bonds)

C (Ti; Tj) =

Z T

0

­
V (T;Ti)s ; V (T;Tj)s

®
ds

and K the sensitivity of the forward swap de…ned as the sum of the forward zero
coupon bonds K =

Pn
i=1BTi :

De…nition 2 Convexity adjustment CA is the di¤erence between the CMS rate
and the value today of the forward swap rate:

CA = CMS rate¡ yforward (9)

The value today of the forward swap rate is given by the equation (7) with
the time considered being zero leading to yforward = BT0¡BTn

K
.

3.2 Closed formulae

The paper’s result is the following approximation theorem. By means of ap-
proximations based on Wiener chaos, we can get a closed formula for the CMS
rate.

Theorem 1 Under the above assumptions, the convexity adjustment denoted
CA can be expressed as a sum of di¤erent correlation terms, plus an error term
expressed with Landau notation as an O

¡kVs (:; :)k4¢:
CA =

0BB@
Pn
i=1BTi(BTnC(Ti;Tn)¡BT0C(Ti;T0))

K2

+yforward
Pn
i;j=1 BTiBTjC(Ti;Tj)

K2

1CCA+O ¡kVs (:; :)k4¢ (10)

Proof : see section 6.2 page 17.¤

This theorem shows us that the convexity adjustment on a swap rate is a
simple function of correlation terms. Interestingly, it is a linear function of the for-
ward swap rate yforward. The termsBTiBTnC (Ti; Tn) respectivelyBTiBT0C (Ti; T0)
can be interpreted as the convexity adjustment between the zero coupon bonds
B (T; Ti) and B (T; Tn) respectively B (T; Ti) and B (T; T0) as the following proof
states it:

Proposition 1 The convexity adjustment CA between two zero coupons bonds
can be expressed as a simple expression of the correlation term

CA = EQT [B (T; Ti)B (T; Tj)]¡ EQT [B (T; Ti)]EQT [B (T; Ti)] (11)

= BTiBTjC (Ti; Tj) +O
¡kVs (:; :)k4¢
8



Proof: Plugging in the expression of the zero coupon bond (6), the convexity
adjustment can be expressed as the value at time zero of the forward zero coupons
BTiBTj times an expectation:

CA = BTiBTjEQT

24eR t0
*
V
(T;Ti)
s +V

(T;Tj)
s ;gdWs

+
¡1
2

R t
0

Ã°°°°V (T;Ti)s

°°°°2+
°°°°°V (T;Tj)s

°°°°°
!
ds

¡ 1
35

Using the fact that e
R t
0hf(s);gdWsi¡ 1

2

R t
0 (kf(s)k2)ds is a martingale for any determinis-

tic function f (:) ; this expression simpli…es to BTiBTj

Ã
e

R t
0

¿
V
(T;Ti)
s ;V

(T;Ti)
s

À
ds ¡ 1

!
,

which leads to the result (11) when taking a Taylor expansion up to the …rst
order.¤

Corollary 1 When the underlying CMS swap is a spot CMS swap: T = T0 and
the formula simpli…es to

CA =

0BB@
BTn

Pn
i=1BTiC(Ti;Tn)

K2

+yforward
Pn
i;j=1 BTiBTjC(Ti;Tj)

K2

1CCA (12)

Proof : When the CMS swap is a spot CMS swap, the correlation term
C (T0; Ti) (convexity term due to the fact that we have a forward swap) becomes
zero.¤

In this latter case, equation (12), the convexity adjustment is always positive.
This result can be easily derived within an elementary term structure model (since
we notice that the rate of a forward bond should always be above the forward
rate). Put another way, for this CMS, it is pure convexity.
The previous results are approximation formulae. Specifying the error term

as the di¤erence between the intractable expression of the convexity adjust-
ment and the closed formula obtained by Weiner Chaos, we can stipulate an
upper boundary for the error term. Indeed, the use of Wiener Chaos expan-
sion provides that the error term is dominated by the following quantity O3 =

O

ÃµR T
s1=0

R T
s2=0

R T
s3=0

°°°V (T;Ti)s1

°°°2 ::: °°°V (T;Ti)s3

°°°2 ds1:::ds3¶1=2!. This indicates that
our approximation is all the more e¢cient than the volatility is small.

