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Asset Price Dynamics with Value–at–Risk
Constrained Traders

ABSTRACT

Risk management systems in current use treat the statistical re-

lations governing asset returns as being exogenous, and attempt to

estimate risk only by reference to historical data. These systems fail

to take into account the feedback effect in which trading decisions

impinge on prices. We investigate the consequences for asset price dy-

namics of the widespread adoption of such techniques. We illustrate

through simulations of a general equilibrium model that, as compared

to the case when such techniques are not used, prices are lower, have

time paths with deeper and longer troughs, as well as a greater degree

of estimated volatility. The magnitudes can sometimes be consid-

erable. Far from promoting stability, widespread adoption of such

techniques may have the perverse effect of exacerbating financial in-

stability.
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The adoption of risk–management techniques by fund managers and other

market participants has proceeded at a rapid pace in recent years. Their

adoption has been driven not only by the market participants themselves in

reaction to their experiences of market turbulence, but also by a regulatory

climate that encourages putting so–called market sensitive risk management

systems at the operational center of financial institutions. In particular,

the 1996 amendment of the Basel Accord on regulatory capital for market

risk (Basel Committee on Banking Supervision, 1996) has been especially

influential in this development.

All risk–management systems in widespread use today rest on techniques that

attempt to infer the statistical relations governing asset returns by reference

to actual, historical realizations of returns. Indeed, this is dictated by the

Basel Accord. By their nature, such risk–management systems treat the

uncertainty governing asset returns as being exogenous. What they fail to

take into account is the fact that the behavior of market participants is

affected by the adoption of these techniques, creating a feedback effect on

the whole financial system. In short, these systems fail to take into account

the system–wide consequences of widespread adoption of these techniques.

Basak and Shapiro (2001), Dańıelsson (2000), Dańıelsson and Zigrand (2001),

Morris and Shin (1999), Crockett (2000) , and Persaud (2000) are some recent

comments that express unease about the current practice.

The main concern is aptly summarized in the following passage1.

“So–called value–at–risk models (VAR) blend science and art.

They estimate how much a portfolio could lose in a single bad

day. If that amount gets too large, the VAR model signals that

1The Economist Magazine, Oct 12th 2000.
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the bank should sell. The trouble is that lots of banks have similar

investments and similar VAR models. In periods when markets

everywhere decline, the models can tell everybody to sell the same

things at the same time, making market conditions much worse.

In effect, they can, and often do, create a vicious feedback loop.”

The issues raised by this debate are eerily reminiscent of the debate in the

1970s arising from the Lucas Critique, (see Lucas, 1976). The main lesson

drawn by macroeconomic forecasters then was that one should distinguish

between reduced form regularities (which are liable to break down when be-

havior changes) from genuinely structural relations of the economy. The fail-

ure to distinguish properly between the two lead to unjustifiable conclusions

concerning the consequences of policy. This point is succinctly summarized

in Goodhart’s Law :

“Any statistical relationship will break down when used for policy

purposes” (Goodhart, 1974)

The blindspot in conventional risk management techniques, and especially

the supervisory approach to the regulation of risk, is the presumption that

risk management is a single–person decision problem i.e. a game against

nature. That is, uncertainty governing price movements is assumed to be

exogenous, and assumed not to depend on the actions of other decision mak-

ers. The analogy is with a meteorologist trying to predict the weather. The

weather is unaffected by the predictions issued by weather forecasters and

the consequent actions that these forecasts generate. So, if the forecast is

fine today, this will influence the actions of those decision makers for whom

this information is useful, but their actions will not change the weather. Fi-

nancial markets are different. When short run price changes are influenced
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nature of market risk, even if their risk management systems do not. The

