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Abstract
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1 Introduction

Understanding the origins of stock market volatility has long been a topic of considerable interest

to both policy makers and market practitioners. Policy makers are interested in the main deter-

minants of volatility and in its spillover e¤ects on real activity. Market practitioners are mainly

interested in the direct e¤ects time-varying volatility exerts on the pricing and hedging of plain

vanilla options and more exotic derivatives. In both cases, forecasting stock market volatility

constitutes a formidable challenge but also a fundamental instrument to manage the risks faced

by these institutions.

Many available models use latent factors to explain the dynamics of stock market volatility.

For example, in the celebrated Heston�s (1993) model, return volatility is exogenously driven

by some unobservable factor correlated with the asset returns. Yet such an unobservable factor

does not bear a direct economic interpretation. Moreover, the model implies, by assumption, that

volatility can not be forecast by macroeconomic factors such as industrial production or in�ation.

This circumstance is counterfactual. Indeed, there is strong evidence that stock market volatility

has a very pronounced business cycle pattern, with volatility being higher during recessions than

during expansions; see, e.g., Schwert (1989a and 1989b) and Brandt and Kang (2004).

In this paper, we develop a no-arbitrage model in which stock market volatility is explicitly

related to a number of macroeconomic and unobservable factors. The distinctive feature of the

model is that return volatility is linked to these factors by no-arbitrage restrictions. The model

is also analytically convenient: under fairly standard conditions on the dynamics of the factors

and risk-aversion corrections, our model is solved in closed-form, and is amenable to empirical

work.

We use the model to quantitatively assess how volatility and volatility-related risk-premia

change in response to business cycle conditions. Our focus on the volatility risk-premium is

related to the seminal work of Britten-Jones and Neuberger (2000), which has more recently

stimulated an increasing interest in the study of the dynamics and determinants of the variance

risk-premium (see, for example, Carr and Wu (2004) and Bakshi and Madan (2006)). The

variance risk-premium is de�ned as the di¤erence between the expectation of future stock market

volatility under the true and the risk-neutral probability. It quanti�es how much a representative

agent is willing to pay to ensure that volatility will not raise above a given threshold. Thus, it is

a very intuitive and general measure of risk-aversion. Previous important work by Bollerslev and

Zhou (2005) and Bollerslev, Gibson and Zhou (2004) has analyzed how this variance risk-premium

is related to a number of macroeconomic factors. The authors regressed semi-parametric measures

of the variance risk-premium on these factors. In this paper, we make a step further and make

the volatility risk-premium be endogenously determined within our no-arbitrage model. The

resulting relation between macroeconomic factors and risk-premia is richer than in the previous
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papers as it explicitly accounts for the necessary no-arbitrage relations that link asset prices and,

hence, return volatility, to macroeconomic factors.

In recent years, there has been an important surge of interest in general equilibrium (GE,

henceforth) models linking aggregate stock market volatility to variations in the key factors

tracking the state of the economy (see, for example, Campbell and Cochrane (1999), Bansal

and Yaron (2004), Mele (2007), and Tauchen (2005)). These GE models are important as they

highlight the main economic mechanisms through which markets, preferences and technology

a¤ect the equilibrium price and, hence, return volatility. At the same time, we do not observe

the emergence of a well accepted paradigm. Rather, a variety of GE models aim to explain the

stylized features of aggregate stock market �uctuations (see, for example, Campbell (2003) and

Mehra and Prescott (2003) for two views on these issues). In this paper, we do not develop a fully

articulated GE model. In our framework, cross-equations restrictions arise through the weaker

requirement of absence of arbitrage opportunities. This makes our approach considerably more

�exible than it would be under a fully articulated GE discipline. In this respect, our approach

is closer in spirit to the �no-arbitrage�vector autoregressions introduced in the term-structure

literature by Ang and Piazzesi (2003) and Ang, Piazzesi and Wei (2005). Similarly as in these

papers, we specify an analytically convenient pricing kernel a¤ected by some macroeconomic

factors, but do not directly related these to markets, preferences and technology.

Our model works quite simply. We start with exogenously specifying the joint dynamics of

both macroeconomic and latent factors. Then, we assume that dividends and risk-premia are

essentially a¢ ne functions of the factors, along the lines of Du¤ee (2002). We show that the

resulting no-arbitrage stock price is a¢ ne in the factors. Our model is also related to previous

approaches in the literature. For example, Bekaert and Grenadier (2001) and Ang and Liu (2004)

formulated discrete-time models in which the key pricing factors are exogenously given. Further-

more, Mamaysky (2002) derived a continuous-time model based on an exogenous speci�cation

of the price-dividend ratio. There are important di¤erences between these models and ours.

First, our model is in continuous-time and thus avoids theoretical inconsistencies arising in the

discrete time setting considered by Bekaert and Grenadier (2001). Second, a continuous-time set-

ting is particularly appealing given our objective to estimate volatility and volatility risk-premia

through measures of realized volatility. Third, Ang and Liu (2004) consider a discrete-time set-

ting in which expected returns are exogenous to their model; in our model, expected returns

are endogenous. Finally, our model works di¤erently from Mamaysky�s because it endogenously

determines the price-dividend ratio.

Estimating our model is challenging. In our model, volatility is endogenous, which makes pa-

rameters�identi�cation a quite delicate issue. The main di¢ culty we face is that return volatility

arises by a rational price formation process. Therefore, all the factors a¤ecting the aggregate

stock market also a¤ect stock market volatility. In the standard stochastic volatility models
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such as that in Heston (1993), volatility is driven by factors which are not necessarily the same

as those a¤ecting the stock price - volatility is exogenous in these models. In particular, our

model predicts that return volatility can be understood as the outcome of two forces which we

need to tell apart from data: (i) the market participants�risk-aversion, and (ii) the dynamics of

the fundamentals. Thus, the advantage of our model (to generate, endogenously, stock market

volatility) also brings an identi�cation issue. We address identi�ability by exploiting derivative

price data, related to variance swaps. The variance swap rate is, theoretically, the risk-adjusted

expectation of the future integrated volatility within one month, and is published daily by the

CBOE since 2003 as the new VIX index. (The CBOE has re-calculated the new VIX index back

to 1990.) These data allow us to identify the model.

We implement a two-stage estimation procedure. In the �rst step, we use data on a broad stock

market index and two macroeconomic factors, in�ation and industrial production, and estimate all

the parameters, taking the parameters related to risk-premia adjustments as given. We implement

this step by matching moments related to ex-post stock market returns, realized return volatility

and the two macroeconomic factors. In the second step, we use data on the new VIX index, and

the two macroeconomic factors, to estimate the risk-premia parameters. In this second step, we

exploit the general ideas underlying the �realized volatility� literature to implement consistent

estimators of the VIX index (see, e.g., Barndor¤-Nielsen and Shephard (2007) for a survey on

realized volatility). Note, the two-stage estimation procedure entails parameter estimation error.

To implement an e¢ cient estimator, then, we rely on the block bootstrap of the entire procedure.

The remainder of the paper is organized as follows. In Section 2 we develop our no-arbitrage

model for the stock price, return volatility and the variance risk-premia. Section 3 illustrates the

estimation strategy. Section 4 presents our empirical results, and the appendix provides technical

details omitted from the main text.

2 The model

2.1 The macroeconomic environment

We assume that a number of factors a¤ect the development of aggregate macroeconomic variables.

We assume these factors form a vector-valued process y (t), solution to a n-dimensional a¢ ne

di¤usion,

dy (t) = � (�� y (t)) dt+�V (y (t)) dW (t) ; (1)

where W (t) is a d-dimensional Brownian motion (n � d), � is a full rank n� d matrix, and V

is a full rank d� d diagonal matrix with elements,

V (y)(ii) =

q
�i + �

>
i y; i = 1; � � �; d;
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for some scalars �i and vectors �i. Appendix A reviews su¢ cient conditions that are known to

ensure that Eq. (1) has a strong solution with V (y (t))(ii) > 0 almost surely for all t.

While we do not necessarily observe every single component of y (t), we do observe dis-

cretely sampled paths of macroeconomic variables such as industrial production, unemployment

or in�ation. Let fMj (t)gt=1;2;��� be the discretely sampled path of the macroeconomic variable
Mj (t) where, for example, Mj (t) can be the industrial production index available at time t, and

j = 1; � � �; NM, where NM is the number of observed macroeconomic factors.

We assume, without loss of generality, that these observed macroeconomic factors are strictly

positive, and that they are related to the state vector process in Eq. (1) by:

log (Mj (t)/Mj (t� 12)) = 'j (y (t)) ; j = 1; � � �; NM; (2)

where the collection of functions
�
'j
	
j
determines how the factors dynamics impinge upon the

evolution of the overall macroeconomic conditions. We now turn to model asset prices.