3.3 Extension

It turns out that some CMS rate are with a delayed adjustment. The case is more
complicated to handle. However, the same methodology gives a closed formula
for the price.
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Theorem 2 In the case of a payment date T p di¤erent from the …xing time T , the
above expression gets additional terms due to delayed adjustment. The convexity
adjustment is then given by:

CA =

0BBB@
Pn
i=1BTi(BTnC(Ti;Tn)¡BT0C(Ti;T0))

K2

+yforward
³Pn

i;j=1BTiBTj (C(Ti;Tj)¡C(Ti;Tp))
K2

´
1CCCA (13)

Proof : The proof goes along the same lines as the one of theorem (1) and
can be done using thee same techniques. ¤

Corollary 2 The convexity adjustment can also be expressed as:

CA =

Pn
i;j=1BTiBTj

µ
BTn (C (Ti; Tn)¡ C (Ti; Tj) + C (Ti; T p))
¡BT0 (C (Ti; T0)¡ C (Ti; Tj) + C (Ti; T p))

¶
K3

(14)

The interpretation is simple. This formula expresses the convexity adjustment
as the di¤erence of correlation terms. Since these terms are small, this suggests
already that the convexity adjustment is small. This a posteriori justi…es our
approached method where we cut the Wiener Chaos expansion after the second
order. Indeed, the theoretical justi…cation of the limitation of the expansion until
the second order can be found as well in the theorem of Pawula which states that
a positive transition probability, the Kramers-Moyal expansion (similar to the
Wiener Chaos one) may be stopped either after the …rst term or after the second
term. If it does not stop after the second term, it must contain an in…nite number
of terms.
For the interpretation of this convexity adjustment, we assume that the cor-

relation term C (Ti; Tj) is an increasing function of both Ti and T . Let us assume
that the payment date T p is prior to the di¤erent payment dates of the underlying
swap (Ti)i=1::n, i.e., Ti > T

p for every i. Consequently, the …rst term in the RHS of
equation (13) yforwardS1, of the same sign as

Pn
i=1BTiBTj (C (Ti; Tj)¡ C (Ti; T p))

is positive. The other term is closely connected to the sign of

nX
i=1

BTi (BTn (C (Ti; Tn)¡ C (T p; Tn))¡BT0 (C (Ti; T0)¡ C (T p; T0)))

This leads to think that this expression, expressed as a di¤erence, should be
relatively small and in many cases, smaller than the …rst correction term. In
the case it is non positive, it should be slightly negative. This result is of great
signi…cance since it states that under non-classical conditions, the expected swap
rate can be lower than its corresponding forward swap rate, mainly due to a
negative delayed adjustment.
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4 Application and results
In this section, we apply the formula to di¤erent types of stochastic interest rate
model.

4.1 Application to di¤erent models

In this section, we apply our closed formula to various one-factor interest rates
model. Therefore, for all of them, the number of factors k is one.

4.1.1 Ho and Lee model

Among the early one-factor interest rate term structure model, the Ho and Lee
(1986) model was originally in the form of a binomial tree of bond prices. After
the Heath Jarrow Morton formalism, this model has been rewritten in the form
of a di¤usion of the zero coupons bonds:

dB (t; T )

B (t; T )
= rtdt+ ¾ (T ¡ t) dWt

It has been observed that the volatility of zero coupons bonds was decreasing
with time. This model assume a linear decrease. The forward volatility as well
as the correlation have consequently simple form:

V (T;Ti)s = ¾ (Ti ¡ T )

and C (Ti; Tj) = ¾2 (Ti ¡ T ) (Tj ¡ T ) _T . The convexity adjustment formula (13)
can than be expressed as a function of forward zero coupon and the volatility:

convexity =

0B@ ¾2
(
Pn
i=1BTiT (Ti¡Tp))(BTn (Tn¡T )¡BT0 (T0¡T ))

K2

+yforward¾2
Pn
i;j=1 BTiBTj (Ti¡T )(Tj¡Tp)T

K2

1CA
4.1.2 Amin and Jarrow model

The purpose of the Amin and Jarrow (1992) model is to take into account a
phenomenon called the volatility hump. Basically, the volatility of zero coupons
bonds is …rst increasing and then decreasing. Amin and Jarrow o¤ered to model
the volatility as a second order polynomial given by ¾0 (T ¡ t) + ¾1 (T¡t)