neglect of the endogenous nature of risk in risk management models is all

the more puzzling when set against the lessons drawn after the October

1987 crash of the stock market. The Brady Commission (1988) attributed

the magnitude and swiftness of the price decline to practices such as port-

folio insurance and dynamic hedging techniques. Such trading techniques

have the property that they dictate selling an asset when its price falls and

buying it when the price rises. Best estimates at the time suggested that

around $100 billion in funds were following formal portfolio insurance pro-

grams, representing around 3% of the pre–crash market value. However, this

is almost certainly an underestimate of total selling pressure arising from in-

formal hedging techniques such as stop–loss orders, see the survey evidence

presented in Shiller (1987). Portfolio insurance has been discussed e.g. by

Grossman and Vila (1989), Gennotte and Leland (1990), Basak and Shapiro

(1995), and Grossman and Zhou (1996). The events of the summer and

autumn of 1998 in which financial markets experienced severe disruptions

to liquidity and risk appetite can only be satisfactorily understood if the

endogeneity of financial risk is taken into account.

In what follows, we investigate the consequences of the widespread adoption

of market–sensitive risk management systems that treat financial market

uncertainty as exogenous, and do not take into account the feedback from

traders’ actions to the market outcomes. We gauge their systemic impact

by comparing the dynamics of asset prices with risk–management systems

and compare this with asset price dynamics in the absence of such systems.

The plan of the paper is as follows. In the next section, we will give a non–

technical overview of our model and summarize some of our main simulation

results. Section II presents the model in more detail, and Section III describes
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our simulations in more detail.

I. Overview of Model and Simulation Results

Our model is based on a standard asset pricing model where a large num-

ber of small traders each have constant absolute risk aversion, but where

the degree of risk aversion varies across traders. The underlying uncertainty

is driven by the cashflow process which is assumed to be conditionally nor-

mal. The model builds on the single period model by Dańıelsson and Zigrand

(2001) in which a Value–at–Risk (VaR) constraint is introduced that restricts

the portfolio choices of traders. Specifically, traders forecast next period’s

risk, and this estimate restricts their portfolio selection. A similar model

has been proposed by Basak and Shapiro (2001). Crucially, traders follow

current practices in risk management and forecast risk by means of a stan-

dard variance–covariance (VCV) technique. In other words, traders use a

backward–looking belief revision process in which forecasts are generated by

reference to past realizations of returns, as recommended by many of the

current risk management systems and required by regulators.

When the VaR constraint binds, we show that it has an effect similar to

an increase in the underlying risk aversion of the traders. Since the degree

to which this constraint binds is determined by market outcomes, the net

effect of the VaR constraint is that the traders behave as if their degree of

risk aversion is fluctuating with the market outcomes. In particular, since

the VaR constraint binds mostly during periods of market turbulence, the

increased effective risk aversion leads to sales of risky assets, and serves to

exacerbate market volatility and to reduce liquidity. This is indeed one way in

which we can understand the frequently heard statement from market pundits
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during distressed episodes that the “level of risk aversion has gone up.” Such

statements are normally frowned upon by conventional economists, since risk

aversion is part of the make–up of the individual trader (much like the color of

his eyes), and are part of the basic parameters of the economy. However, our

interpretation suggests that even if the underlying basic preferences remain

constant over time, the actions of the traders are determined by a rule which

is identical to the actions of someone whose risk aversion is fluctuating over

time.

The dynamics of the model are generated by the sequence of events in which

the risk-constrained traders have a set of beliefs based upon which they

form their net asset demands. Market-clearing then generates equilibrium

prices. The assets yield exogenous random payoffs which in turn determine

realized returns for risky assets. Completing the cycle, the traders use this

realization to update their beliefs and the economy advances by one period.

The following diagram illustrates the sequence of events that generate the

dynamics in our model.

Beliefs updated

Demand

Prices Payoffs realized

Returns

et
c.

We can implement our model once we specify the exogenous stochastic pro-
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cess that generates the payoffs of the assets at the beginning of each date. We

use standard linear normal models to generate this exogenous uncertainty,

incorporating volatility clustering (GARCH) effects, calibrated to stylized

facts about financial data. Our simulations reveal the following effects of the

widespread adoption of VaR constraints.