2.2 Risk-premia and stock market volatility

We assume that asset prices are related to the vector of factors y (t) in Eq. (1), and that some

of these factors a¤ect the development of macroeconomic conditions, through Eq. (2). We

assume that asset prices respond passively to movements in the factors a¤ecting macroeconomic

conditions. In other words, and for analytical convenience, we are ruling out that asset prices can

feed back the real economy, although we acknowledge that �nancial frictions can make �nancial

markets and the macroeconomy intimately related, as in the �nancial accelerator hypothesis

reviewed by Bernanke, Gertler and Gilchrist (1999).

Formally, we assume that there exists a rational pricing function s (y (t)) such that the real

stock price at time t, s (t) say, is s (t) � s (y (t)). We let this price function be twice continuously

di¤erentiable in y. (Given the assumptions and conditions we give below, this di¤erentiability

condition holds in our model.) By Itô�s lemma, s (t) satis�es,

ds (t)

s (t)
= m (y (t) ; s (t)) dt+

sy (y (t))
>�V (y (t))

s (y (t))
dW (t) ; (3)

where sy (y) = [ @@y1 s (y) ; � � �;
@
@yn

s (y)]> and m is a function we shall determine below by no-

arbitrage conditions. By Eq. (3), the instantaneous return volatility is

� (t)2 �
sy (y (t))>�V (y (t))s (y (t))


2

: (4)

Next, we model the pricing kernel in the economy. The Radon-Nikodym derivative of Q, the

equivalent martingale measure, with respect to P on F(T ) is,

�(T ) � dQ

dP
= exp

�
�
Z T

0
� (t)> dW (t)� 1

2

Z T

0
k� (t)k2 dt

�
;
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for some adapted � (t), the risk-premium process. We assume that each component of the risk-

premium process �i (t) satis�es,

�i (t) = �i (y (t)) ; i = 1; � � �; d;

for some function �i. We also assume that the safe asset is elastically supplied such that the

short-term rate r (say) is constant. This assumption can be replaced with a weaker condition

that the short-term rate is an a¢ ne function of the underlying state vector. This assumption

would lead to the same a¢ ne pricing function in Proposition 1 below, but statistical inference

for the resulting model would be hindered. Moreover, interest rate volatility appears to play a

limited role in the main applications we consider in this paper.

Under the equivalent martingale measure, the stock price is solution to,

ds (t)

s (t)
= (r � � (y (t))) dt+ sy (y (t))

>�V (y (t))

s (y (t))
dŴ (t) ; (5)

where � (y) is the instantaneous dividend rate, and Ŵ is a Q-Brownian motion.

2.3 No-arbitrage restrictions

There is obviously no freedom in modeling risk-premia and stochastic volatility separately. Given

a dividend process, volatility is uniquely determined, once we specify the risk-premia. Consider,

then, the following �essentially a¢ ne� speci�cation for the dynamics of the factors in Eq. (1).

Let V � (y) be a d� d diagonal matrix with elements

V � (y)(ii) =

(
1

V (y)(ii)
if PrfV (y (t))(ii) > 0 all tg = 1

0 otherwise

and set,

� (y) = V (y)�1 + V
� (y)�2y; (6)

for some d-dimensional vector �1 and some d � n matrix �2. The functional form for � is

the same as in the speci�cation suggested by Du¤ee (2002) in the term-structure literature.

If the matrix �2 = 0d�n, then, � collapses to the standard �completely a¢ ne� speci�cation

introduced by Du¢ e and Kan (1996), in which the risk-premia � are tied up to the volatility of

the fundamentals, V (y). While it is reasonable to assume that risk-premia are related to the

volatility of fundamentals, the speci�cation in Eq. (6) is more general, as it allows risk-premia

to be related to the level of the fundamentals, through the additional term �2y.

Finally, we determine the no-arbitrage stock price. Under regularity conditions developed in
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the appendix,1 and assuming no-bubbles, Eq. (5) implies that the stock price is,

s (y) = E
�Z 1

0
e�rt� (y (t)) dt

�
; (7)

where E is the expectation taken under the equivalent martingale measure. We are only left with
specifying how the instantaneous dividend process relates to the state vector y. As it turns out,

the previous assumption on the pricing kernel and the assumption that � (�) is a¢ ne in y implies
that the stock price is also a¢ ne in y. Precisely, let

� (y) = �0 + �
>y; (8)

for some scalar �0 and some vector �. We have:

Proposition 1. Let the risk-premia and the instantaneous dividend rate be as in Eqs. (6) and
(8). Then, (i) eq. (7) holds, and (ii) the rational stock function s (y) is linear in the state vector

y, viz

s (y) =
�0 + �

> (D + rIn�n)
�1 c

r
+ �> (D + rIn�n)

�1 y; (9)

where

c = ����
�
�1�1(1) � � � �d�1(d)

�>
;

D = �+�

��
�1(1)�

>
1 � � � �1(d)�

>
d

�>
+ I��2

�
;

I� is a d � d diagonal matrix with elements I�(ii) = 1 if PrfV (y (t))(ii) > 0 all tg = 1 and 0

otherwise; and, �nally f�1(j)gdj=1 are the components of �1.

Proposition 1 allows us to describe what this model predicts in terms of no-arbitrage re-

strictions between stochastic volatility and risk-premia. In particular, use Eq. (9) to compute

volatility through Eq. (4). We obtain,

�2 (t) =

r�> (D + rIn�n)
�1�V (y (t))

2
�0+�

>(D+rIn�n)
�1c

r + �> (D + rIn�n)
�1 y (t)

: (10)

This formula makes clear why our approach is distinct from that in the standard stochastic

volatility literature. In this literature, the asset price and, hence, its volatility, is taken as given,

1These conditions relate to the volatility term sy (y)
>�V (y) in Eq. (3). This term must satisfy integrability

conditions which make the Itô�s integral in the representation of the stock price a martingale.
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and volatility and volatility risk-premia are modeled independently of each other. For example,

the celebrated Heston�s (1993) model assumes that the stock price is solution to,8><>:
ds (t)

s (t)
= m (t) dt+ v (t) dW1 (t)

dv (t)2 = �
�
�� v (t)2

�
dt+ �v (t)

�
�dW1 (t) +

p
1� �2dW2 (t)

� (11)

for some adapted process m (t) and some constants �; �; �; �. In this model, the volatility risk-

premium is speci�ed separately from the volatility process. Many empirical studies have followed

the lead of this model (e.g., Chernov and Ghysels (2000)). Moreover, a recent focus in this

empirical literature is to examine how the risk-compensation for stochastic volatility is related

to the business cycle (e.g., Bollerslev, Gibson and Zhou (2005)). While the empirical results in

these papers are very important, the Heston�s model does not predict that there is any relation

between stochastic volatility, volatility risk-premia and the business cycle.

Our model works di¤erently because it places restrictions directly on the asset price process,

through our assumptions about the fundamentals of the economy, i.e. the dividend process in Eq.

(8) and the risk-premia in Eq. (6). In our model, it is the asset price process that determines,

endogenously, the volatility dynamics. For this reason, the model predicts that return volatility

embeds information about risk-corrections that agents require to invest in the stock market, as

Eq. (10) makes clear. We shall make use of this observation in the empirical part of the paper.

We now turn to describe which measure of return volatility measure we shall use to proceed with

such a critical step of the paper.

2.4 Arrow-Debreu adjusted volatility

In September 2003, the Chicago Board Option Exchange (CBOE) changed its volatility index

VIX to approximate the variance swap rate of the S&P 500 index return.2 The new index re�ects

recent advances into the option pricing literature. Given an asset price process s (t) that is

continuous in time (as for the asset price of our model in Eq. (9)), and all available information

F (t) at time t, de�ne the integrated return variance on a given interval [t; T ] as,

IVt;T =

Z T

t

�
d

d�
var [ log s (�)jF (u)]

����
�=u

�
du: (12)

The new VIX index relies on the work of Bakshi and Madan (2000), Britten-Jones and Neuberger

(2000), and Carr and Madan (2001), who showed that the risk-neutral probability expectation

2 If the interest rate is zero, then, in the absence of arbitrage opportunities, the variance swap rate is simply

the expectation of the future integrated return volatility under the risk-neutral probability, as de�ned in Eq. (12)

below.