2

2
. This

leads to the following expression for the zero coupons bonds di¤usion

dB (t; T )

B (t; T )
= rtdt+

Ã
¾0 (T ¡ t) + ¾1 (T ¡ t)

2

2

!
dWt

11



The forward volatility is expressed as a second order polynomial expression of the

di¤erent maturities V (T;Ti)s =

µ
¾0 (Ti ¡ T ) + ¾1 [(Ti¡t)

2¡(T¡t)2]
2

¶
as well as for the

correlation term, which is more complicated and is expressed in this particular
case as a sun of four terms:

C (Ti; Tj) = A1 +A2 +A3 +A4

with
A1 = ¾

2
0 (Ti ¡ T ) (Ti ¡ T )T

A2 = ¾0¾1 (Ti ¡ T ) 12
h
T 3j ¡(Tj¡T )3

3
¡ T 3

3

i
A3 = ¾0¾1 (Tj ¡ T ) 12

h
T 3i ¡(Ti¡T )3

3
¡ T 3

3

i
A4 = ¾

2
1 (Ti ¡ T ) (Ti ¡ T )

£
1
4

¡
TTiTj +

1
3
T 3
¢¤

The convexity is then calculated thanks to the convexity adjustment formula
(13).

4.1.3 Hull and White model

This model represents a signi…cant breakthrough compared to the Ho&Lee model.
It is a one factor model, extendable to a two factors or more version, that en-
ables both to incorporate deterministically mean-reverting features and to allow
perfect matching of an arbitrary yield curve. It has become very popular among
practitioners since there exits closed forms for vanilla interest rates derivatives
like cap/‡oor and swaption (on factor version). This implies a quick calibration.
The form with the time-dependent volatility has been advocated to be unstable
and is consequently not used in practice. We will give here the convexity adjust-
ment for the classic Hull and White (1990) model with a constant volatility ¾
and constant mean reverting parameter ¸. In this model, in his formulation on
zero coupons, zero coupons bonds follow a di¤usion given by

dB (t; T )

B (t; T )
= rtdt+ ¾

1¡ e¡¸(T¡t)
¸

dWt:

The volatility structure is realistic since it is decreasing with time. It does
not allow for the hump which can be seen as the main drawback of this model.
In this case,

V (s; t) = ¾
1¡ e¡¸(T¡t)

¸

and the forward volatility is given by V (T;Ti)s = ¾ e
¡¸T¡e¡¸Ti

¸
e¸s where as the cor-

relation term is becoming

C (Ti; Tj) = ¾
21¡ e¡¸(Tj¡T )

¸

1¡ e¡¸(Ti¡T )
¸

1¡ e¡2¸T
2¸
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It is worth noticing that this model assume a lower correlation between the dif-
ferent rates than the Ho&Lee model: We get the following convexity adjustment
formula convexity = HW1 +HW2

HW1 = ¾2yforward

Pn
i;j=1BTiBTj

1¡e¡2¸T
2¸

1¡e¡¸(Ti¡T)
¸

µ
e¡¸(T

p¡T )¡e¡¸(Tj¡T)
¸

¶
K2

HW2 = ¾2

Pn
i=1BTi

1¡e¡2¸T
2¸

³
e¡¸(T

p¡T )¡e¡¸(Ti¡T)
¸

´³
BTn

1¡e¡¸(Tn¡T )
¸

¡BT0 1¡e
¡¸(T0¡T )
¸

´
K2

or for the simpli…ed version T = T0 = T p

HW1 = ¾2
Pn

i=1BTi
1¡e¡2¸T

2¸
1¡e¡¸(Ti¡T )

¸

K2

nX
j=1

BTj

µ
1¡ e¡¸(Tj¡T )

¸

¶
yforward

HW2 = ¾2

Pn
i=1BTi

1¡e¡2¸T
2¸

³
1¡e¡¸(Ti¡T)

¸

´
K2

µ
BTn

1¡ e¡¸(Tn¡T )
¸

¶
4.1.4 Mercurio and Moraleda model

Last but not least, we examine the case of the Mercurio and Moraleda (1996)
model. This model has been introduced like the Amin and Jarrow model to
take account of the volatility hump. Mercurio and Moraleda (1996) suggested
to use a combination of Ho and Lee and Hull and White volatility form to get
another volatility in which the hump would be modelled more realistically with
still analytical tractability. This leads to the following di¤usion for the zero
coupons bonds:

dB (t; T )