• Prices (for positive–beta assets) are lower with VaR constraints than

without. The magnitudes can sometimes be very substantial.

• Following a negative shock to asset prices, the troughs in the price

paths are deeper, last longer, and take a longer time to recover when

there are VaR constraints.

• The forecast variance of returns is, in general, larger with VaR con-

straints than without. The difference in the forecast variance as be-

tween the constrained and unconstrained economy is largest during

distressed episodes in the market.

From our simulations, it seems that the widespread adoption of backward–

looking risk management practices, such as standard VCV methods, may

have a detrimental effect on asset price volatility and market distress. Far

from having a dampening effect on price volatility, it may have the perverse

effect of exacerbating it.

II. Model

We now give a more complete description of our model, and describe how

a VaR constraint affects traders’ actions. Time is discrete, and indexed by

t ∈ {0, 1, 2, · · · }. In each period, there are three traded assets, labeled as
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assets 0, 1 and 2. Asset 0 is the risk-free asset, while assets 1 and 2 are

risky. Without loss of generality we assume there is a fixed, deterministic

time-invariant supply of θi units of the i
th risky asset. We denote by qit the

price of the ith asset at time t. Any asset traded at time t − 1 matures at

date t, and yields payoff dit. The gross return on asset i between periods t

and t+ 1 is denoted by Ri,t+1, and defined as

Ri,t+1 ≡
di,t+1

qit

Denote by Rt the vector of returns over risky assets, so that

Rt ≡





R1t

R2t





The traders in our model have short horizons, in the sense that they choose

their portfolio to maximize expected utility in the next period. The short

horizon assumption tries to capture the incentives that fund managers face

in which considerable emphasis is placed on short–term assessments of their

performance, or internal controls on their discretion such as ‘daily earnings

at risk’ (DEAR) limits.

To further facilitate the analysis, we reduce the dynamic portfolio choice

problem to a sequence of one–period choice problems by assuming that the

assets in the economy mature after one period, and traders must roll over

their holding in each period. If we denote by xht the number of units of the

safe asset held by trader h between periods t and t+1 and by yhit the number

of units of the risky asset i held by trader h between periods t and t+1, then

the wealth in period t+ 1 for trader h is given by

W h
t+1 ≡ xht d0,t+1 +

∑

i

yhitdi,t+1
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At date t, trader h aims to maximize the expected value of his von Neumann

Morgenstern utility

u
(

W h
t+1

)

The traders are also assumed to have constant absolute risk aversion, so that

the asset demands are independent of wealth, and prices depend only on the

aggregate endowments, rather than the distribution of endowments across

traders. In particular, we suppose that there is a continuum of small traders

and denote by αh the coefficient of absolute risk aversion of trader h. The

population of traders is such that αh is distributed uniformly on the interval

[`, 1] where ` > 0. This last assumption ensures that there are no risk-neutral

traders in our model.

Since prices are independent of the distribution of wealth across traders in

such a model, we can simplify the notation without affecting the equilibrium

prices by assuming that the new supply of the risky assets at each period

is owned by individuals other than the traders themselves. Moreover, we

suppose that the aggregate endowments of the risky assets are constant over

time. Denote by

θ ≡





θ1

θ2





the vector of time-invariant aggregate supplies of the risky assets.

This model is a multiperiod extension of the Dańıelsson and Zigrand (2001)

model. Their model analyzes the general equilibrium implications of VaR

constraints with emphasis on a formal analysis of the single period problem.

Here, we extend the analysis to a multi–period learning framework by means

of simulations
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A. Belief Revision Process

A key feature of our approach is the modelling of the beliefs of the traders. In

order to replicate the effect of risk–management systems that rely on realized

historical returns, we investigate the effects of a backward–looking belief

revision mechanism for traders. We assume that the traders update their

beliefs through standard VCV tools for forecasting covariance matrices, in

particular, RiskMetricsTM. Furthermore we assume the traders use a similar

forecasting rule for returns. Although it would be straightforward to model

updating of beliefs with more sophisticated techniques, such as having the

traders optimize a GARCH-type model each period, we believe that this

would not add to our results in any significant way.