8



of the future integrated variance is a functional of put and call options written on the asset:

E [IVt;T jF (t)] = 2
"Z F (t)

0

P (t; T;K)

u (t; T )

1

K2
dK +

Z 1

F (t)

C (t; T;K)

u (t; T )

1

K2
dK

#
; (13)

where F (t) = u (t; T ) s (t) is the forward price, C (t; T;K) and P (t; T;K) are the prices as of

time t of a call and a put option expiring at T and struck at K, and u (t; T ) is the price as of time

t of a pure discount bond expiring at T . A variance swap is a contract with payo¤ proportional to

the di¤erence between the realized integrated variance, (12), and some strike price, the variance

swap rate. In the absence of arbitrage opportunities, the variance swap rate is then given by Eq.

(13).

Eq. (13) is helpful because it relies on a nonparametric method to compute the risk-neutral

expectation of the integrated variance. Our model predicts that the risk-neutral expectation of

the integrated variance is:

E [IVt;T jF (t)] =
Z T

t
E[� (u)2 j F (t)]du;

where F (t) is the �ltration generated by the multidimensional Brownian motion in Eq. (1), and
� (t)2 is given in Eq. (10). It is a fundamental objective of this paper to estimate our model so

that it predicts a theoretical pattern of the VIX index that matches its empirical counterpart,

computed by the CBOE through Eq. (13).

Note that as a by product, we will be able to trace how the volatility risk-premium, de�ned

as,

VRP (t) �
r

1

T � t

�q
E [IVt;T jF (t)]�

q
E [IVt;T jF (t)]

�
; (14)

changes with changes in the factors y (t) in Eq. (1).

2.5 The leading model

We formulate a few speci�c assumptions to make the model amenable to empirical work. First,

we assume that two macroeconomic aggregates, in�ation and industrial production growth, are

the only observable factors (say y1 and y2) a¤ecting the stock market development. We de�ne

these factors as follows:

log (Mj (t)/Mj (t� 12)) = log yj (t) ; j = 1; 2;

where M1 (t) is the consumer price index as of month t and M2 (t) is the industrial production

as of month t. (Data for such macroeconomic aggregates are typically available at a monthly

frequency.) Hence, in terms of Eq. (2), the functions 'j (y) � log yj .
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Second, we assume that a third unobservable factor y3 a¤ects the stock price, but not the two

macroeconomic aggregates M1 and M2. Third, we consider a model in which the two macroeco-

nomic factors y1 and y2 do not a¤ect the unobservable factor y3, although we allow for simulta-

neous feedback e¤ects between in�ation and industrial production growth. Therefore, we set, in

Eq. (1),

� =

264 �1 ��1 0

��2 �2 0

0 0 �3

375 ;
where �1 and �2 are the speed of adjustment of in�ation and industrial production growth towards

their long-run means �1 and �2, in the absence of feedbacks, and ��1 and ��2 are the feedback

parameters. Moreover, we take � = I3�3 and the vectors �i so as to make yj solution to,

dyj (t) =
�
�j
�
�j � yj (t)

�
+ ��j

�
��j � �yj (t)

��
dt+

q
�j + �jyj (t)dWj (t) ; j = 1; 2; 3; (15)

where, for brevity, we have set ��1 � �2, �y1 (t) � y2 (t), ��2 � �1, �y2 (t) = y1 (t), ��3 � ��3 � �y3 (t) �
0 and, �nally, �j � �jj . We assume that PrfV (y (t))(ii) > 0 all tg = 1, which it does under the
conditions reviewed in Appendix A.

We assume that the risk-premium process � satis�es the �essentially a¢ ne�speci�cation in

Eq. (6), where we take the matrix �2 to be diagonal with diagonal elements equal to �2(j) � �2(jj),

j = 1; 2; 3. The implication is that the total risk-premia process de�ned as,

� (y) � �V (y)� (y) =

0B@ �1�1(1) +
�
�1�1(1) + �2(1)

�
y1

�2�1(2) +
�
�2�1(2) + �2(2)

�
y2

�3�1(3) +
�
�3�1(3) + �2(3)

�
y3

1CA (16)

depends on the factor yj not only through the channel of the volatility of these factors (i.e.

through the parameters �jj), but also through the additional risk-premia parameters �2(j).

Finally, the instantaneous dividend process � (t) in (8) satis�es,

� (y) = �0 + �1y1 + �2y2 + �3y3: (17)

Under these conditions, the asset price in Proposition 1 is given by,

s (y) = s0 +

3X
j=1

sjyj ; (18)
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where

s0 =
1

r

24�0 + 3X
j=1

sj
�
�j�j + ��j��j � �j�1(j)

�35 (19)

sj =
�j
�
r + �i + �1(i)�i + �2(i)

�
� �i��iQ2

h=1

�
r + �h + �1(h)�h + �2(h)

�
� ��1��2

; for j; i 2 f1; 2g and i 6= j (20)

s3 =
�3

r + �3 + �1(3)�3 + �2(3)
(21)

and where ��j and ��j are as in Eq. (15).

Note, then, an important feature of the model. The parameters �(1)i and �(2)i and �i can

not be identi�ed from data on the asset price and the macroeconomic factors. Intuitively, the

parameters �(1)i and �(2)i determine how sensitive the total risk-premium in Eq. (16) is to

changes in the state process y. Instead, the parameters �i determine how sensitive the dividend

process in Eq. (17) is to changes in y. Two price processes might be made observationally

equivalent through judicious choices of the risk-compensation required to bear the asset or the

payo¤ process promised by this asset (the dividend). The next section explains how to exploit

the Arrow-Debreu adjusted volatility introduced in Section 2.4 to identify these parameters.

3 Statistical inference

Our estimation strategy relies on a three-step procedure. In the �rst step, we estimate the pa-

rameters of the two-dimensional a¢ ne di¤usion describing the macroeconomic factors dynamics,

that is we estimate �| =
�
�j ; �j ; �j ; �j ; �j ; j = 1; 2

�
: In the second step, we estimate the reduced

form parameters linking the equilibrium stock price to the factors, as in Eq. (18), as well as the

parameters of a restricted version of the a¢ ne di¤usion describing the latent factor dynamics,

that is we estimate �| = (�3; �3; �3; �3; s0; sj ; j = 1; 2; 3) imposing �3 = 1: In the third step, we

estimate the risk premia parameters �| =
�
�1(1); �1(2); �1(3); �2(1); �2(2); �2(3)

�
using a functional

approximation of the model implied VIX, based on the parameters estimated in the previous two

steps, and the model-free VIX series.

As at any step we do not have a closed form expression of either the likelihood function or sets

of moment conditions, we rely on a simulation based approach. Broadly speaking, our strategy

can be viewed as an hybrid of Indirect Inference (Gourieroux, Monfort and Renault, 1993) and

Simulated Generalized Method of Moments (Du¢ e and Singleton, 1993). In fact, we aim at

matching impulse response functions as well as sample moments of historical and simulated data.
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3.1 Moment conditions and parameter estimation for the macroeconomic fac-
tors

Using a Milhstein approximation scheme of the di¤usion in Eq. (15), with a discrete interval �;

we simulate H paths of length T for the two observable factors, and sample them at the same

frequency of the data, say y�1;t;h (�) ; y
�
2;t;h (�) ; h = 1; � � �;H, t = 1; � � �; T: We then estimate a

VAR model based on historical and simulated data, i.e. for i = 1; 2 we estimate the following

auxiliary models,

yi;t = 'i;1 +
X

j2f12;24g
'i;1;jy1;t�j +

X
j2f12;24g

'i;2;jy2;t�j + �y;i;t

y�i;t;h (�) = 'i;1;h +
X

j2f12;24g
'i;1;j;hy

�
1;t�j;h (�) +

X
j2f12;24g

'i;2;j;h (�) y
�
2;t�j;h (�) + �yh;i;t (�)

LetYt = (y1;t�12; y1;t�24; y2;t�12; y2;t�24)
|, and letY�

t;h (�) be the simulated counterpart, obtained

replacing y1;t with y�1;t;h (�), for each parameter trial �. De�ne the OLS estimators constructed

using actual and simulated data as,

~'i;T =

 
1

T

TX
t=25

YtY
|
t

!�1
1

T

TX
t=25

Ytyi;t (22)

'̂�i;T;h (�) =

 
1

T

TX
t=25

Y�
t;h (�)Y

�
t;h (�)

|
!�1

1

T

TX
t=25

Y�
t;h (�) y

�
i;t;h (�) :

Finally, let

~'T =
�
~'1;T ; ~'2;T ; �y1; �y2; �̂

2
1; �̂

2
2

�|
(23)

'̂�i;T;h (�) =
�
'̂�1;T;h (�) ; '̂

�
2;T;h (�) ; �y

�
1;h (�) ; �y

�
1;h (�) ; �̂

2;�
1;h (�) ; �̂

2;�
2;h (�)

�
where for i = 1; 2 �yi; �̂

2
i ; �y

�
i;h (�) ; �̂

2;�
i;h (�) are sample mean and variance based on actual and

simulated data. The estimator of the macroeconomic factor parameters and its probability limit

are then given by:

�̂T = argmin'

  
1

H

HX
h=1

'̂�T;h (�)� ~'T

!| 
1

H

HX
h=1

'̂�T;h (�)� ~'T

!!
;

�0 = argmin'
p lim
T!1;�!0

  
1

H

HX
h=1

'̂�T;h (�)� ~'T

!| 
1

H

HX
h=1

'̂�T;h (�)� ~'T

!!
:

Proposition 2: If as T !1; �
p
T ! 0 and �T !1;

p
T
�
�̂T � �0

�
d�! N(0;V1) ;
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where

V1 =

�
1 +

1

H

�
(D|

1D1)
�1
D|
1J1D1 (D

|
1D1)

�1

D1 = p limr�

 
1

H

HX
h=1

'̂�T;h (�0)

!
J1 = Avar

�p
T (~'T � '0)

�
= Avar

�p
T
�
'̂�T;h (�0)� '0

��
, for all h.