B (t; T )
= rtdt+ ¾

µ
1¡ e¡¸(T¡t)

¸
+ °

µ
1¡ e¡¸(T¡t)

¸2
¡ (T ¡ t) e

¡¸(T¡t)

¸

¶¶
dWt

In this particular case, the volatility structure takes the following form: V (T;Ti)s =
g (s; Ti) + f (s; Ti)

g (s; Ti) = ¾
e¡¸T¡e¡¸Ti

¸
e¸s

f (s; Ti) = °¾
³
(Ti¡s)e¡¸(Ti¡s)¡(T¡s)e¡¸(T¡s)

¸
+ e¸s e

¡¸T¡e¡¸Ti
¸2

´
and

C (Ti; Tj) =M21 +M22 +M23 +M24

M21 = ¾
2 1¡e¡¸(Tj¡T)

¸
1¡e¡¸(Ti¡T )

¸
1¡e¡2¸T

2¸

M22 =
R T
0
f (s; Ti) f (s; Tj) ds

M23 =
R T
0
g (s; Ti) f (s; Tj) ds

M24 =
R T
0
g (s; Tj) f (s; Ti) ds
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or after simpli…cation

M22 = Ã (Ti;Tj)

M23 = ® (i)¯ (j)

M24 = ® (j) ¯ (i)

® (i) = °¾2 1¡e
¡¸(Ti¡T )
¸

¯ (j) =

0B@
µ
Tje

¡¸(Tj¡T)¡T
¸

1¡e¡2¸T
2¸

+ 1¡e¡¸(Tj¡T)
¸

2¸T¡1+e¡2¸T
4¸2

¶
+1¡e¡¸(Tj¡T)

¸2
1¡e¡2¸T

2¸

1CA

Ã (Ti;Tj) = (°¾)
2

0BBBBBBBBBBBB@

³
1¡e¡¸(Ti¡T )

¸

´µ
1¡e¡¸(Tj¡T)

¸

¶³
2¸2T 2¡2T¸+1¡e¡2T¸

4¸3

´
+
³
Tie

¡¸(Ti¡T)¡T
¸

+ 1¡e¡¸(Ti¡T )
¸2

´µ
1¡e¡¸(Tj¡T)

¸

¶
2T¸¡1+e¡2T¸

4¸2

+

µ
Tje

¡¸(Tj¡T)¡T
¸

+ 1¡e¡¸(Tj¡T)
¸2

¶³
1¡e¡¸(Ti¡T )

¸

´
2T¸¡1+e¡2T¸

4¸2

+

Ã
Tie

¡¸(Ti¡T)¡T
¸

+1¡e¡¸(Ti¡T)
¸2

!0@ Tje
¡¸(Tj¡T)¡T

¸

+1¡e¡¸(Tj¡T)
¸2

1A 1¡e¡2T¸
2¸

1CCCCCCCCCCCCA
The convexity is then calculated thanks to the convexity adjustment formula (13)

4.2 Results for a standard contract

In this section, we give some results with a Ho and Lee model, a one factor
Hull and White model, and a Mercurio and Moraleda model. We compare them
to the results we get from a Quasi Monte Carlo simulation with 10,000 random
draws. We got that the di¤erence between our formula and the Quasi Monte Carlo
simulation was negligeable. These results are summarized in the four tables given
in the appendix section: table 1, 2, 3 and 4. Interestingly, convexity adjustment
are di¤erent depending on the model but very closed one to another.

5 Conclusion
In this paper, we have seen that Wiener Chaos theory provides closed formulae
which are very good approximations of the correct result. The interesting point is
that this methodology is quite general and could also be applied for many other
products where the payo¤ function is a non linear function of lognormal variables.
Indeed, there are many extensions to this paper. One is to extend to other con-

vexity adjustment our methodology: convexity adjustment of futures contracts to
forwards one. A second development, quite promising, is to apply Wiener chaos
technique to other option pricing problem.