The traders’ beliefs on returns are conditionally jointly normal, and we de-

note by (µt,Σt) the traders’ beliefs concerning the expected returns µt and

covariances of returns Σt of the risky assets between dates t and t+1. Thus,

µt =





µ1t

µ2t





Σt =





σ11
t σ12

t

σ12
t σ22

t





where σijt is the covariance of Ri,t+1 and Rj,t+1.

The traders adjust their beliefs concerning the expected returns and covari-

ances by taking a geometric weighted average of past realizations, where the

decay factor ρ = 0.97 follows the RiskMetricsTM (1999) recommendations.

The backward–looking belief revision mechanism can be formalized in terms

of the recursive updating rule given by the mapping

((µt,Σt) ,Rt+1) 7→
(

µt+1,Σt+1

)
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where

σijt+1 = ρσijt + (1− ρ)(Rit − µit)(Rjt − µjt) (1)

for constant ρ ∈ (0, 1), and likewise for µt+1, so that

µt+1 = ρµt + (1− ρ)Rt (2)

The dynamics of our model are generated in the following fashion. The econ-

omy begins with an initial set of beliefs for the traders, given by (µ0,Σ0).

Based on these beliefs, traders make their portfolio choices. If traders are

constrained by a VaR constraint, their portfolio choices will be affected (we

will examine the optimal portfolio rules in more detail below). Given the

portfolio choices, the aggregate demand functions can be defined. Together

with the aggregate endowments θ, we can derive the prices of the assets.

Then, the realizations of payoffs {d1} determine the returns R1 for the risky

assets, and the traders update their beliefs according to (1) and (2). This is

repeated until the simulation ends at t = T .

Beliefs (µt,Σt)

Demand yht

Prices qt Payoffs realized dt+1

Returns Rt+1

A
d
va
n
ce

on
e
p
er
io
d

In order to implement our model, we need to solve for the optimal portfolio

decisions of the traders, and specify the stochastic process generating the

payoffs. We tackle each in turn.
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B. The Value–at–Risk Constraint

We first solve the portfolio choice problem of the traders, in which they face

a possible constraint on the probability of a loss beyond some fixed size. We

examine the constraint of the form

Probt
[

Et

(

W h
t+1

)

−W h
t+1 ≥ VaR

]

≤ p̄ (3)

where VaR is the permitted value-at-risk, and p̄ is the permitted probability

with which the VaR limit can be breached. Given the conditional normality

of beliefs, we can express this constraint in simple terms. Denoting by Φ (·)

the distribution function of the standard normal, note that (3) holds if and

only if

Φ

(

−VaR

σW,t+1

)

≤ p̄

where σW,t+1 is the standard deviation of W h
t+1 with respect to the beliefs at

date t. Equivalently, this condition can be written as

σ2
W,t+1 ≤

(

VaR

Φ−1 (1− p̄)

)2

≡ v̄ (4)

Thus, the VaR constraint boils down to a constraint on the maximal permit-

ted variance of W h
t+1. The right hand side of (4) is a constant determined by

the parameters of the problem, and we will denote it by v̄.

It is useful to consider the forecast distribution of payoffs in addition to those

for returns. The forecast distribution follows from the updating process (1).

Denote by

(mt,St)

the forecast mean and covariance of payoffs, and denote by

sijt
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the (i, j)th entry of St. Thus, sijt is the traders’ belief of the covariance

between di,t+1 and dj,t+1.