3.2 Moment conditions and parameter estimation for the asset price and the
unobserved factor

Proposition 1 establishes that the equilibrium stock price is an a¢ ne function of the factors, i.e.

st = s(yt) = s0 +

3X
j=1

sjyj(t);

where the parameters s0; sj , j = 1; 2; 3 are functions of the structural parameters, as established

in Eqs. (19)-(21). Using data on macroeconomic factors and stock returns, we cannot identify

all the structural parameters. In particular, we cannot identify both dividends and risk premia

parameters, as there are in�nite combinations of � and � giving raise to the same equilibrium

stock price.

As we are not interested in the dividends parameters per se, we proceed by estimating the

reduced form parameter (s0; s1; s2; s3) as well as the parameters of the latent factor y3;t; i.e.

(�3; �3; �3; �3) : However, as the latent factor is independent of the observable factors, sam-

ples on stock returns and macroeconomic factors do not allow us to separately identify s3 and

(�3; �3; �3; �3). We impose the restriction �3 = 1; and de�ne a new factor Z(t) = s3y3(t), as

dZ(t) = �3 (A� Z(t)) dt+
p
B + CZ(t)dW3;t;

where A = �3s3 = s3; B = �3s
2
3; C = �3s3: We simulate H paths of length T for the (new)

unobservable factor, using a discrete interval �; and sample it at the same frequency of the data,

i.e. Zt;h (�u) ; h = 1; ���;H, t = 1; ���; T; and �u = (�3; �3; �3; s3) :We then construct the simulated
stock price process as

s�t;h (�) = s0 + s1y1;t + s2y2;t + Z
�
t;h (�u) ; (24)

with � = (�3; �3; �3; s0; s1; s2; s3) ; and s0 = �s�h (�) � s1�y1 � s2�y2 � �Z�3 (�u), where �s
�
h (�), �y1,

�y2 and �Z�3 (�u) are the sample means of s
�
t;h (�) ; y1;t; y2;t and Z

�
3;t (�u) : Note that the stock price

has been simulated using the observed samples for y1;t and y2;t:

13



Following Mele (2007) and Fornari and Mele (2006), we measure the volatility of the monthly

continuously compounded price changes, Rt = log (st=st�1), as,

Volt =
p
6� � 1

12

12X
i=1

jRt+1�ij : (25)

Hereafter, let R�t;h(�) = log
�
s�t;h (�) =s

�
t�1;h (�)

�
and Vol�t;h(�) =

p
6� � 1

12

12P
i=1

���R�t+1�i;h(�)��� be
simulated counterparts of Rt and Volt: In the sequel, we rely on the following two auxiliary

models,

Rt = aR + bR1;12y1;t�12 + b
R
2;12y2;t�12 + �

R
t ;

Volt = aV +
X

i2f6;12;18;24;36;48g
�iVolt�i +

X
i2f12;24;36;48g

bV1;iy1;t�i +
X

i2f12;24;36;48g
bV2;iy2;t�i + �

V
h;t;

and their simulation-based counterparts,

R�t;h(�) = aRh + b
R
1;12;hy1;t�12 + b

R
2;12;hy2;t�12 + �

R
t ;

Vol�t;h(�) = aVh+
X

i2f6;12;18;24;36;48g
�i;hVol

�
t;h(�)+

X
i2f12;24;36;48g

bV1;i;hy1;t�i+
X

i2f12;24;36;48g
bV2;i;hy2;t�i+�

V
h;t;

Let Yt = (y1;t�12; y2;t�12)
| ; Vt = (y1;t�i; y2;t�i;Volt�6;Volt�i; i 2 f12; 18; 24; 36; 48g)| and

V�
t;h(�) =

�
y1;t�i; y2;t�i;Vol

�
t;h(�)t�6;Vol

�
t;h(�)t�i; i 2 f12; 18; 24; 36; 48g

�|
; and de�ne the OLS

estimators constructed using actual and simulated data as,

~#1;T =
�
1
T

PT
t=13YtY

|
t

��1
1
T

PT
t=13YtRt

~#2;T =
�
1
T

PT
t=49VtV

|
t

��1
1
T

PT
t=49VtVolt

and
#̂
�

1;T;h (�) =
�
1
T

PT
t=13YtY

|
t

��1
1
T

PT
t=13YtR

�
t;h(�)

#̂
�

2;T;h (�) =
�
1
T

PT
t=49V

�
t;h(�)V

�
t;h(�)

|
��1

1
T

PT
t=49V

�
t;h(�)Vol

�
t;h(�)

(26)

and �nally, de�ne,

~#T =
�
~#1;T ; ~#2;T ; �R;Vol

�|
; #̂

�

T;h (�) =
�
#̂
�

1;T;h (�) ; #̂
�

2;T;h (�) ; �R
�
h (�);Vol

�
h (�)

�|
;

where �R, Vol; �R�h (�);Vol
�
h (�) are sample mean of return and volatility based on actual and

simulated data. The estimator of the parameter of interest � and its probability limit are then

given by:

�̂T = argmin
�

  
1

H

HX
h=1

#̂
�

T;h (�)� ~#T

!| 
1

H

HX
h=1

#̂
�

T;h (�)� ~#T

!!
;
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and

�0 = argmin
�
p lim
T!1;�!0

  
1

H

HX
h=1

#̂
�

T;h (�)� ~#T

!| 
1

H

HX
h=1

#̂
�

T;h (�)� ~#T

!!
:

Proposition 3: As T !1; �
p
T ! 0 and �T !1;
p
T
�
�̂T � �0

�
d�! N (0;V2) ;

where

V2 =

�
1 +

1

H

�
(D|

2D2)
�1
D|
2 (J2 �K2)D2 (D

|
2D2)

�1

D2 = p limr�

 
1

H

HX
h=1

#̂
�

T;h (�0)

!
J2 = Avar

�p
T
�
~#T � #0

��
= Avar

�p
T
�
#̂
�

T;h (�0)� #0
��

; for all h

K2 = Acov
�p

T
�
~#T � #0

�
;
p
T
�
#̂
�

T;h (�0)� #0
�|�

for all h

= Acov
�p

T
�
#̂
�

T;h0 (�0)� #0
�
;
p
T
�
#̂
�

T;h (�0)� #0
�|�

; for all h 6= h0:

Note that the structure of the asymptotic covariance matrix is di¤erent from that in Lemma

1,; the di¤erence is the presence of the matrix K2; which captures the covariance across paths at

di¤erent simulation replications, as well as the covariance between actual and simulated paths. In

fact, we simulate the stock price process conditionally on the sample realizations for the observable

factors, thus performing conditional (simulated) inference. It is immediate to see that the use

of observed values of y1;t and y2;t in (24), provides an e¢ ciency improvement over unconditional

(simulated) inference.

3.3 Identi�cation and estimation of the risk-premium parameters

It remains to estimate the risk premia parameters. We now construct a functional approximation

of the model-implied VIX index, using the parameters estimated in the previous two steps.

Then, we use actual samples of the model-free VIX index, as published by the Chicago Board of

Exchange (CBOE), and obtain estimates of � by matching the impulse response functions as well

as other sample moments of the VIX index implied by the model and its model-free counterpart.