14



6 Annex

6.1 Introduction to Wiener Chaos

6.1.1 Intuition

Introduced in …nance by Lacoste (1996) (in an paper about transaction costs) and
Brace and Musiela (1995), Wiener Chaos expansion could be intuitively thought
of the generalization of Taylor’s expansion to stochastic processes with some mar-
tingale considerations. This representation of stochastic processes initially proved
for the Brownian motion by Wiener (1938) and later for Levy process (see Ito
1956) has been recently refocused, motivated by the contemporary development
of the Malliavin calculus theory and its application not only to probability theory
but also to mechanics, economics and …nance (1995).
More precisely, we present in this section the basic properties of the chaotic

representation for a given fundamental martingale. LetM be a square-integrable
martingale according to an appropriate …ltration called Ft with deterministic
Doob Meyer brackets hMit (de…ned through the requirement that (M2

t ¡ hMit)
be a martingale). The latter property is vital for obtaining the chaotic orthogonal
representation of the space L2 (F1). Let

Cn = f(s1; :::; sn) 2 Rn; 0 < s1 < ::: < sn < tg
be the set of strictly increasingly-ordered n-uplets. Let (©n)n2N be the morphisms
from L2 (Cn) to L2 (F1)

©n (f) : L2 (Cn)! L2 (F1)
©n (f) =

Z t

0

:::

Z sn¡1

0

f (s1; :::; sn) dMsn dMs1

The interesting property of the series of the images of L2 (Cn) by the morphisms
(©n)n2N is the orthogonal decomposition of the space L2 (F1).

L2 (F1) =
?©
n
©n
¡L2 (Cn)¢

This fundamental decomposition of the space L2 (F1) into sub-spaces called M-
chaos subspaces leads to the interesting representation of any function F of
L2 (F1) into a series of terms resulting from the orthogonal projection of the
function F on the series of M -chaos subspaces.

F =
X
n

©n (f) =
X
n

Z
Cn

fn (s1; :::; sn) dMsndMs1

where fn 2 L2 (Cn) :Deriving theWiener Chaos expansion of a function f element
of L2 (F1) is very simple as the following theorem proves it:
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6.1.2 Theorem and proposition

Theorem 3 Decomposition in Wiener Chaos
Let DnF represent the nth derivative of function F according to its second vari-
able. The M-chaos decomposition of the process (F (t;Mt))t¸0 gives, for all t ¸ 0,

F (t;Mt) = E [F (t;Mt)] +

1X
n=1

E [DnF (t;Mt)]

Z
Cn

dMsn :::dMs1

Proof : See Lacoste (1996) Theorem 3.1 p 201.
The following two propositions refer to important facts about Wiener Chaos,

heavily used in the rest of the paper.

Proposition 2 Orthogonality of the di¤erent chaos
The fundamental properties used are the orthogonality of the di¤erent chaos. Let
fn 2 L2 (Cn) and fm 2 L2 (Cm) and let (M)t2R+ be a martingale process de…ned
as in the previous section

E
·Z

Cn

fn (s1; :::; sn) dMsndMs1

Z
Cm

fm (s1; :::; sm) dMsmdMs1

¸
= ±n;m

Z
Cn

fn (s1; :::; sn) fm (s1; :::; sm) ds1:::dsn

with ±n;m the Kronecker delta.

±n;m = 1 if n = m

= 0 otherwise

The other result we used is the decomposition of a geometric Brownian motion
(or a Doleans martingale).

Proposition 3 Wiener Chaos decomposition of a geometric multidimensional
Brownian motion
The geometric multidimensional Brownian motion denoted by ATk can be ex-
panded as the Hilbertian sum of orthogonal terms called Wiener Chaos of order
i, denoted by Ii:

ATk = e

R T
0

¿
V
(T;Tk)
s ;dfWs

À
¡ 1
2

R T
0

°°°°V (T;Tk)s

°°°°2ds (15)

=

1X
i=0

Ii (V; T; Tk) (16)

with

I0 (V; T; Tk) = 1

Ii;i>0 (V; T; Tk) =

R T
s1=0

:::
R T
si=0

D
V (s1; T; Tk) ; dfWs1

E
:::
D
V (si; T; Tk) ; dfWsi

E
i!
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Proof : see either (1997) exercise p1.2.d. page 19 or(1996) page 201 Theorem
3.1.¤

6.2 Proof of the theorem

This appendix section gives the proof of therorem 1.