We can then incorporate the VaR constraint formally into a trader’s portfolio

choice problem. Denoting by Et (·) the expectations operator with respect to

beliefs at date t, trader h’s optimization problem at date t is to maximize

Et

(

uh
(

W h
t+1

))

by choosing portfolio holdings xht , y
h
1t, y

h
2t, subject to

q0txt +
∑

i

qity
h
it ≤ d0txt−1 +

∑

i

dity
h
i,t−1

∑

i

∑

j

sijt y
h
ity

h
jt ≤ v̄

The first constraint is the period t budget constraint of trader h. The right

hand side of the constraint is the available wealth resulting from last period’s

investment, while the left hand side is the value of the portfolio purchased at

time t. The second constraint is the VaR constraint, which can be expressed

more succinctly as

yh
′

t Sty
h
t ≤ v̄

The first–order condition for the optimal portfolio can then be written as:

Et

[

uh
′ (

W h
t+1

)

(dt+1 − d0,t+1qt)
]

= 2λhtSty
h
t

where λht is the Lagrange multiplier associated with the VaR constraint for

trader h at date t. Denote by φht the normalized Lagrange multiplier for the

VaR constraint, given by.

φht ≡
2λht

Et [uh
′ ]

Then, the first order condition can be re-arranged to yield the demand func-

tions:

yht =
1

αh + φht
S−1t (mt − d0,t+1qt)
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Were it not for the φht term in the denominator, these demand functions are

the familiar textbook ones for traders with constant absolute risk aversion.

The VaR constraint enters into the problem by raising the effective risk aver-

sion for the trader from αh to αh + φht . In other words, the introduction of

the VaR constraint acts in the same way as a fluctuating risk aversion level

of the trader.

By setting aggregate demand equal to the supplies θ, we can solve for the

equilibrium prices at date t.

qt =
1

d0,t+1

(mt −ΨtStθ) (5)

where

Ψt ≡
1

∫ 1

`
1

αh+φh
t

dh

Ψt can be given an interpretation in terms of the average “effective risk

aversion” across all traders at date t. It is proportional to the harmonic

mean of the individual effective risk aversion coefficients αh + φht .

The expression for equilibrium prices in (5) suggests that we can make some

sense of the frequently heard statement during distressed episodes for the

market that the “level of risk aversion has gone up.” Our expression for

equilibrium prices suggest that even if the basic risk aversion is constant

(given by αh), the trader acts “as if” his risk aversion was fluctuating over

time. It is in this sense that we can regard Ψt as the average effective risk

aversion of the traders.

The implementation of our model entails solving for the time series of {Ψt}.

There are a number of subtleties in solving for Ψt, since the Lagrange multi-

pliers λht depend on the contemporaneous prices, and hence the solution of Ψt

involves solving a fixed point problem. The reader is referred to Dańıelsson

and Zigrand (2001) for the detailed solution method, and for the conditions
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for the existence of equilibrium. However, the solution for Ψt can be given a

relatively clean explicit characterization.

In order to state the solution for Ψt explicitly, first consider the function

zez. This is a non-monotonic function that has a minimum at z = −1. For

z < −1, it is a decreasing function for z, while when z > −1, it is an increas-

ing function of z. Consider the restriction of this function to the interval

(−∞,−1]. The inverse of this restricted function is defined for the interval

[−e−1, 0), and takes values in (−∞,−1]. This partial function is sometimes

referred to as the non-principal branch of the Lambert correspondence. We

denote this partial function as F (·). Then, the explicit solution for Ψt can

be stated as follows (see Dańıelsson and Zigrand, 2001)

Ψt =











1

ln `−1
if 0 ≤ κt ≤ ` ln `−1

κt − `
κtF

(

− (κt + `) e−1
) if ` ln `−1 ≤ κt ≤ 1− `

where

κt ≡

√

θ′Stθ

v̄

An equilibrium fails to exist when κt > 1−`. The intuition for this lies in the

interpretation of κt. The numerator is the total risk in the economy that must

be borne by the traders as a whole, while the denominator is the maximum

allowable risk. The total measure of traders is 1− `, and equilibrium fails to

exist when the per capita risk in the economy is too large for the traders to

take on.