LetW(y (t)) the equilibrium instantaneous stock market volatility, as de�ned in Eq.(10), the

VIX index predicted by the model is

VIX (y (t)) �

s
1

T � t

Z T

t
E[W (y (u)) j y (t)]du; (27)
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where E is the expectation under the risk-neutral probability. The problem is that we do not know
VIX (y (t)) in closed-form. However, we can make a functional expansion of E[W (y (u)) j y (t)],
as follows,

E[W (y (u)) j y (t) = y] = lim
N!1

NX
n=0

(u� t)n

n!
AnW(y) ;

where A is the in�nitesimal generator under the risk neutral-probability. Hereafter, we set n = 1;
so that

VIX (y (t)) =

r
W(y (t)) +

1

2
AW(y (t)) (T � t) (28)

where

AW(y) = ryW(y)| (c�Dy) + 1
2

0@ 3X
j=1

�
�j + �jyj

�
ryjyjW(y)

1A ; (29)

W(y (t)) =

P3
j=1 s

2
j

�
�j + �jyj (t)

�
s (y (t))2

(30)

ryjW(y(t)) =
s2j�j � 2W (y (t)) s (y (t)) sj

s (y (t))2
(31)

ryjyjW(y (t)) = �2 sj

s (y (t))2

 
s2j�j

s (y (t))
+ s (y (t))Wyj (y (t))� sjW(y (t))

!
(32)

c =

264 �1�1 + ��1�2 � �1�1(1)
��2�1 + �2�2 � �2�1(2)

�3�3 � �3�1(3)

375

D =

264 �1 + �1(1)�1 + �2(1) ��1 0

��2 �2 + �1(2)�2 + �2(2) 0

0 0 �3 + �1(3)�3 + �2(3)

375 (33)

In the actual computation of (29), (30), (31), (32), (33) we replace the unknown parameters

s0; sj ; �j ; �j ; �j j = 1; 2; 3 and �i; �i; i = 1; 2 with their estimated counterparts computed in

the previous two stages, i.e. using �̂T ; �̂T : Also, in the construction of (30), (31), (32) we make

use of actual samples for the observable factors y1;t; y2;t and simulated samples for the latent

factors, where the latter is simulated using the parameters estimated n the second step. Note

that, given �̂T ; �̂T ; we can identify � =
�
�1(1); �1(2); �1(3); �2(1); �2(2); �2(3)

�| from c andD in (33).

Let VIX�t;h
�
�̂T ; �̂T ; �

�
and VIXt be the model-based and model free series of the VIX index. As

the CBOE VIX index is available only since 1990 (?), in this stage we use a sample of length

� < T: In the sequel, we rely on the following auxiliary model

VIXt = aVIX + 'VIXt�1 +
X

i2f36;48g
bVIX1;i y1;t�i +

X
i2f36;48g

bVIX2;i y2;t�i + �
VIX
t ;
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and on its simulation-based counterpart,

VIX�t;h

�
�̂T ; �̂T ; �

�
= aVIXh +'hVIX

�
t�1;h

�
�̂
�

T ; �̂
�

T ; �
�
+

X
i2f36;48g

bVIX1;i;hy1;t�i+
X

i2f36;48g
bVIX2;i;hy2;t�i+�

VIX
h;t :

Let VYt = (y1;t�36; y1;t�48; y2;t�36; y2;t�48;VIXt�1)
|, and

VY�
t;h

�
�̂T ; �̂T ; �

�
=
�
y1;t�36; y1;t�48; y2;t�36; y2;t�48;VIX

�
t�1;h

�
�̂T ; �̂T ; �

��|
, and de�ne

~ 1;� =

 
1

�

�X
t=49

VYtVY
|
t

!�1
1

�

�X
t=49

VYtVIXt

 ̂
�

1;�;h

�
�̂T ; �̂T ; �

�
=

 
1

�

�X
t=49

VY�
t;h

�
�̂T ; �̂T ; �

�
VY�

t;h

�
�̂T ; �̂T ; �

�|!�1

� 1

�

�X
t=49

VYt;h

�
�̂T ; �̂T ; �

�
VIX�t;h

�
�̂T ; �̂T ; �

�
and �nally de�ne

~ � =
�
~ 1;�;VIX; �̂

2
VIX

�|
 ̂
�

�;h

�
�̂T ; �̂T ; �

�
=
�
 ̂
�

1;�;h

�
�̂T ; �̂T ; �

�
;VIX

�
h

�
�̂T ; �̂T ; �

�
; �̂2;�VIX

�
�̂T ; �̂T ; �

��|
;

where VIX; �̂2VIX;VIX
�
h

�
�̂T ; �̂T ; �

�
; �̂2;�VIX

�
�̂T ; �̂T ; �

�
denote sample mean and sample variance

of model-free and model-based VIX.

The estimator for the risk premia parameters and its probability llimit are given by

�̂� = argmin
�2�

  
1

H

HX
h=1

 ̂
�

�;h

�
�̂T ; �̂T ; �

�
� ~ �

!| 
1

H

HX
h=1

 ̂
�

�;h

�
�̂T ; �̂T ; �

�
� ~ T

!!
;

and

�0 = argmin
�2�

p lim
�!1;�!0

  
1

H

HX
h=1

 ̂
�

�;h

�
�̂T ; �̂T ; �

�
� ~ �

!| 
1

H

HX
h=1

 ̂
�

�;h

�
�̂T ; �̂T ; �

�
� ~ �

!!
:

Proposition 4: If as T;�!1; �
p
T ! 0, �T !1; �=T ! �; 0 < � < 1;

p
�
�
�̂� � �0

�
d�! N (0;V3) ;
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where

V3 = (D
|
3D3)

�1
D|
3

��
1 +

1

H

�
(J3 �K3) +P3

�
D3 (D

|
3D3)

�1
;

D3 = p lim
�!1

r�

 
1

H

HX
h=1

 ̂
�

�;h (�0; �0; �0)

!
;

J3 = Avar
�p
�
�
~ � �  0

��
= Avar

�p
�
�
 ̂
�

�;h (�0; �0; �0)� 0
��

; for all h

K3 = Acov
�p
�
��
~ � �  0

��
;
p
�
�
 ̂
�

�;h (�0; �0; �0)� 0
�|�

for all h

= Acov
�p
�
�
 ̂
�

�;h0 (�0; �0; �0)� 0
�
;
p
�
�
 ̂
�

�;h (�0; �0; �0)� 0
�|�

; 8 h 6= h0

and

P3 = �F |�0Avar
�p

T
�
�̂T � �0

��
F�0 + �F

|
�0
Avar

p
T
�
�̂T � �0

�
F�0

+ 2�Acov
�
F |�0

p
T
�
�̂T � �0

�
; F |�0

p
T
�
�̂T � �0

��
+ 2
p
�Acov

 
p
T

 
1

H

HX
h=1

 ̂
�

�;h (�0; �0; �0)� 0

!
; F |�0

p
T
�
�̂T � �0

�!

+ 2
p
�Acov

 
p
T

 
1

H

HX
h=1

 ̂
�

�;h (�0; �0; �0)� 0

!
; F |�0

p
T
�
�̂T � �0

�!
� 2
p
�Acov

�p
T
�p
�
�
~ � � 0

��
; F |�0

p
T
�
�̂T � �0

��
� 2
p
�Acov

�p
T
�p
�
�
~ � � 0

��
; F |�0

p
T
�
�̂T � �0

��
with F |�0 = p limT;�!1r�

�
1
H

PH
h=1  ̂�;h (�0; �0; �0)

�
,

F |�0 = p limT;�!1r�

�
1
H

PH
h=1  ̂�;h (�0; �0; �0)

�
; and �=T ! �:

Note that the matrix P3 captures the contribution of parameter estimation error, due to the

fact that the model VIX series has been simulated using parameters estimated in the previous

two stages, i.e. �̂T and �̂T :

3.4 Bootstrap Standard Errors

The limiting covariance matrices in the Propositions 2-4 above, V1;V2;V3, are di¢ cult to esti-

mate, as this would require the computation of several numerical derivatives. Also, V3 re�ects

the contribution of parameter estimation error. Hence, we do not have a closed form expression

for the standard errors. A viable route is then to rely on bootstrap standard errors. Our estima-

tion procedure is based on an hybrid between Indirect Inference and Simulated GMM. Because
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the auxiliary models are potentially dynamically misspeci�ed, their score is not necessarily a

martingale di¤erence sequence. Thus, a natural solution is to use the block bootstrap, which

takes into account possible correlation in the score of the auxiliary models.

We shall proceed as follows. We draw b overlapping blocks of length l, with T = bl; of

Xt = (y1;t; � � �; y1;t�k1 ; y2;t; � � �; y2;t�k2;st; � � �; st�k3);

where k1; k2; k3 depend on the lags we use in the auxiliary models. Hereafter, let

X�
t = (y

�
1;t; � � �; y�1;t�k1 ; y

�
2;t; � � �; y�2;t�k2;s

�
t ; � � �; s�t�k3)

the set of resampled observations.