6.2.1 Finding the convexity adjustment

We remind some notations for the proof. We denote by K the sensitivity of
the forward swap, K =

Pn
i=1BTi . We write down as well that a zero coupon

bond can be written as a normalized Doleans martingale times its value at
time zero, leading to the following notation: B(T;Ti)T = BTiATi with ATi =

e

R T
0

¿
V
(T;Ti)
s ;dfWs

À
¡ 1
2

R T
0

°°°°V (T;Ti)s

°°°°2ds and BTi = B(0;Ti)
B(0;T )

: We need to calculate the fol-
lowing quantity:

¦0 = B (0; T )EQT

µ
BT0AT0 ¡BTnATnPn

i=1BTiATi

¶
Using the linearity of the expectation operator, we get the above expression can
be separated into two terms

¦0
B (0; T )

= BT0EQT
µ

AT0Pn
i=1BTiATi

¶
¡BTnEQT

µ
ATnPn

i=1BTiATi

¶
Using the technical lemma (by means of Wiener chaos expansion) proved below,
we get that the two expectations can be approached by the following expression

EQT
µ

ATjPn
i=1BTiATi

¶
=
1

K
¡
Pn

i=1BTiC (Tj; Ti)

K2
+

Pn
i;k=1BTiBTkC (Ti; Tk)

K3
+O3

with the signi…cation of O3 explained in the technical lemma. Rearranging the
term, we get that the price of the expected swap rate could be written as a simple
expression

¦0
B (0; T )

=
BT0 ¡BTn

K
+

Pn
i=1BT0BTiC (T0; Ti)¡BTnBTiC (Tn; Ti)

K2
+

Pn
i;k=1BTiBTkC (Ti; Tk)

K2

which leads to the …nal result.¤
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6.2.2 Approximation using Wiener Chaos

In this section, we want to prove the following technical lemma. Using a simpli…ed
version of Landau notation, O3 denotes a negligeable quantity with respect to the°°V (T;Ti):

°°3
L2
, i.e.

O3 = O

ÃµZ T

s1=0

Z T

s2=0

Z T

s3=0

°°V (T;Ti)s1

°°2 ::: °°V (T;Ti)s3

°°2 ds1:::ds3¶1=2!
Lemma 1 Using the notation as above the expected value of the non linear
stochastic expression

ATjPn
i=1 BTiATi

can be given by a simple function of the cor-

relation terms: EQT
³

ATjPn
i=1BTiATi

´
= 1

K
¡

Pn
i=1BTiC(Tj ;Ti)

K2 +
Pn
i;k=1BTiBTkC(Ti;Tk)

K3 + "

where the error term, "; denotes a negligeable quantity with respect to the
°°V (T;Ti):

°°3
L2
,

i.e. " = O3.

Proof: let us introduce some notations U0 = 1, U1 =
Pn
i=1BTiI1(V;T;Ti)

K
, U2 =Pn

i=1 BTiI2(V;T;Ti)

S
. By a Wiener Chaos expansion theorem 3, and result (16), we

can expand the term ATi and we get:
nX
i=1

BTiATi

=
nX
i=1

BTi +
nX
i=1

BTiI1 (V; T; Ti) +
nX
i=1

BTiI2 (V; T; Ti) + "1

where the error term "1 is a negligeable quantity with respect to the kV (T; Ti)k3L2
("1 = O3). The simple Taylor expansion 1

1+x
= 1 ¡ x + x2 + o (x3) gives that

we can rewrite the denominator of the function in the expectation as now linear
terms

1Pn
i=1BTiATi

(17)

=
1

K
¡
Pn

i=1BTiI1 (V; T; Ti)

K2
¡
Pn

i=1BTiI2 (V; T; Ti)

K2
+
1

K

µPn
i=1BTiI1 (V; T; Ti)Pn

i=1BTi

¶2
+ "2

where the error term "2 is a negligeable quantity with respect to the
°°V (T;Ti):

°°3
L2

("2 = O3): In the expectation to calculate EQT
³

BTjATjPn
i=1 BTiATi

´
, the term ATj can be

seen as a change of probability measure. We denote by QT;Tj the new probability
measure de…ned by its Radon Nikodym derivative with respect to the forward
neutral probability measure QT , andW