III. Simulations

We now come to the core of our paper, where we report the simulation

results of our model. Having solved for the equilibrium prices, the latent
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data generation process (DGP) for the payoffs remains to be specified. The

backward–looking updating rule used by the traders in our model means that

the perceived DGP believed by the traders is different from the latent DGP.

In particular, the fact that the distribution of the return process is latent and

has to be forecast by a variance–covariance (VCV) method mirrors practice

in the actual market.

For our simulations, we chose a latent DGP for payoffs that conformed to

some of the stylized facts of financial returns. In order to take account of

features such as volatility clustering, unconditional non–normality, and the

relative size difference between returns and volatility, we specified a GARCH

process, where the actual parameter values were chosen by calibration to fit

some reasonable summary statistics. Thus, in the results we report below,

the true payoffs are conditionally normal and unconditionally non–normal,

and allow for volatility clustering. To ensure that our simulations were not

affected by the initial conditions, we allowed the economy to adjust for 500

periods in the simulations before we start to record the data. Thus, date 0

in our reported results is date 501 of the actual simulation

A. Parameter Values

The following parameter values for our model were used in the simulations,

where m̂ is the mean of the latent payoff process, and Ŝ is the unconditional

covariance matrix of the latent payoff process.
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endowments θ =





1.9

0.5





daily risk free rate r0 = 1.00013

decay factor ρ = 0.97

lowest risk aversion ` = 0.0011

unconditional latent payoff distribution Ŝ =





0.6 0.25

0.25 0.4





m̂ =





1.5

1.2





The main results are presented in a series of figures. We first show the result

of the typical run, and then we examine the impact of an exogenous shock to

the latent payoff process that is the equivalent of a large shock that may be

expected once in ten years. Finally, we will report how we can track changes

in the effective risk aversion, prices and volatility, perceived as well as actual.

All figures are presented at the end of the paper.

B. Analysis of a Run

Given the sample economy, we set the risk constraint v̄ = 100. The price

evolution of the price of asset 1 is shown in Figure 1. The upper panel

tracks the price of asset 1 over time, where we have also superimposed the

price path of the unregulated economy (where the VaR constraint does not

bind). As we would expect for a positive beta asset, the price path of the

regulated economy is below the price path of the unregulated economy. This

is a natural consequence of the fact that the VaR constraint enters as an
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increment to the effective risk aversion of the traders. Increased effective risk

aversion implies that prices are lower. The lower panel shows the ratio of

the unregulated price to regulated price. Note that the price differences can

very substantial, ranging from zero to 40%.

Figure 2 tracks elements of the traders’ forecast covariance matrix of returns,

Σt. The upper panel reports the forecast variance for the return of asset 1.

Note how the imposition of the VaR constraint raises the forecast variance.

The lower panel shows this more explicitly by reporting the ratio of the

unregulated variance to regulated variance for asset 1. Again, as with prices,

the differences can be rather substantial.

C. A Shock

We now examine the impact of a large exogenous one day shock to the payoff

realization of asset 1. The magnitude of the shock equals the expected worst

daily outcome in 10 years, i.e., the expected minimum of 2,500 realizations.

This amount is −5.3. In order to accurately gauge the impact, we repeated

the exercise 106 times and present the averages. The VaR constraint was set

as v̄ = 1000.

The effect of the shock is rather dramatic, as can be seen in Figure 3. There

is a steep fall in the price after the shock, followed by a slow recovery. In

particular, for the first few days after the shock the crisis deepens through

the endogenous feedback in prices. Note, however, how the price path in

the regulated economy follows a steeper decline and reaches a lower trough.

The trough is deeper, and lasts longer in the regulated economy than in the

unregulated one. The recovery of the price also takes longer. The bottom

panel shows the ratio of prices across the two economies. The price ratio
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follows a rather interesting double-humped shape, in which the maximum

difference in the prices follow rather late after the shock. At its maximum,

the price ratio is almost 20%.