3.4.1 Bootstrap Standard Error for �

The simulated samples for y1;t and y2;t are independent of the actual samples and also are

independent across simulation replications. Also, as stated in Lemma 1, the estimators of the

auxiliary model parameters, based on actual and simulated samples, have the same asymptotic

variance. Hence, there is no need to resample the simulated series. On the other hand, as the

total number of auxiliary model parameters and moment conditions is larger than the number of

parameters to be estimated, we need to use an appropriate recentering term. Broadly speaking, in

the overidenti�ed case, even if the population moment conditions have mean zero, the bootstrap

moment conditions do not have mean zero, and a proper recentering term is necessary (see e.g.

Hall and Horowitz 1996).

Let ~'�T be the bootstrap analog of ~'T ; i.e.

~'�T =
�
~'�1;T ; ~'

�
2;T ; �y

�
1; �y

�
2; �̂

�2
1 ; �̂

�2
2

�|
;

where ~'�1;T ; ~'
�
2;T are the estimated parameters of the auxiliary models computed using resampled

observations,3 and �y�1; �y
�
2; �̂

�2
1 ; �̂

�2
2 are sample mean and variance of y�1;t; y

�
2;t: De�ne,

�̂
�
T = argmin

'

  
1

H

HX
h=1

�
'̂�T;h (�)� '̂�T;h

�
�̂T

��
� (~'�T � ~'T )

!|
 
1

H

HX
h=1

�
'̂�T;h (�)� '̂�T;h

�
�̂T

��
� (~'�T � ~'T )

!!
3For example, for i = 1; 2

e'�i;T =
 
1

T

TX
t=25

Y�
tY

�|
t

!�1
1

T

TX
t=25

Y�
t y

�
i;t
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We now construct B bootstrap estimators �̂
�
T;i; and we construct the bootstrap covariance matrix,

as

V̂�
�0;T;B

= T
1

B

BX
i=1

  
�̂
�
T;i �

1

B

BX
i=1

�̂
�
T;i

! 
�̂
�
T;i �

1

B

BX
i=1

�̂
�
T;i

!|!
:

We then obtain asymptotically valid bootstrap standard errors from
�
1 + 1

H

�
V̂�
�0;T;B

:

Proposition 5: Under the conditions in Lemma 1, if as T;B !1; l=T 1=2 ! 0;

P

�
! : P �

������1 + 1

H

� bV�
�0;T;B

� V 1

���� > "

��
! 0

3.4.2 Bootstrap Standard Error for �

The (model based) stock price series has been generated using actual samples for the observable

factors and simulated samples for the unobservable factor. Thus, we need to take into account

the contribution of K2; the covariance between simulated and sample paths, as well as among

paths at di¤erent simulation replications.

Construct the resampled simulated stock price series as:

s��t;h (�) = s0 + s1y
�
1;t + s2y

�
2;t + Z

��
t;h (�u) ; (34)

where Z��t;h (�u) is resampled from the simulated unobservable process Z�t;h(�u); and use s
��
t;h (�)

to construct R��t;h (�) and Vol
��
t;h (�): De�ne,

~#
�
T =

�
~#
�
1;T ;

~#
�
2;T ; R

�
;Vol

��|
;

where ~#
�
1;T ;

~#
�
2;T are the estimators of the auxiliary models obtained using resampled observations,

and R
�
;Vol

�
are the sample mean of R�t = log(s

�
t =s

�
t�1) and of Vol

�
t =

p
6� � 112

12P
i=1

��R�t+1�i�� ; with
s�t being the resampled series of the observable stock prices process st; and

#̂
��
T;h (�) =

�
#̂
��
1;T;h (�) ; #̂

��
2;T;h (�) ; R

��
h (�);Vol

��
h (�)

�|
;

where #̂
��
1;T;h (�) ; #̂

��
2;T;h (�) are the parameters of the auxiliary models estimated using resampled

simulated observations, and R
��
h (�);Vol

��
h (�) are the sample mean of R��t;h (�) and Vol

��
t;h (�):
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De�ne:4

�̂
�
T = argmin

�

  
1

H

HX
h=1

�
#̂
��
T;h (�)� #̂

�

T;h

�
�̂T

��
�
�
~#
�
T � ~#T

�!|
 
1

H

HX
h=1

�
#̂
��
T;h (�)� #̂

�

T;h

�
�̂T

��
�
�
~#
�
T � ~#T

�!!
Construct the bootstrap covariance matrix, as

bV�
�0;T;B = T

1

B

BX
i=1

  
�̂
�
T;i �

1

B

BX
i=1

�̂
�
T;i

! 
�̂
�
T;i �

1

B

BX
i=1

�̂
�
T;i

!|!
:

We have:

Proposition 6: Under the conditions in Lemma 2, if as T;B !1; l=T 1=2 ! 0;

P
�
! : P �

���� bV�
�0;T;B

� V 2

��� > "
��
! 0:

3.4.3 Bootstrap Standard Error for �

As mentioned already, the model free VIX index series is available only from 1990 (?) and so

in the third step we have a sample of length �; instead of length T: Thus, we need to resample

y1;t; y2;t; st and VIXt from the shorter sample, using blocksize l� and number of blocks b�; so that

l�b� = �: Also, we need to resample the unobservable factor Z�t;h
�
�̂T

�
from a sample of length

�: Let VIX��t;h
�
�̂
�
T ; �̂

�
T ; �

�
be the model-based VIX index constructed using y�1;t; y

�
2:t; Z

��
t;h

�
�̂T

�
and the bootstrap estimators �̂

�
T and �̂

�
T : Finally, let

~ 
�
� =

�
~ 
�
1;�;VIX

�
; �̂2�VIX

�|
;

where ~ 
�
1;� are the auxiliary model parameters estimated using y

�
1;t; y

�
2;t; and VIX

�
t ; with VIX

�
t

being the resampled series of the model free VIX, and VIX
�
; �̂2�VIX are the sample mean and

variance of VIX�t ; and
5

 ̂
��
�;h

�
�̂
�
T ; �̂

�
T ; �

�
=
�
 ̂
�
1;�;h

�
�̂
�
T ; �̂

�
T ; �

�
;VIX

��
h

�
�̂
�
T ; �̂

�
T ; �

�
; e��2;�VIX

�
�̂
�
T ; �̂

�
T ; �

��|
;

4For example,

e#�1;T =
 
1

T

TX
t=13

Y�
tY

�|
t

!�1
1

T

TX
t=13

Y�
tR

�
t

and b#��1;T;h (�) =
 
1

T

TX
t=13

Y�
tY

�|
t

!�1
1

T

TX
t=13

Y�
tR

��
t;h(�)

5For example,

e �1;� =
 
1

�

�X
t=49

VY�
tVY

�|
t

!�1
1

�

�X
t=49

VY�
tVIX

�
t
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where  ̂
��
1;�;h

�
�̂
�
T ; �̂

�
T ; �

�
are the auxiliary model parameters estimated using y�1;t; y

�
2;t;VIX

��
t;h

�
�̂
�
T ; �̂

�
T ; �

�
andVIX

��
h

�
�̂
�
T ; �̂

�
T ; �

�
; e��2;�VIX

�
�̂
�
T ; �̂

�
T ; �

�
are the sample mean and variance of VIX��t;h

�
�̂
�
T ; �̂

�
T ; �

�
.

De�ne,

�̂
�
� = argmin

�

  
1

H

HX
h=1

�
 ̂
��
�;h

�
�̂
�
T ; �̂

�
T ; �

�
�  ̂��;h

�
�̂T ; �̂T ; �̂�

��
�
�
~ 
�
� � ~ �

�!|
 
1

H

HX
h=1

�
 ̂
��
�;h

�
�̂
�
T ; �̂

�
T ; �

�
�  ̂��;h

�
�̂T ; �̂T ; �̂�

��
�
�
~ 
�
� � ~ �

�!!
Construct the bootstrap covariance matrix, as

V̂�
�0;�;B = �

1

B

BX
i=1

  
�̂
�
�;i �

1

B

BX
i=1

�̂
�
�;i

! 
�̂
�
�;i �

1

B

BX
i=1

�̂
�
�;i

!|!
:

We have:

Proposition 7: Under the conditions in Lemma 3, if as T;�; B !1; l�=T 1=2� ! 0;

P
�
! : P �

����V̂�
�0;�;B � V 3

��� > "
��
! 0:

4 Empirical analysis

4.1 Data

Our sample data include the consumer price index and the index of industrial production for the

US, observed monthly from January 1950 to December 2006, for a total of 672 observations. We

take these two series to compute the two macroeconomic factors, the gross in�ation and the gross

industrial production growth, both at a yearly level,

y1;t � CPIt=CPIt�12 and y2;t � IPt=IPt�12;

where CPIt is the consumer price index and IPt is the seasonally adjusted industrial production

index, as of month t. Figure 1 depicts the two series y1;t and y2;t, along with NBER-dated

recession events. As for the stock price data, we use the S&P Compounded index and the VIX

index. Data for the VIX index are available daily, but only for the period following January 1990.