T;Tj
s the QT;Tj standard Brownian motion:

dQT;Ti

dQT
= e

R T
0

*
V
(T;Tj)
s ;dfWs

+
¡ 1
2

R T
0

°°°°°V (T;Tj)s

°°°°°
2

ds

dW T;Tj
s = dfWs ¡ V (T;Tj)s ds
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Then the measure change eliminates the numerator term and simpli…es the expec-
tation to calculate as only a function of 1Pn

i=1 BTiATi
in a new probability measure

QT;Tj . By linearity of the expectation operator and using the approximation (17)
, we get

EQT;Tj
µ

1Pn
i=1BTiATi

¶
=

1

K
¡ EQT;Tj

µPn
i=1BTiI1 (V; T; Ti)

K2

¶
¡ EQT;Tj

µPn
i=1BTiI2 (V; T; Ti)

K2

¶
+
1

K
EQT;Tj

ÃµPn
i=1BTiI1 (V; T; Ti)

K

¶2!
+ "3

where the error term "3 is a negligeable quantity with respect to the
°°V (T;Ti):

°°3
L2

("3 = O3). One can conclude by successively proving that

EQT;Tj (I1 (V; T; Ti)) = C (Ti; Tj)

E
QT

p;Tj I2 (V; T; Ti) = O3

EQT;Tj

0@Ã nX
i=1

BTiI1 (V; T; Ti)

!21A =
nX

i;k=1

BTiBTkC (Ti; Tk) +O3

¤

6.3 Results of the Quasi Monte Carlo simulation

This annex sub-section shows results of a Quasi Monte Carlo simulation for the
four di¤erent models. The simulation was done using 10,000 draws. The con-
vexity term was calculated on an interest rate curved dated September, 2, 1999.
Interestingly, convexity adjustment are di¤erent depending on the model but very
closed one to another.

Year
forward
Swap
Rates

CMS
Swap

QMC
price

convexity
adjustement
in basis point

0 4.163826 4.163826 4.163826 0
1 4.385075 4.43604 4.436145 5.57
2 4.600037 4.699187 4.699212 9.91
3 4.80722 5.951161 5.951101 14.39
5 5.13929 5.36107 5.36087 22.18
7 5.366385 5.649873 5.649921 28.35
10 5.586253 5.935744 5.935735 34.95
Table 1: Convexity adjustment for Ho and Lee model

Result obtained with ¾ = 1%
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Year
forward
Swap
Rates

CMS
Swap

QMC
price

convexity
adjustement
in basis point

0 4.163826 4.163826 4.163826 0
1 4.385075 4.400307 4.400318 1.52
2 4.600037 4.635506 4.635521 3.55
3 4.80722 4.868121 4.868136 6.09
5 5.13929 5.266523 5.266514 12.72
7 5.366385 5.579279 5.579263 21.29
10 5.586253 5.959299 5.959281 37.30
Table 2: Convexity adjustment for Amin and Jarrow model

Results obtained with ¾0 = 0:1% and ¾1 = 0:1%

Year
forward
Swap
Rates

CMS
Swap

QMC
price

convexity
adjustement
in basis point

0 4.163826 4.163826 4.163821 0.00
1 4.385075 4.441479 4.441467 5.64
2 4.600037 4.708704 4.708715 10.87
3 4.80722 4.963449 4.963459 15.62
5 5.13929 5.375376 5.375363 23.61
7 5.366385 5.662372 5.662368 29.60
10 5.586253 5.940745 5.940736 35.45
Table 3: Convexity adjustment for Hull and White model

Results obtained with ¾ = 1:1% ¸ = 1%

Year
forward
Swap
Rates

CMS
Swap

QMC
price

convexity
adjustement
in basis point

0 4.163826 4.440826 4.440826 0.00
1 4.385075 4.440826 4.440812 5.58
2 4.600037 4.707352 4.707347 10.73
3 4.80722 4.961371 4.961368 15.42
5 5.13929 5.371831 5.371820 23.25
7 5.366385 5.657425 5.657414 29.10
10 5.586253 5.933928 5.933938 34.77
Table 4: Convexity adjustment for Mercurio and Moraleda model

Results obtained with ¾ = 0:9% ¸ = 1%° = 0:11%
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