Figure 4 plots the corresponding changes in the perceived volatilities in the

economy in terms of the determinants of the forecast covariance matrices

{St}. The regulated economy with the VaR constraint has substantially

higher values of |St|, thereby inducing the traders to take more conservative

trading decisions, and exacerbating the dynamics further. The center panel

plots the ratio of the determinants across the two economies. The bottom

panel shows the tracks the evolution over time of the average effective risk–

aversion, Ψt as well as the steady–state effective risk–aversion, i.e. without

the shock.

D. Tracking Effective Risk Aversion

One of the advantages of having an explicit model for the portfolio decisions

of the traders is that it allows us to track the effect of a tighter VaR constraint

through the economy. There are two ways of doing this. The first is through

changes in the average effective risk aversion Ψt. Figures 3 and 4 plot the

Ψt realizations over time following a shock. The second way to show the

effect of tighter VaR constraints is through the effects on prices and forecast

variances. In figure 5, we illustrate the impact of the severity of the VaR

constraint on prices and perceived volatilities.

The solid line is the ratio of the average prices (q1+q2)/2 averaged across time.

We can see that as v̄ becomes smaller (so that the VaR constraint binds more

tightly), the prices in the regulated economy fall further. We have already

commented on the fact that when v̄ becomes too small, equilibrium fails to
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exist in our model. For the parameters chosen in our simulations, this point

is reached when v̄ hits 12. To the left of this point, equilibrium does not

exist. At the opposite extreme, we can see that as v̄ → ∞, the constrained

and unconstrained economies converge.

Also depicted in figure 5 is the ratio of determinants for the regulated and

unregulated economies, as a function of v̄. As we would expect, the differ-

ences in forecast volatility becomes very large when v̄ is small. As v̄ → ∞,

the difference disappears.

In figure 6, we plot an investor’s effective risk aversion αh + φht as a function

of both the VaR constraint log v̄ but also of the population risk-aversion

parameter αh (recall that the population αh is distributed uniformly on the

interval [`, 1]). The kink in the surface marks the boundary where the VaR

constraint “kicks in” (i.e. starts to bind). When a trader has a high value

of αh, then the VaR constraint does not bind, and hence does not affect the

economy.

IV. Conclusions

The exercise in this paper has uncovered some unsettling side-effects of im-

posing value–at–risk constraints in an economy where traders follow backward–

looking belief revision rules. Far from stabilizing prices, the effect of such

constraints is to induce behavior that exacerbates the shocks further.
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Figure 3. 10 Year Shock to Payoffs: Price Impact

The result of a single period shock equaling the expected largest 10 year (2500 obs.)

adverse shock to payoffs of asset one. Economy starts in steady state, and the exercise

is repeated 106 times. The lower figure shows the ratio of the regulated to unregulated

prices. Note that the shock impact is larger, and the adjustment to steady state takes

longer in the regulated economy. The bottom panel shows Ψt.
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Figure 4. 10 Year Shock to Payoffs: Forecast Volatility Impact

The result of a single period shock equaling the expected largest 10 year (2500 obs.)

adverse shock on payoffs on the determinant of the forecast covariance matrix. Economy

starts in steady state, and the exercise is repeated 106 times. The middle panel shows

the ratio of the determinants of unregulated covariance matrix to the regulated covariance

matrix. The shock impact is larger, and the adjustment to steady state takes longer in

the regulated economy. The bottom panel shows Ψt.
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Figure 5. Increasingly Restrictive Risk Constraint

Impact on the sample economy of adjusting the risk constraint, log(v̄). At values log(v̄) <

12 equilibrium is no longer defined, and at log(v̄) =∞ the constraint is no longer binding.

The figure shows the ratio of the unregulated average prices to the unregulated prices, and

the same ratio for the perceived covariance matrix. Note how as log(v̄) → ∞, the ratios

tend to one.
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Figure 6. Effective Risk Aversion

Impact on effective risk aversion, (αh+φh
t ), of adjusting risk constraint, log(v̄), for traders

with varying risk aversion, (αh).
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