Information related to the CPI and the IP is made available to the market between the 19th and

the 23th of every month. Thus, to possibly avoid overreaction to releases of information, we

sample the S&P Compounded index and the VIX index every 25th of the month.

and

b ��1;�;h �b��T ; b��T ; �� =
 
1

�

�X
t=49

VY��
t;h

�b��T ; b��T ; ��VY��
t;h

�b��T ; b��T ; ��|
!�1

1

�

�X
t=49

VY��
t;h

�b��T ; b��T ; ��VIX��t;h �b��T ; b��T ; ��
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4.2 Estimation results

Tables 1 through 3 report parameter estimates.

Figure 2 depicts sample data related to the continuously compounded price changes, Rt,

return volatility, Volt, along with the dynamics predicted by the model.

Figure 3 (top panel) depicts the VIX index, along with the VIX index predicted by the model

and the (square root of the) model-implied expected integrated variance. The bottom panel in

Figure 3 plots the volatility risk-premium, de�ned as the di¤erence between the (square roots

of the) model-implied expected integrated variance under the risk-neutral probability and the

model-implied expected integrated variance under the physical probability

Figure 4 provides scatterplots of the volatility risk-premium against in�ation and industrial

production.

5 Conclusion

This paper develops a framework to analyze the business cycle movements of stock market returns,

volatility and volatility risk-premia. In our model, the aggregate stock market behavior relates to

the development of two macroeconomic factors, in�ation and industrial production growth, and

one unobserved factor. The relations linking the asset price, returns and volatility to these factors

are derived under the assumption of no-arbitrage. This key aspect di¤erentiates our approach from

previous models with stochastic volatility, in which volatility was speci�ed exogenously to the

price process.

We take our model to data, and make use of the new volatility index, the VIX index, to

estimate the parameters related to risk-aversion. Our model predicts that stock market returns

are procyclical, stock market volatility is countercyclical and volatility risk-premia are counter-

cyclical.
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Appendix

A. Proofs for Section 2

Existence of a strong solution to Eq. (1). Consider the following conditions: For all i,

(i) For all y : V (y)(ii) = 0, �
>
i (��y + ��) > 1

2�
>
i ��

>�i

(ii) For all j, if
�
�>i �

�
j
6= 0, then V ii = V jj .

Then, by Du¢ e and Kan (1996) (unnumbered theorem, p. 388), there exists a unique strong

solution to Eq. (1) for which V (y (t))(ii) > 0 for all t almost surely.

We apply these conditions to the model we consider in the empirical section, for which � =

I3�3, �i is a vector of zeros, except possibly for its i-th element, denoted as �i � �ii, and � is as

in Section 2.5. Condition (i) collapses to,

For all yi : �i + �iyi = 0; �i
�
�i (�i � yi) + ��i

�
�j � yj

��
>
1

2
�2i ; i 6= j; i; j 2 f1; 2g

For all y3 : �3 + �3y3 = 0; �3�3 (�3 � y3) >
1

2
�23

That is, ruling out the trivial case �i = 0,

�i (�i�i + �i) + ��i�i

�
�j +

�j
�j

�
>

1

2
�2i ; i 6= j; i; j 2 f1; 2g

�3 (�3�3 + �3) >
1

2
�23

Proof of Proposition 1. De�ne the Arrow-Debreu adjusted asset price process as, s� (t) �
e�rt� (t) s (y (t)), t > 0. By Itô�s lemma, it satis�es,

ds� (t)

s� (t)
= D (y (t)) dt+

�
Q (y (t))> �� (y (t))>

�
dW (t) ; (A1)

where

D(y) � �r + As (y)
s (y)

�Q (y)>� (y) ; Q (y)> =
sy (y)

>�V (y)

s (y)

As (y) � sy (y)
> � (�� y) + 1

2
Tr
�
[�V (y)] [�V (y)]> syy (y)

�
:

By absence of arbitrage opportunities, for any T <1,

s� (t) = E

�Z T

t
�� (h) dh

����F (t)�+ E[s� (T ) j F (t)]; (A2)
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where �� (t) is the current Arrow-Debreu value of the dividend to be paid o¤ at time t, viz

�� (t) = e�rt� (t) � (t). Below, we show that the following transversality condition holds,

lim
T!1

E[s� (T ) j F (t)] = 0; (A3)

from which Eq. (7) in the main text follows, once we show that
R1
t E

�
�� (h)

�
dh <1.

Next, by Eq. (A2),

0 =
d

d�
E[s� (�) j F (t)]

����
�=t

+ �� (t) : (A4)

Below, we show that

E[s� (T ) j F (t)] = s� (t) +

Z T

t
D(y (h)) s� (h) dh: (A5)

Therefore, by the assumptions on �, Eq. (A4) can be rearranged to yield the following partial

di¤erential equation,

For all y, sy (y)
> (c�Dy) + 1

2
Tr
�
[�V (y)] [�V (y)]> syy (y)

�
+ � (y)� rs (y) = 0; (A6)

where c and D are de�ned in the proposition.

Let us assume that the price function is a¢ ne in y,

s (y) =  + �>y; (A7)

for some scalar  and some vector �. By plugging this guess back into Eq. (A6) we obtain,

For all y, �>c+ �0 � r �
h
�> (D + rIn�n)� �>

i
y = 0:

That is,

�>c+ �0 � r = 0 and
h
�> (D + rIn�n)� �>

i
= 01�n:

The solution to this system is,

 =
�0 + �

>c

r
and �> = �> (D + rIn�n)

�1 :

We are left to show that Eq. (A3) and (A5) hold true.

As regards Eq. (A3), we have

lim
T!1

E[s� (T ) j F (t)] = lim
T!1

E[e�r(T�t)� (T ) s (y (T )) j F (t)]

= e�r(T�t) lim
T!1

E[� (T ) j F (t)] + lim
T!1

e�r(T�t)E[� (T )�>y (T ) j F (t)]

= � (t) lim
T!1

e�r(T�t)E[�>y (T ) j F (t)];
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where the second line follows by Eq. (A7), and the third line holds because E[� (T ) j F (t)] = 1
for all T , and by a change of measure (Warning: We need some more work to prove this.) Eq.
(A3) follows because y is stationary mean-reverting.

To show that Eq. (A5) holds, we need to show that the di¤usion part of s� in Eq. (A1) is a

martingale, not only a local martingale, which it does whenever for all T ,

1 > E

�Z T

t

Q (y (�))> �� (�)>2 d�� = E

"Z T

t

�>�V (y (�)) + �>y (�)
�� (�)>

2 d�
#
:

�

B. Proofs for Section 3

Proof of Proposition 2: By the �rst order conditions and a mean value expansion around �0;

0 = r�

 
1

H

HX
h=1

'̂�T;h

�
�̂T

�!| 1
H

HX
h=1

'̂�T;h

�
�̂T

�
� ~'T

!

= r�

 
1

H

HX
h=1

'̂�T;h

�
�̂T

�!| 1
H

HX
h=1

'̂�T;h (�0)� ~'T

!

+r�

 
1

H

HX
h=1

'̂�T;h

�
�̂T

�!|
r�

 
1

H

HX
h=1

'̂�T;h
�
��T
�!�

�̂T � �0
�
;

where ��T 2
�
�̂T ; �0

�
: By the uniform law of large numbers, �̂T � �0 = op(1) and

sup�2�

���r�

�
1
H

PH
h=1 '̂

�
T;h (�)

�
�D1 (�)

��� = op(1); and thus r�

�
1
H

PH
h=1 '̂

�
T;h

�
�̂T

��
� D1 =

op(1): Now,

p
T
�
�̂T � �0

�
= � (D|

1D1)
�1
D|
1

 
p
T

 
1

H

HX
h=1

'̂�T;h (�0)� '0

!
�
p
T (~'T � '0)

!
+ op(1);

Let '̂T;h (�) be the estimator obtained in the case we simulated continuous paths of y1;t;h (�) ; y2;t;h (�) ;

i.e. � = 0: As �
p
T ! 0; by Pardoux and Talay (1985),

Avar

 
p
T

 
1

H

HX
h=1

'̂�T;h (�0)� '0

!!
= Avar

 
p
T

 
1

H

HX
h=1

'̂T;h (�0)� '0

!!
Thus,

Avar
�p

T
�
�̂T � �0

��
= (D|

1D1)
�1
D|
1Avar

 
p
T

 
1

H

HX
h=1

'̂T;h (�0)� '0

!
�
p
T (~'T � '0)

!
D1 (D

|
1D1)

�1
:
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Now,

Avar

 
p
T

 
1

H

HX
h=1

'̂T;h (�0)� '0

!
�
p
T (~'T � '0)

!

= Avar

 
p
T

 
1

H

HX
h=1

'̂T;h (�0)� '0

!!
+Avar

�p
T (~'T � '0)

�
�2Acov

 
p
T

 
1

H

HX
h=1

'̂T;h (�0)� '0

!
;
p
T (~'T � '0)

!
:

As the simulated paths are independent of the sample paths,

Acov

 
p
T

 
1

H

HX
h=1

'̂T;h (�0)� '0

!
;
p
T (~'T � '0)

!
= 0:

As simulated paths are identically distributed and independent across di¤erent simulation repli-

cations,

Avar

 
p
T

 
1

H

HX
h=1

'̂T;h (�0)� '0

!!

=
1

H2

HX
h=1

Avar
p
T
�
'̂T;h (�0)� '0

�
+

1

H2

HX
h=1

HX
h0 6=h

Acov
�p

T
�
'̂T;h (�0)� '0

�
;
p
T
�
'̂T;h0 (�0)� '0

��
=
1

H
Avar

p
T
�
'̂T;1 (�0)� '0

�
=
1

H
J1:

Finally, Avar
�p

T (~'T � '0)
�
= Avar

p
T
�
'̂T;1 (�0)� '0

�
= J1; and so

Avar
�p

T
�
�̂T � �0

��
=

�
1 +

1

H

�
(D|

1D1)
�1
D|
1J1D1 (D

|
1D1)

�1
:

The statement in the Lemma then follows by the central limit theorem for geometrically strong

mixing processes.

Proof of Proposition 3: By the same argument as in the proof of Proposition 2,

p
T
�
�̂T � �0

�
= � (D|

2D2)
�1
D|
2

 
p
T

 
1

H

HX
h=1

#̂
�

T;h (�0)� #0

!
�
p
T
�
~#T � #0

�!
+ op(1):
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Thus,
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2D2)
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D|
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+Avar
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�

T;h (�0)� #0

!
;
p
T
�
~#T � #0

�!!
D2 (D

|
2D2)

�1
:

Let #̂T;h (�0) be the estimator obtained in the case we simulated continuous paths for the unob-

servable factor Zt;h(�); i.e. � = 0; then by the same argument as in the proof of Proposition

2,
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!
In the current context, paths for the model-based stock return have been simulated using
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Proof of Proposition 4:
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where C�;�; C h;�; C h;�; C ;�; C ;� denote the last �ve asymptotic covariance terms on the RHS

of (35).

Hereafter, let P � be the probability measure governing the resampled series, and E�; var�

denote the mean and the variance taken with respect to P �; further O�p(1) and o
�
p(1) denote a

term bounded in probability and converging to zero in probability, according to P �; conditional

on the sample and for all samples but a set of probability measure approaching zero.

Proof of Proposition 5: By the �rst order conditions and a mean value expansion around �̂T ;
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Given (38), the statement then follows from Theorem 1 in Goncalves and White (2005).

31



It remains to show (36),(37) and (38). Now,
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Proof of Proposition 6: By the �rst order conditions and a mean value expansion around �̂T ;
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Now, recalling that the blocks are independent each other
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parameters restrictions of Appendix A
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Proof of Proposition 7: By the �rst order conditions and a mean value expansion around �̂�;
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From the proof of Proposition 5 and Proposition 6, and recalling that �=T ! �; 0 < � < 1;
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Thus, by the same argument used in the proof of Proposition 5 and Proposition 6, we can show

that
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and by Minkowski inequality, E�
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Tables

Table 1
Parameter estimates for the macroeconomic factors

Estimate

�1 0.0331

�1 1.0379

�1 2.2206�10�4

�1 �9.6197�10�7

�2 0.5344

�2 1.0415

�2 0.0540

�2 �0.0497
��1 �0.2992
��2 1.2878

Table 2
Parameter estimates for the stock price process and the unobservable factor

Estimate

s0 0.1279

s1 0.0998

s2 2.5103

s3 0.2215

�3 0.0091

�3 0.0493

�3 2.3023

�3 0.2055

Table 3
Parameter estimates for the risk-premium process

Estimate (�103)
�1(1) 6.4605

�2(1) �0.1159
�1(2) 1.4022

�2(2) 2.3332�10�4

�1(3) �2.2079�10�6

�2(3) 3.7559�10�6
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Figure 1 � Industrial production growth and in�ation, with NBER dated re-

cession periods. This �gure plots the one-year, monthly gross in�ation, de�ned as y1;t �
CPIt/CPIt�12, and the one-year, monthly gross industrial production growth, de�ned as

y2;t � IPt/ IPt�12, where CPIt is the Consumer price index as of month t, and IPt is the real,

seasonally adjusted industrial production index as of month t. The sample covers monthly

data for the period from January 1950 to December 2006. Vertical solid lines (in black) track

the beginning of NBER-dated recessions, and vertical dashed lines (in red) indicate the end

of NBER-dated recessions.
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Figure 2 �Returns and volatility along with the model predictions, with NBER

dated recession periods. This �gure plots one-year ex-post price changes and one-year

return volatility, along with their counterparts predicted by the model. The top panel depicts

continuously compounded price changes, de�ned as Rt � log (st/ st�12), where st is the real
stock price as of month t. The middle panel depicts smoothed return volatility, de�ned as

Volt �
p
6� � 12�1

P12
i=1 jlog (st+1�i=st�i)j, along with the instantaneous standard deviation

predicted by the model, obtained through Eq. (4). Each prediction at each point in time

is obtained by feeding the model with the two macroeconomic factors depicted in Figure 1

(in�ation and growth) and by averaging over 1000 dynamic simulations of the unobserved

factor. The sample covers monthly data for the period from January 1950 to December 2006.

Vertical solid lines (in black) track the beginning of NBER-dated recessions, and vertical

dashed lines (in red) indicate the end of NBER-dated recessions.

43



1 9 9 2 1 9 9 4 1 9 9 6 1 9 9 8 2 0 0 0 2 0 0 2 2 0 0 4 2 0 0 6

0 .1

0 .2

0 .3

0 .4

V IX  d yn a m ic s:  o b se rve d  a n d  m o d e l i m p l i e d

V IX  In d e x

M o d e l g e n e ra te d  V IX

M o d e l g e n e ra te d  e xp e c te d  vo l a t i l i ty

1 9 9 2 1 9 9 4 1 9 9 6 1 9 9 8 2 0 0 0 2 0 0 2 2 0 0 4 2 0 0 6
0 .0 5

0

0 .0 5

0 .1

0 .1 5

0 .2

V o l a t i l i ty  ri skp re m i u m

E
Q

(V o l )   E
P
(V o l )

Figure 3 �The VIX Index and volatility risk-premia, with NBER dated reces-
sion periods. This �gure plots the VIX index along with model�s predictions. The top
panel depicts (i) the VIX index, (ii) the VIX index predicted by the model, and (iii) the
VIX index predicted by the model in an economy without risk-aversion, i.e. the expected
integrated volatility under the physical probability. The bottom panel depicts the volatility
risk-premium predicted by the model, de�ned as the di¤erence between the model-generated
expected integrated volatility under the risk-neutral and the physical probability,

VRP (y (t)) �
r

1

T � t

 r
EQ

�R T
t
�2 (y (u)) du

���y (t)��rE �R Tt �2 (y (u)) du���y (t)�
!
;

where T � t = 12�1, EQ is the conditional expectation under the risk-neutral probability,

�2 (y) is the instantaneous variance predicted by the model, obtained through Eq. (4), and y

is the vector of three factors: the two macroeconomic factors depicted in Figure 1 (in�ation

and growth) and one unobservable factor. Each prediction at each point in time is obtained

by feeding the model with the two macroeconomic factors depicted in Figure 1 (in�ation

and growth) and by averaging over 1000 dynamic simulations of the unobserved factor. The

sample covers monthly data for the period from January 1990 to December 2006. Vertical

solid lines (in black) track the beginning of NBER-dated recessions, and vertical dashed lines

(in red) indicate the end of NBER-dated recessions.
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Figure 4 �Volatility risk-premium against in�ation and industrial production

growth. This �gure provides scatterplots of the volatility risk-premium predicted by the

model, depicted in Figure 3 (bottom panel), against the two macroeconomic factors depicted

in Figure 1 (in�ation and growth). Each prediction at each point in time is obtained by feeding

the model with the two macroeconomic and by averaging over 1000 dynamic simulations of

the unobserved factor. The sample covers monthly data for the period from January 1990 to

December 2006. Vertical solid lines (in black) track the beginning of NBER-dated recessions,

and vertical dashed lines (in red) indicate the end of NBER-dated recessions.
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